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Introduction
In many biological and physical sciences, rapid advances in 

technical capabilities have dramatically increased the amount of data 
that are collected across space and over time. Spatial-temporal models 
are important tools for the analysis of spatial data collected repeatedly 
over time and have been applied to a wide range of problems, including 
modeling patterns in lung cancer [1], breast cancer [2], birth defects 
[3], and West Nile virus [4]; see also Cressie [5], Rue and Held [6], 
and Schabenberger and Gotway [7]. In particular, for binary data 
that are observed on a spatial lattice over time, spatial-temporal 
autologistic regression models relate binary responses to covariates 
while accounting for spatial and temporal dependence simultaneously 
[8,9].

Spatial-Temporal Autologistic Regression Model
Let ity  denote the response variable such that 0=ity  or 1 at site

i and time t, where  1,...,=i n  and 1, ...,=t m. Let 1 1( , ..., ) '=t t nty y y  
denote the binary responses on the spatial lattice for a given time point 
t. We specify the joint distribution of 1( ' , ..., ' ) '+= s my y y  via conditional
distributions,
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for 1, ..., .= +t s m  Further, for a given time point t, we assume that the 
response variable follows an autologistic model 
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Here jitx  denotes the thj  covariate at site i and time  t, 1( , ..., ) 'β β β= p  
are regression coefficients 1( , ..., ) 'θ θ θ= q  are spatial autoregressive 
coefficients, 1( , ..., ) 'α α α= s  are temporal autoregressive coefficients, and 

1( , ..., ) 'θ θ θ=l l l
q  for 1, ...,=l s  are spatial-temporal interactive coefficients. 

For a given site i, we can partition the neighborhood 1( ) ( ).== q
kkN i U N i  

For example, in the bark beetle infestation example of Zhu et al. [8], 
the study region is a regular square grid. Then we can define ( ),kN i  the  

thk -order neighbors of a given site i, to contain the k nearest neighbors in 
terms of distance, for 1, ..., .=k q  Taking 2=q  for example, we note 
that 1 20, 0θ θ≠ =  corresponds to spatial autocorrelation along the 
north-south and west-east directions, while 1 20, 0θ θ= ≠  corresponds 
to spatial autocorrelation along the northwest-southeast and northeast-
southwest directions. Furthermore, to account for anisotropy, we could 
further partition ( )kN i  by direction as in Zhu et al. [10]. In general, the 
magnitude of θk  reflects not only the extent but also the direction of 
spatial autocorrelation.

Some special cases of the above spatial-temporal autologistic 
regression models (Cf. Reyes [11]) are as follows:

• Spatial independence: 1 0θ θ= = =q  and all 
0, 1, ..., , 1, ...,θ = = =l

k k q l s

• Temporal independence: 1 0α α= = =s

 and all
0, 1, ..., , 1, ...,θ = = =l

k k q l s

• Spatial-temporal separable neighborhood structure: all
0, 1, ..., , 1, ...,θ = = =l

k k q l s  

• Spatial-temporal non-separable neighborhood structure: some
0, 1, ..., , 1, ...,θ ≠ = =l

k k q l s

In what follows, for simplicity we focus on the spatial-temporal 
separable neighborhood structure.

Model Selection
Some interesting statistical problems for autologistic regression 

models include how to select covariates and determine an appropriate 
spatial and temporal neighborhood structure. For example, in studying 
the impact of climate change on bark beetle infestation of pine forests 
in North America, some of the most important scientific objectives 
are to identify and quantify the effects of environmental conditions 
(e.g. climate change) on bark beetle infestation. Also of great interest 
is describing the extent and direction of bark beetle dispersal [12]. 
Judicious selection of covariates and spatial-temporal neighborhood 
structure permits fulfillment of the aforementioned scientific 
objectives.

For binary spatial-temporal lattice data, there is not a consensus 
on how to perform model selection. Particularly regarding spatial-
temporal neighborhood structure, this lack of consensus has resulted 
in researchers employing creative but ad-hoc methods for which the 
statistical properties are not fully understood. For example, Zhu et al. 
[13] selected covariates using backward elimination based on t-ratios
of the parameter estimates under a pre-specified spatial and temporal 
neighborhood structure for their analysis of the southern pine beetle 
outbreak in North Carolina, United States. Zhu et al. [8] pre-selected 
the spatial and temporal neighborhood structure without including 
covariates using the AIC and then, once the neighborhood structure 
was specified, chose covariates for their analysis of the mountain 
pine beetle outbreak in British Columbia, Canada. Using pre-selected 
covariates, Bandyopadhyay et al. [9] employed a Bayesian paradigm 
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to compare several different spatial dependence structures for dental 
caries data. As these examples suggest, covariates and neighborhood 
structure are usually not selected simultaneously, since examining all 
possible combinations of covariates and neighborhood structure may 
be prohibitively time-consuming.

In the remainder of this editorial, we discuss some possibilities 
for selection of covariates and spatial-temporal neighborhood 
structure, based on the premise of determining which regression and 
autoregressive coefficients are non-zero. One idea would be to consider 
a penalized log-likelihood function via adaptive LASSO [14],

1 1 1

( ) ( ) ( ) ( ) ( ) ,η η λ β τ θ ζ α
= = =

= − − − − − −∑ ∑ ∑
p q s

j j k k l l
j k l

Q l n m s n m s n m s

where 1{ }λ =
p

j j  are regularization parameters for the regression 

coefficients 1,{ }β τ =
q

k k  correspond to the spatial autoregressive 

coefficients θ, and 1{ }ζ =
s

l l pertain to the temporal autoregressive
coefficients Here  is the likelihood function. However, for the 
spatial-temporal autologistic regression model, there is no explicit 
representation of the likelihood function. One possibility would be to 
replace the likelihood function by the pseudolikelihood function [15]. 
Another would be to use the Monte Carlo likelihood function (see, e.g. 
Geyer and Thompson [16], Huffer and Wu [17]), which consistently 
estimates the likelihood function but is computationally intensive.

To maximize ( ),ηQ  one possibility is to deploy a Newton-Raphson 
(NR) type algorithm based on a local quadratic approximation (LQA). 
The LQA algorithm has been used widely and shown to produce 
reliable results in practice, even for dependent data [18]. However, this 
algorithm is slow, and a coefficient shrunk to 0 during the iteration 
of the algorithm remains at 0 throughout all subsequent iterations. 
Other methods may be considered for non-Gaussian distributions. 
For example, Madigan and Ridgeway [19] considered LARS-type 
algorithms for logistic regression, while Genkin et al. [20] proposed 
Bayesian logistic regression with a Laplace prior for large-scale text 
categorization. Park and Hastie [21] developed a path algorithm for 
variable selection in a generalized linear model based on a predictor-
corrector method. We conclude this editorial by calling for further 
research on efficient variable and neighborhood structure selection for 
autologistic regression models, which will equip scientists with more 
advanced statistical tools for exploring and analyzing spatial-temporal 
lattice data.
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