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Introduction
Consider a self-adjoint linear operator problem in the real physical 

space, denoted by the -space, as

( ) ( )λ λλ=A Ar r

where †=   , λ  are eigenvalues and ( )λA r  are eigenfunctions. We
define a translation operator R  [1] as 

( ) ( )= +f fR r r R

Now, we take the basis vectors , 1,2,3=n na , with the non-zero 
triple product 1 2 3.= ×V a a a . We may also define the discrete vectors 

1 1 2 2 3 3= + +n n nR a a a where, n1, n2, n3 are integers. The set of all such 
discrete vectors are referred to as the lattice sites [2-4]. Now, suppose 
that these two operators commute

, 0=  R 

Then these two operators share the same set of eigenfunctions. Let 
R  satisfy the eigenvalue equation

( ) ( )λ λµ=A AR r r

The relationship between the sets of eigenvalues μ and λ is generally 
complicated and highly nontrivial [5].

We may now define a set of reciprocal lattice vectors

1 2 3
2π

= ×
V

b a a , 2 3 1
2 π

= ×
V

b a a , and 3 1 2
2  π

= ×
V

b a a with the triple 

product ( )31 2 3. 2 /π= × =U Vb b b  [2-4].

Defining a reciprocal lattice vector 1 1 2 2 3 3 = + +m m mK b b b we may 
call the set of all such discrete reciprocal lattice vectors as the reciprocal 
lattice points. For any choice of the discrete vectors R and K we now get 
the fundamental relationship

. 1=je K R

For any given discrete lattice vector R, this relationship allows 
infinite discrete solutions for K at the reciprocal lattice vectors, and 
vice versa. In a three-dimensional space, this will dictate a three-fold 
degeneracy on the eigenvalues and eigenfunctions, albeit in the form of 
discrete translational symmetry to be discussed later below.

Bloch Theorem
The basis of the well-known Bloch-Floquet theorem [2-7] is that by 

which the eigenfunctions of  take on the property

( ) ( ).; ;−+ = jA e AR kr R k r k

Where K is defined as the Bloch wave vector, and correspondingly, 
the set of all such vectors is referred to as the K-space. In other 
words, ( );A r k is pseudo-periodic in the r-space. Accordingly, the
eigenfunctions satisfy 

( ) ( ).; ;−= jA e Br kr k r k

Here, the so-called envelope functions ( );B r k are periodic in 
-space, that is

( ) ( ); ;=B BR r k r k

We respectively refer ( );A r k and ( );  B r k to as the wave and
envelope functions.

Referring to the above, we may see that both eigenvalues μ and λ 
are actually functions of K as ( )µ µ= k and ( ).λ λ= k  This leads us
to the fact that 

( ) ( ) ( ); ;λ=A Ar k k r k

Extensions to the bloch theorem

The eigenvalues λ (k) turnout to be multi-valued periodic functions 
in the reciprocal space, so that [2-4]

( ) ( )λ λ=K k k

A unit-cell of the k-space which constitutes the periodicity of λ (k) 
is known as the Brillouin Zone. Evidently, this unit-cell is extended in 
the K-space across the basis vectors, b1,b2 and b3.

For every given vector K, there are infinitely many of eigenvalue 
functions λ (k) in general. So to be precise, one would need to consider
( ) ( )λ λ= nk k , with n being a natural number referred to as the band 
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index. This is exactly what truly happens for the case of every periodic 
media, such as photonic and plasmonic crystals [6-8] electronic crystals 
[2-4,9-12] and even photonic crystals [13]. 

If we take advantage of the periodicity of these eigenvalues, we 
may express λ (k) always has ( ) ( )λ λ= −n nk k K , in such a way that k-K 
would belong to the first Brillouin Zone. This notation with the aid of 
band-index n makes ( )λn k  a single-valued function of its argument. 
Similarly, as long as k were restricted to a single Brillouin Zone, then 
the band index integer n would be needed to resolve the eigenfunctions

( );nA r k corresponding to the eigenvalues ( )λn k  at equivalent 
k points, where any two k1 and k2 points are said to be equivalent if 

1 2− =k k K  with k being a discrete reciprocal lattice vector. From this 
point on, we drop the explicit dependence of eigenfunctions on the 
band index n for the sake of brevity, unless needed.

