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Introduction
The Diophantine equation x2+C=yn, in positive integers unknowns 

x, y and n, has a long story. The first case to have been solved appears 
to be c=1. In 1850 Victor Lebesgue showed, using a elementary 
factorization argument, that the only solution is x=0, y=1. Over the 
next 140 years many equations of the form x2+C=yn have been solved 
using the Lebesgue’s elementary trick. In 1993 John Cohn published 
an exhautive historical survey of this equation which completes the 
solution for but all 23 values of C in the range 1 ≤ C ≤ 100 [1]. 

It has been noted recently, that the result of Bilu, Harnot and 
Voutier can sometimes be applied to equations of the form x2+C=yn, 
when instead of C being a fixed integer, C is the product of powers of 
fixed primes p1,…., pk.

By comparison, The Diophantine equation x2+C=2yn with the same 
restriction, has been solved partially. For C=1, John Cohn, showed that 
the only solutions to this equation are x=y=1 and x=239, y=13 and n=4. 
SZ. Tengely studied the equation x2+q2m=2yp where x, y, q, p, m are 
integers with m>0 and p, q are odd primes and gcd (x,y)=1. He proved 
that there are only finitely many solutions (m, p, q, x, y) for which y is 
not a sum of two consecutive squares. He also studied the equation for 
fixed q and resolved it when q=3. In 2007, Abu Muriefah FS, et al., give 
a very sharp bound for prime values of the exponent n when C≡1(mod 
4). When C≢1(mod 4) they explain how the equation can be solved 
using the multi-Frey variant of the modular approach. They illustrate 
their approach by solving completely the equations x2+17a1=2yn, 
x2+5a1.13a2=2yn and x2+3a1.11a2=2yn. In 2009, F. Luca, S. Tengely, and 
A. Togbe give all solutions of that the equation x2+C=4yn when gcd
(x,y)=1, C≡3(mod 4) and 1 ≤ C ≤ 100 [2,3].

The purpose of this paper is to give all solutions of the equation 
1+5x2=3yn, for almost values of n ≥ 2.

Results
Considering the following equation

1+5x2=3yn                (1)

in integer unknowns x, y, n satisfying

, 1and2 5x y n∈ ≥ ≤ ≤    (2)

Theorem 1 Consider the equation (1) satisfying (2). Then the only 
solution of equation (2) is (x,y,n)=(± 4,3,3). 

Auxiliary results

To prove theorem (1), we need the following result

Theorem 2 Let C be a positive integer satisfying C≡1(mod 4), and 

write C=cd2, where c is a square- free. Suppose that (x,y) is a solution 
of the equation 

2 = 2 , , , gcd( , ) = 1,px C y x y x y++ ∈

Where p ≥ 5 is a prime, then either

)i x=y=C=1, or

)ii p divides the class number of the quadratic field ( )− c  or

)iii p=5 and ( , , ) = (9,79,5), (125,19,3), (125,183,7), (2125,21417,47),C x y  or
)iv | ( ( | )),p q c q− −  where q is some odd prime such that |q d  and

.q c  here ( | )c q  denotes the Legendre symbol of the integer c with 
respect to the prime q.

Proof. See (3). 

Proof of theorem 1:

We follow the notation from the statement of the theorem (1). 
We take n=p a prime, p does not divide the class number of the field 

( )− c  considering equation (1) modulo 4 reveals that x is even and 
y odd. We work first in ( )− c . Since 5=1(mod4) this has ring of 
integers = 5 ℜ −  . Factoring the left hand of (1), we get

( 1 5)( 1 5) = 3 px x y± + − ± − −                (3)

multiplying both sides by 4, we obtain

( 2 2 5)( 2 2 5) = 2(1 5)(1 5) px x y± + − ± − − + − − −

and this equation becomes

2 2 5 2 2 5( )( ) = 2
1 5 1 5

px x y± + − ± − −
+ − − −

               (4)

We put 

2 2 5 5 1 1 5 1 1= ( ) = {.( ) ( ) 5, if 1( 3), ( ) ( ) 5, if 2( 3)
3 3 3 31 5

x x x x xx mod x modπ ± + − + − − +
+ − ≡ + − ≡

+ −

It is clear that the π is a principal ideal in 5 −  , then 
( )= 5U Vπ + −  for some odd coprime integers U, V. Then the equation 

(4) becomes
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. = 2 pyπ π

which implies
2 25 = 2 pU V y+

Using the theorem (2), with c=5 and d=V then this equation has 
solution if the statement (iv) holds if p ≥ 5, so | 1p q ±  for some prime 
q such that |q V  and 5q  . If q=3, 7 then p=2,3. Contradiction with the 
fact that p ≥ 5.

If q=11 then p=5, but it is easy to check modulo 11, that (1) has no 
solution. We conclude that (1) has no solution for all n=0(mod5). 

Now we take n=p=3, the equation (1) becomes
2 31 5 = 3x y+  (5)

using the same argument in the proof for p ≥ 5, we get
3. = 2yπ π

We have (2)=q2 where q is a prime ideal of .ℜ  It is clear that the 
principal ideals ,π π  have q as their greatest common factor. From (5) 
we deduce that

3. =π ℜ q.a

Where a is some ideal of .ℜ  Now multiply both sides by (2). We 
obtain

32. = ( )π q.a

Since gcd(h,3)=1, where h is the class number of the field ( )− c  

we see that q.a is a principal ideal. Moreover, the units of ( )− c  are 
±1. Hence

32.( 5) = ( 5)U V a b+ − + −

For some odd integers a, b. Moreover 2 2= ( 5 ) / 2.y a b+  From the 
coprimality of x and y, we see that a and 5b are coprime. Equating real 
and imaginary parts, we get

2 2 2 2{.2 = ( 15 )2 = (3 5 )U a a b V b a b− −    (6)

but = 5 2,U V ± then (6) becomes
3 2 2 315 15 25 = 4a a b ab b− − + ±

which is a Thue type equation with only solutions (a,b)=(1,1), (-1,-1). 

So U=±7 that means x= ± 4 and y=3. We conclude that (1) has no 
solution for all n=0(mod 3) and n>3.

Now, we take n=p=2, considering the equation (1) modulo 4, in 
one hand we get 1+5x2≡1,2 (mod 4), and in another we get 3y2≡0,3 
(mod 4), we conclude that (1) has no solution for all n≡0 (mod 2). 

Conjecture 1: We claim that the equation (1) has no solution for all 
n ≥ 7 when 0 ( 2), 0 ( 3)n mod n mod≡ ≡  and 0 ( 5).n mod≡  
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