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Abstract
By using the Jiang’s function J2 (ω) we prove that there exist infinitely many integers n such that n=2P1, n+1=3P2,, 

n+k−1=(k+1) Pk are all composites for arbitrarily long k, where P1, P2,…, Pk are all primes. This result has no prior 
occurrence in the history of number theory.
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Introduction

Theorem 1

There exist infinitely many integers n such that the consecutive 
integers n=2P1, n+1=3P2,…, n+k−1=(k+1) Pk are all composites for 
arbitrarily long k, where P1, P2,…, Pk are all primes.

Proof: Suppose that 1
1i

mP x
i

= +
+ . We define the prime equations:
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Where i=1, 2,…, k

The Jiang’s function [1] is:
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Where (P)=−k if P2 m; χ(P)=−k+1 if Pm; χ(P)=0 otherwise, 

2 P
Pω

≤
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Since J2 (ω)→∞ as ω→, there exist infinitely many integers x such 
that P1, P2,…, Pk are all primes.

We have the asymptotic formula of the number of integers x ≤ N [1]
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Where, 
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From (1) we have,
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Example 1: Let k=5, we have n=2 × 53281, n+1=3 × 35521, n+2=4 
× 26641, n+3=5 × 21313, n+4=6 × 17761.

Theorem 2

There exist infinitely many integers n such that the consecutive 
integers n=(1+2b) P1, n+1=(2+2b) P2,…, n+k−1=(k+2b) Pk are all 
composites for arbitrarily long k, where P1, P2,, Pk are all primes [2].

Proof: Suppose that 
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Where i=1, 2,…, k.

The Jiang’s function [1] is:
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Where χ(P)=−k if P2m; χ(P)=−k+1 if Pm; χ(P)=0 otherwise.

Since, J2 (ω)→∞ asω→∞, there exist infinitely many integers x such 
that P1, P2,…, Pk are all primes.

We have the asymptotic formula of the number of integers x ≤ N [1]
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From (4) we have:
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Example 2: Let b=1 and k=4, we have n=3 × 27361, n+1=4 × 20521, 
n+2=5 × 16417, n+3=6 × 13681.

Theorem 3

There exist infinitely many integers n such that the consecutive 
integers n=3P1, n+2=5P2,…, n+2=5P2,…,n+2 (k−1)=(2k+1) Pk are all 
composites for arbitrarily long k, where P1, P2,, Pk are all primes [3].

Proof: Suppose that 
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Where i=1, 2,…, k.

The Jiang’s function [1] is:
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Where χ(P)=−k if P2 m; χ(P)=−k+1 if P m; χ(P)=0 otherwise.

Since, J2 (ω)→∞ asω→∞, there exist infinitely many integers x such 
that P1, P2,…, Pk are all primes.

We have the asymptotic formula of the number of integers x ≤ N [1]

2
1 1 1

( )( ,2) ~ ,
( ) log

k

k k k

J NN
N

ω ωπ
ϕ ω+ + +

   (9)

From (7) we have:
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Example 3: Let k=4, we have n=3 × 631, n+2=5 × 379, n+4=7 × 271, 
n+6=9 × 211.

Theorem 4

There exist infinitely many integers n such that the consecutive 
integers n+2=3P2,…,n+2=3P2,…,n+2 (k−1)=(2k+1) Pk are all 
composites for arbitrarily long k, where P1, P2,, Pk are all primes [4].

Proof: Suppose that 
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equations:
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Where i=1, 2,…, k.

The Jiang’s function [1] is:
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Where χ(P)=−k if P2 m; χ(P)=−k+1 if P m; χ(P)=0 otherwise.

Since, J2 (ω)→∞ asω→∞, there exist infinitely many integers x such 
that P1, P2,…, Pk are all primes.

We have the asymptotic formula of the number of integers x ≤ N [1]
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From (10) we have:
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Example 4: Let k=4, we have n=9661, n+2=3 × 3221, n+4=5 × 1933, 
n+6=7 × 1381.

Theorem 5

There exist infinitely many integers n such that the consecutive 
integers n=3P1,…,n+4=7P2,…, n+4 (k−1)=(4k+1) Pk are all composites 
for arbitrarily long k, where P1, P2,…, Pk are all primes [5].

Example 5: Let k=4, we have n=3 × 2311, n+4=7 × 991, n+8=11 × 
631, n+12=15 × 463.

Theorem 6

There exist infinitely many integers n such that the consecutive 
integers n=5P1,…, n+4=9P2,…,n+4 (k−1)=(4k+1) Pk are all composites 
for arbitrarily long k, where P1, P2,…, Pk are all primes [6].

Conclusion
Jiang’s function J2 (ω) prove that there exist infinitely many integers 

n such that n=2P1, n+1=3P2,…, n+k−1=(k+1) Pk are all composites for 
arbitrarily long k, where P1, P2,, Pk are all primes which result has no 
prior occurrence in the history of number theory.
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