Further properties of the bloch theorem

The above relationships when put together with the basic Bloch 
theorem, we obtain unexpected result for the first time

( ) ( ).; ;++ = jB e Br Kr k K r k

That is, ( );B r k  must be pseudo-periodic in the k-space, too. This 
is to be compared to the pseudo-periodicity of ( );A r k in the r-space. 

When these two properties are combined, we arrive at the following 
conjugate results 

( ) ( ).; ;−+ + = jA e AR kr R k K r k

( ) ( ).; ;++ + = jB e Br Kr R k K r k

These state that both of the wave ( );A r k  and envelope ( );B r k  
functions are biperiodic, however, the wave ( );A r k is pseudo periodic 
in r-space and periodic in k-space, while conversely the envelope 
( );B r k  is periodic in r-space and pseudoperiodic in k-space. 

These properties furthermore allow a trivial translational-
invariance in phase, such as the replacements

( ) ( ) ( )

( ) ( ) ( )

; ;

; ;

→

→

A e A

B e B

r k

r k

r k r k

r k r k

Would provide another equivalent set of eigenfunctions, as long as 
( );θ r k are real-valued and double-periodic as

( ) ( ); ;θ θ=R K r k r k 

Choice of ( );θ r k  is non-trivial for the optimum generation of 
Wannier functions, to be discussed later in Section4.

Orthogonality relations

Now, both of the wave and envelope functions should satisfy 
orthogonality relationships in r-space and k-space respectively as

( ) ( ) ( ); | ; ' 'δ= −A A akrr k r k k k

( ) ( ) ( ); | '; 'δ= −B B brkr k r k r r

With ak and bk being some normalization constants. The inner 
products are here defined as

( ) ( ) ( ) ( )|
* 3

= ∫∫∫f g f g d rr r r r r

( ) ( ) ( ) ( )|
* 3

= ∫∫∫d e d e d kk k
k k k

After normalization and expansion of the inner products, we get

( ) ( ) ( ); | ; ' 'δ= −A A Vrr k r k k k

( ) ( ) ( ); | '; 'δ= −B B Ukr k r k r r

While the first relation is simply known as the orthogonality of wave 
functions, the second one actually is an expression of the completeness 
relationship.

In the reduced-zone scheme, we may rewrite and renormalize the 
above equations as

( ) ( ) 'Cell; | ; ' δ δ−′ ′=n n nnA A V kkrr k r k

( ) ( ) 'Cell
; | '; δ δ

−′ ′=m m mmB B U rrk
r k r k

where the integration of inner products are r estricted to unit cells as

( ) ( ) ( ) ( )
Cell

* 3
Cell|

−

− = ∫∫∫f g f g d r

r

rr r r r

( ) ( ) ( ) ( )Cell

Cell

| * 3
−

−

= ∫∫∫d e d e d kk

k

k k k k

Here, r- cell and k-cell refer actually to the lattice’s Unit Cell and 
Brillouin Zone, respectively.

Modified Wannier functions

The orthogonality relationships provide us with two sets of related, 
yet different, Wannier functions [9,13,14-17] in in r-space and k -space, 
respectively defined in the reduced zone-schemes as 

( ) ( )1

Cell

. 3;=

−

+∫∫∫Yn U

j
ne A d krR

k

k R r k

( ) ( )

.

1 3;

 Cell

−

=

−
∫∫∫

jK r

Z B d rm mV ek r kK

r

As a result, we obtain the shift-properties ( ) ( )0= −n nY YR r r R  and
( ) ( )0= −m mZ ZK k k K . This allows us to ignore the discrete vector 

indices, and simplify the definitions as 

( ) ( )
Cell

1 3;
−

= ∫∫∫nY
U nA d k

k

r r k

( ) ( )
Cell

1 3;
−

= ∫∫∫mZ
V mB d r

r

k r k

where appropriate. Wannier functions now turn out to be readily 
orthogonal as

' ' ' '| δ δ=n n nnY YR R RRr

' ' ' '| δ δ=m m mmZ ZK K KKk

Finally, the original wave and envelope functions may be 
reconstructed from the respective Wannier functions through discrete 
summations over the lattice points and reciprocal lattice points as
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( ) ( ) ( )
3

.2
;

π −= ∑ j
n nA e Y

U
k R

R
R

r k r

( ) ( ) ( )
3

.2
;

π += ∑ j
m mB e Z

V
K r

K
K

r k k

Alternatively, we may rewrite the above definitions as

( ) ( ) ( ). 3

Cell

1 ;+ −

−

= ∫∫∫
j

n nY e B d k
U

k R r
R

k

r r k

( )
( )

( )
.

