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Introduction
A sequence space is defined to be a linear space of real or complex 

sequences. Throughout the paper ℕ, ℝ and ℂ denotes the set of non-
negative integers, the set of real numbers and the set of complex 
numbers respectively. Let ω denote the space of all sequences (real or 
complex) and let l∞ and c be Banach spaces of bounded and convergent 
sequences =0= { }n nx x ∞  with supremum norm = | |sup n

n
x x  . Let T denote 

the shift operator on ω, that is, =1= { }n nTx x ∞ , 2
=2= { }n nT x x ∞  and so on. A 

Banach limit L is defined on l∞ as a non-negative linear functional such 
that L is invariant i.e., L(Sx) = L(x) and L(e) = 1,e = (1,1,1,…) [1]. 

Lorentz called a sequence {xn} almost convergent if all Banach 
limits of x, L(x), are same and this unique Banach limit is called F - limit 
of x. In his paper, Lorentz proved the following criterian for almost 
convergent sequences.

A sequence x = {xn} ∈ l∞ is almost convergent with F - limit of L(x) 
if and only if 

( ) = ( ) lim
→∞

mn
m

t x L x

where, 
1

0

=0

1( ) = , ( = 0)
m

j
mn n

j
t x T x T

m

−

∑  uniformly in n ≥ 0.

We denote the set of almost convergent sequences by f. This was 
further studied by Ganie [2], Nanda [3] and many others.

A complex number sequence x is said to be statistically convergent 
to the number L if for every ε > 0, 

1 |{ :| | } |= 0,lim k
n

k n x L
n

ε≤ − ≥                (1)

where the vertical bars indicate the number of elements in the 
enclosed set. In this case we write S - limit x = L or xk → L(S). We shall 
also use S to denote the set of all statistically convergent sequences. 
The idea of statistical convergence was introduced by Fast [4] and was 
further studied by several authors [5-9]. 

By a lacunary sequence we mean an increasing integer sequence θ 
= {kr} such that k0 = 0 and hr = kr – kr-1 → ∞ as r → ∞. Throughout this 
paper, the intervals determined by θ will be denoted by Ir = (kr-1, kr] and 
the ratio kr / kr-1 will be abbreviated by qr.

Let θ be a lacunary sequence; the number sequence x is Sθ - 

convergent to L provided that for every ε > 0,
1 |{ :| | } |= 0. lim r k

r r

k I x L
h

ε∈ − ≥   (2)

In this case we write Sθ - limit x = L or xk → L(Sθ), and we define 

{ }= :    , lim = .S x for some L S x Lθ θ −

The concepts of fuzzy sets and fuzzy set operations were first 
introduced by Zadeh [10] and subsequently several authors have 
discussed various aspects of the theory and applications of fuzzy sets 
such as fuzzy topological spaces, similarity relations and fuzzy orderings, 
fuzzy measures of fuzzy events, fuzzy mathematical programming. 
Matloka [11] introduced bounded and convergent sequences of fuzzy 
numbers and studied their some properties and has shown that every 
convergent sequence of fuzzy numbers is bounded. Later on sequences 
of fuzzy numbers have been discussed by many others [4,7-9,12-18].

Let D denote the set of all closed and bounded intervals X = [a1, a2] 
on the real line ℝ. For X, Y ∈ D we define 

1 1 2 2( : ) = max(| |,| |),d X Y a b a b− −

Where X = [a1, a2], Y = [b1, b2]. It is known that (D, d) is a complete 
metric space.

Let I = [0,1]. A fuzzy real number X is a fuzzy set on ℝ and is a 
mapping X : ℝ → Ι associating each real number t with its grade 
membership X (t). A fuzzy real number X is called convex if 

( ) ( ) ( ) = min( ( ), ( )), where < < .X t X s X r X s X r s t r≥ ∧

A fuzzy real number X is called if normal if there exists t0 ∈ ℝ such 
that X(t0) = 1.

A fuzzy real number X is called upper semi-continuous if for each ε 
> 0, X -1 ([0, a + ε)) for all a ∈ I and given ε > 0, X -1 ([0, a + ε)) is open in 
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the usual topology of ℝ. The set of all upper semi-continuous, normal, 
convex fuzzy numbers is denoted by R(I). The α - level set of a fuzzy real 
number X for 0 < α ≤ 1 denoted by Xα is defined by Xα = {t ∈ ℝ : X (t) ≥ 
α}. The 0 - level set is the closure of strong 0 - cut.

For each , ( )r r I∈ ∈   is defined by 
, if = ,

= 0, if .
r t r

r t r

 ≠



The absolute value of | |X  of X ∈ ℝ(I) is defined by [19].

max{ ( ), ( )}, if 0,
| | ( ) = 0, if < 0.

X t X t t
X t t

− ≥





Let : ( ) ( )d I I× →    be defined by 

0 1
( , ) = ( , ).supd X Y d X Yα α

α≤ ≤

Then d  defines a metric on ℝ(I) [19]. The additive identity and 
multiplicative identity in ℝ(I) are denoted by 0  and 1  respectively.

A Fuzzy number is a function X from ℝn to [0,1], which is normal, 
fuzzy convex, upper-semi continuous and the closure of {x ∈ ℝn : X(x) 
> 0} is compact. These properties imply that for each 0 < α ≤ 1, the α - 
level set Xα = {t ∈ ℝn : X(t) ≥ α} is non-void compact convex subset of 
ℝn, with support X0 = {t ∈ ℝn : X(t) > 0}

We denote by L (ℝn) the set of all Fuzzy number. The linear structure 
of L (ℝn) induces the addition X + Y and the scalar multiplication λX, λ 
∈ ℝ, interms of α level sets, 

| | =| | | |   &   | | = | |X Y X Y X Xα α α α αλ λ+ +

for each 0 ≤ α ≤ 1. Now, for each 1 ≤ q < ∞, we define 
1

1

0
( , ) = ( , ) ,qq

qd X Y X Y dα αδ α∞
 
  ∫

and 

0 1
( , ) = ( , ),supd X Y X Yα α

α
δ∞

≤ ≤

where δ∞ is Hausdorff metric. It is obvious that ( , ) = ( , )lim q
q

d X Y d X Y∞
→∞

 

and for q ≤ r, we have dq ≤ dr. Throughout the text, we will denote dq by 
d where 1 ≤ q < ∞.

Kizmaz [20] defined the difference sequence spaces Z(∆) as follows 

( ) = { = ( ) : ( ) }k kZ x x x Zω∆ ∈ ∆ ∈

where Z ∈ {l∞, c, c0} and ∆xk = xk – xk+1. It was further generalized 
by Tripathy and Esi [21], as follows. Let m ≥ 0 be an integer then 

{ }( )= = ( ): ,m k mH x x x H∆ ∆ ∈  for H = l∞, c and c0, where ∆mxk = xk – xk+m. 
The difference sequence space were further studies by Çolak [22], 
Ganie [15,23] and etc [24-29]. Further, in Tripathy [21] generalized the 
above notions and unified these as follows: 

{ }= :( ) ,n m
m k n kx x x Zω∆ ∈ ∆ ∈

where 

=0
= ( 1)

n
n
m k k m

n
x x

r
µ

µ
µ

+

 
∆ −  

 
∑

and 

0 =  .n
k kx x k∆ ∀ ∈

Results
In this section, we shall introduce the notion of Fuzzy numbers by 

using generalized difference operator n
m∆  and the lacunary sequence k 

= (kr) and study their properties.

Definiton 4.1: Let θ = (kr) be a lacunary sequence; a sequence X = 
(Xk) of Fuzzy numbers is said to be lacunary almost ( )n

m θ∆ - convergent 
to the Fuzzy number X0 provided that for every ε > 0,

( )0
1 |{ : , } |= 0, lim n

r m k i
r r

k I d X X
h

ε+∈ ∆ ≥ 		                  (3)

uniformly in i. In this case we write ( )( )0
ˆ ( )n

k mX X S θ→ ∆  or 
( ) 0

ˆ ( ) lim =n
m kS X Xθ∆ − . The set of all lacunary almost ( )n

m θ∆ - 
statistically convergent sequences of Fuzzy numbers is denoted by 
( )ˆ ( )n

mS θ∆ . 

Definiton 4.2: Let θ = (kr) be a lacunary sequence; p = (pk) be a 
sequence of strictly positive real numbers and X = (Xk) be a sequence 
of Fuzzy numbers. Then, the sequence X = (Xk) is said to be a lacunary 
strongly ( ) -convergent if there is a Fuzzy number X0 such that 

( )0
1 , = 0,lim

pkn
m k i

r k Ir r

d X X
h +

∈

 ∆ ∑ 			                 (4)

uniformly in i. In this case, we write ( )0 , ( )p n
k mX X Mθ θ → ∆  . By 

, ( )p n
mMθ θ ∆  , we shall denote the set of all lacunary strongly almost 

( )n
m θ∆  convergent sequence of Fuzzy numbers. 