3

 Cell

1 ;

− −

−

= ∫∫∫
j

m mZ A d r
V e

K k r

K

r

k r k

This allows us to obtain the direct transformation pairs between 
these Wannier functions as

( ) ( ) ( ) ( )
3 .. 32 2

Cell

π + −+=

−
∫∫∑ ∫ jjY e e Z d kn n

k R rK rr kR K
K k

( ) ( ) ( ) ( )
3 .. 32 2

 Cell

π − −−=

−
∫∫∑ ∫ jjZ e e Y d rm m

K k rk Rk rK R
R r

Here, we note the use of identical band indices on both sides. 

It should be mentioned that the translationally-invariant phase 
( );θ r k takes significant part in the integration over eigenfunctions, 

which may be illustrated explicitly as 

( ) ( ) ( ); 3

Cell

1 ;θ−

−

= ∫∫∫ j
n nY e A d k

U
r k

k

r r k

( ) ( ) ( ); 3

Cell

1 ;θ+

−

= ∫∫∫ j
m mZ e B d r

V
r k

r

k r k

Since there are infinitely many choices for ( );θ r k , Wannier 
functions would not be unique, and normally need to be constructed 
in such a way to be maximally-localized. This is normally done through 
global minimization of a spread functional; the reader is referred 
to literature for in-depth discussion of this issue [14,9,16-22] for 
plasmonic, photonic, phononic, and electronic crystals, respectively.

Example
Two-dimensional photonic crystals

Consider a two-dimensional (2D) photonic crystal (PC) with 
in-plane propagation, which allows separation of E-polarized and 
H-polarized modes. Here, the 2D relative permittivity and permeability 
function makes the whole structure periodic as ( ) ( )= +r rr r R   and 

( ) ( )µ µ= +r rr r R  with 1 1 2 2= +n nR a a . The operator for the normal 
component of the electric field ( ) ( ) ( ) ( ) ( )., , ,−= = jA E e Fr z r z

k rr k r r k r r k 
would become [6]

( ) ( ), ,λ=A Ar k r k

The scalar operator and eigenvalue is in the extended zone now 
given as

( )
( ) ( ) ( )

( )2 .1 1 1.
µ

  
  = ∇ ∇     

E
rr rrr r


 

( ) ( )2

2
ω

λ = E

c

k
k

With ˆ ˆ∂ ∂
∇ = +

∂ ∂
x y

x y
. Furthermore, ( )ωE k is the E-polarization 

band structure, and ( )2
E  is easy to be shown to be self-adjoint operator 

under these criteria, hence the eigenfunctions obeying the orthogonality 
relationships after corresponding displaying the band indices

( ) ( ) ( ) ( ) ( ) ( )* 2; | ; '  ; ; ' '' 'δ δ= = −A A E E d r Vr nz n z nnr k r k r r k r k k kr ∬
( ) ( ) ( ) ( ) ( ) ( )* 2

' '; | '; ; '; 'δ δ= = −r mz m z mmB B F F d k Ur k r k k r r k r k r r∬
Where V actually denotes the area of the unit-cell; for this to 

happen, one may simply set 3 ˆ= za . Note that, we have ( )22π=VU
for the 2D PC. The relevant pair of E-polarization Wannier functions 
[19,20] would be

( )
( )

( ) 2

Cell

;
−

=
r

n nzY E d k
U

k

r
r r k


∬

( ) ( ) ( ) 2

Cell

1 ;
−

=m r mzZ F d r
V

r

k r r k∬

Similarly, the relationships of the H-polarized components could 
be found. As for the scalar operator of the normal component of the 

magnetic field ( ) ( ) ( ) ( ) ( )., , ,µ µ −= = jA H e Gr z r z
r kr k r r k r r k , one would 

obtain 
( )

( ) ( ) ( )
( )2 .1 1 1.

µ µ

  
  = ∇ ∇     

H
rr rrr r




( ) ( )2

2
ω

λ = H

c

k
k

( )ωH k is the H-polarization band structure, and ( )2
H  is self-

adjoint. Hence the eigenfunctions obey the orthogonality relationships 
after corresponding displaying the band indices

( ) ( ) ( ) ( ) ( ) ( )* 2; | ; ' ; ; ' '' 'µ δ δ= = −A A H H d r Vr nz n z nnr k r k r r r k r k k k∬
( ) ( ) ( ) ( ) ( ) ( )* 2; | '; ; '; '' 'µ δ δ= = −B B G G d k Ur mz m z mmr k r k r r k r k r r

k ∬
Where V actually denotes the area of the unit-cell; for this to 

happen, one may simply set 3 ˆ= za . Similarly, we have ( )22π=VU for 
the 2D PC. The relevant pair of H-polarization Wannier functions 
would be

( )
( )

( ) 2

Cell

;
µ

−

=
r

n nzY H d k
U

k

r
r r k∬

( ) ( ) ( ) 2

Cell

1 ;µ
−

=m r mzZ G d r
V

r

k r r k∬

Three-dimensional photonic crystals

If the permittivity and permeability functions are three-dimensional 
(3D) periodic tensor of space, then within the frame of reference which 

( )  r r  becomes diagonal (under no loss and no optical activity [9-

11], one would have the following relation for the vector operator
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( )
( ) ( ) ( )

( )3 1 .1 1
µ

  
  = − ∇× ∇×               

E
rr rrr r


 

Where ( ) ( )1/2 δ   ≡    r rmm mnr r   is properly defined because of its 

diagonal form. Similarly, we obtain

( ) ( ) ( ) ( )
2

3
2, ,

ω
= n

n nE c

k
E r k E r k

Which leads to the orthogonality relations 

 ( ) ( ) ( ) ( ){ } ( ) ( ){ } ( )* 3; | ; ' , ; ' '' 'δ δ   = ⊗ = −      ∫∫∫A A d r V Ir n r n nnr k r k r E r k r E r k k k
r

 

( ) ( ) ( ) ( ){ } ( ) ( ){ } ( )* 3; | '; , '; '' 'δ δ   = ⊗ = −      ∫∫∫B B d k U Ir m r m mmr k r k r F r k r F r k r rk  

Here, ⊗ represents the tensor outer product, and   I  is the 3 3×
unit tensor. From these equations the additional forms are inferred by 
taking the trace

( ) ( ){ } ( ) ( ){ } ( )* 3tr , ; ' 3 '' 'δ δ    ⊗ = −     ∫∫∫ d r Vr n r n nnr E r k r E r k k k 

( ) ( ){ } ( ) ( ){ } ( )* 3tr , '; 3 '' 'δ δ    ⊗ = −     ∫∫∫ d k Ur m r m mmr F r k r F r k r r 

Finally, when the dielectric is isotropic, one would reach the scalar 
equations

( ) ( ) ( ) ( )* 3, . ; ' 3 '' 'δ δ= −∫∫∫ d r Vr n n nnr E r k E r k k k

( ) ( ) ( ) ( )* 3, . '; 3 '' 'δ δ= −∫∫∫ d k Ur m m mmr F r k F r k r r

The relevant pair of vector E-polarization Wannier functions would 
be obtainable from generalization of the vector Wannier functions [19]

( )
( )

( ) 3

Cell

;

−

  = ∫∫∫
r

n nz d k
U

k

r
Y r E r k



( ) ( ) ( ) 3

Cell

1 ;

−

 =  ∫∫∫m r mz d r
V

r

Z k r F r k

Identical deductions may be made for the magnetic field 
eigenfunctions ( ) ( )., ,−= je r kH r k G r k once ( )µ  r r  is diagonalized,
which may be found by interchanging permittivity and permeability, 
as well as Electric and Magnetic fields everywhere.

Conclusions
In this article, we have presented an in-depth discussion on the 

basic properties of Bloch waves in periodic media, and obtained a 
novel biperiodicity property in the eigenfunctions for the first time. 
We showed that the envelope and wave functions both satisfy mutual 
periodic and pseudoperiodic properties in the physical and reciprocal 
spaces, which shows there exist much more similarity between these 
two spaces than thought before. Extensions of these properties were 
found to be applicable to defining a new set of Wannier functions in 
reciprocal space, rather than the conventional definition in physical 
space, while these two Wannier functions are directly connected 
through unorthodox transformations. It is envisioned that the 

future investigation of these pair of Wannier functions would result 
in more efficient analytical tools of periodic media, and simplify the 
construction of maximally-localized band functions.
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