Definiton 4.3: Let θ = (kr) be a lacunary sequence. Then the 
sequence X = (Xk) of Fuzzy numbers is said to be n

m∆  bounded if the 
set ( ){ }:n

m kX k∆ ∈  of Fuzzy numbers is bounded. We shall denote by 

( )n
ml∞ ∆  the set of all n

m∆  - bounded sequences of Fuzzy numbers.

Theorem 4.1: Let ( )ˆ= ( ), = ( ) ( )n
k k mX X Y Y S θ∈ ∆  and α ∈ ℝ. Then, 

(i) ( ) ( )ˆ ˆ( ) lim( ) = ( ) limn n
m k m kS X S Xθ α α θ∆ − ∆ −

(ii) ( ) ( ) ( )ˆ ˆ ˆ( ) lim( ) = ( ) lim ( ) limn n n
m k k m k m kS X Y S X S Yθ θ θ∆ − + ∆ − + ∆ −

Proof: We left it as an easy exercise for the reader. 

Theorem 4.2: Let θ = (kr) be a lacunary sequence; p = (pk) be a 
sequence of strictly positive real numbers with 0 < h = inf pk ≤ pk ≤ 
suppk = H < ∞, then

(i) ( ) ( )( )0 0
ˆ, ( ) ( ) ,p n n

k m k mX X M X X Sθ θ θ → ∆ ⇒ → ∆ 

(ii) ( )( ) ( )0 0
ˆ( )  &  ( ) , ( ) .n n p n

k m k m k mX l X X S X X Mθθ θ∞  ∈ ∆ ∈ ∆ ⇒ → ∆ 

Proof: Let ( )0 , ( )p n
k mX X Mθ θ → ∆  . Then, for ε > 0, we have

( )0
1 ,                          

pkn
m k i

k Ir r

d X X
h +

∈

 ∆ ∑

( )
( )0

, 0

1 ,
pkn

m k i
k Ir r

nd X Xm k i

d X X
h

ε

+
∈

∆ ≥+

 ≥ ∆ ∑

( ), 0

1     pk

k Ir r
nd X Xm k i

h
ε

ε
∈

∆ ≥+

≥ ∑

( )
( )

, 0

1 min ,h H

k Ir r
nd X Xm k i

h
ε

ε ε
∈

∆ ≥+

≥ ∑

( ){ } ( )0
1 : , min ,n h H

r m k i
r

k I d X X
h

ε ε ε+≥ ∈ ∆ ≥

uniformly in i, there by proving part (i).
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1

, ,
1 1 1=k

k i k i
k Ir r rr

v v
h h h

µ µ
µ

−

∈

   
   
   

∑

11 1
1 1

,
1 1

k i
k I k Ir rr r

v
h h

µ µ
µ µµ µ

−

− −

∈ ∈

   
         
   ≤       
            

   

∑ ∑

,
1= .k i

k Ir r

v
h

µ

∈

 
  
 

∑

By Holder’s inequality and hence we have

, , ,
1 1 1 .k

k i k i k i
k I k I k Ir r rr r r

w w v
h h h

µ

µ

∈ ∈ ∈

 
 ≤ +  
 

∑ ∑ ∑

This shows that , ( ) .p n
mX Mθ θ ∈ ∆ ◊ 

Theorem 4.6: ( ), ( ) ,p n n
m mM lθ θ ∞∞

 ∆ ⊂ ∆ 

where 

( )1, ( ) = = ( ) : ,0 < .n n
m k m k i

k Ir r

M X X d X
hθ θ +∞

∈

    ∆ ∆ ∞      
∑

Proof: We first suppose that , ( )p n
mX Mθ θ

∞
 ∈ ∆  . Hence, we can find 

a constant λ > 0 such that 

1
1

1 1, 0 , 0 ,n n
m i m k i

k Ir r

d X d X
h h

λ+ +
∈

   ∆ ≤ ∆ ≤   ∑

for all i and hence we have ( )n
mX l∞∈ ∆ .

Conversely, we suppose that ( )n
mX l∞∈ ∆ . Therefore, we can find a 

constant β such that for all j, we have 

( ),0 ,n
m jd X β∆ ≤

so that 

21 , 0 1 1 ,n
m k i

k I k Ir rr r

kd X
h h

β+
∈ ∈

 ∆ ≤ ≤ ∑ ∑

for all k and i. Consequently, , ( ) .p n
mX Mθ θ

∞
 ∈ ∆ ◊ 
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