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Abstract

We consider Lie algebras of dimension 3 up to isomorphism. We construct a noncommu-
tative affine spectrum of the isomorphism classes as a noncommutative k-algebra M, using
noncommutative deformation theory. This k-algebra is an example of a noncommutative
structure.
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1 Introduction

Throughout, let k be an algebraically closed field of characteristic 0. The classification of three-
dimensional Lie algebras is well known. Up to isomorphism they are ab, sl2, r3, la, and n3, ([4]).
In this paper, we are going to construct a noncommutative algebraic moduli (i.e. an algebraic
geometric classifying structure) having the isomorphism classes of 3-dimensional Lie algebras
as geometric points, in this case represented by 1-dimensional simple modules, see [9] or the
definitions 1.10, 1.11 below. We obtain an example of noncommutative deformation theory that
is special in that it shows two families of Lie-algebras meeting in only one point.

We will achieve this by using noncommutative deformation theory, see [9, 3]. In commutative
deformation theory, the local formal moduli (or prorepresenting hull) of the deformation functor
DefM is a candidate for the completion of the local k-algebra ÔM of the moduli space in the
point corresponding to M , see [11], and in a lot of examples the moduli space is given locally
around M as the spectrum of a natural finitely generated algebraization (definition 1.11) OM
of ÔM , see [13, 12]. Moreover, [13] contains an algorithm for computing the local formal moduli
of DefM . In noncommutative deformation theory as given in [9, 3], this is generalized to the
noncommutative situation:

Definition 1.1. A noncommutative k-algebra R is called r-pointed if there exists exactly r
isomorphism classes of simple one-dimensional quotient modules of R, R � Vi ∼= k, i = 1, . . . , r.
A morphism of r-pointed k-algebras, is a k-algebra homomorphism inducing the identity on the
r one-dimensional quotient modules.

Definition 1.2 (the category ar). The category ar is the category of r-pointed Artinian k-
algebras S together with morphisms of r-pointed algebras.

The category ar is characterized by the following: An r-pointed Artinian k-algebra is a
k-algebra S together with morphisms ι, ρ commuting in the diagram

kr
ι //

Id   A
A

A
A S

ρ

��
kr
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and such that (ker(ρ))n = 0 for some n > 0. ker(ρ) is called the radical of S and denoted
ker(ρ) = rad(S). The procategory âr of ar is the full subcategory of (r-pointed) k-algebras such
that R/(rad(R))n is an object of ar for all n ≥ 1, and such that R is (separated) complete in
the I = rad(R)-adic topology.

Remark 1.3. The commutative k-algebras in a1 makes up the category ` of pointed Artinian
k-algebras.

Remark 1.4. Consider the r × r-matrices eii, the matrix with 1 at place i, i and 0 elsewhere,
and tij(l), the matrices with the indeterminates tij(l) at place i, j and 0 elsewhere, 1 ≤ l ≤ lij .
Then we use the notation kr{tij(l)} for the k-algebra generated by these matrices under ordinary
matrix multiplication. This is the noncommutative counterpart of the free k-algebra k[t1, . . . , tl]
in the commutative situation.

Let ei ∈ kr, 1 ≤ i ≤ r be the idempotents. Put Sij = eiSej . Then it follows that every
r-pointed k-algebra can be written as the matrix algebra S ∼= (Sij).

Now, let V = {V1, . . . , Vr} be right A-modules. Let S = (Sij) ∈ ar be an r-pointed Artinian
k-algebra.

Definition 1.5. Let ki = k · eii, i.e. the matrix algebra with k at the i‘th place on the diagonal
and 0 elsewhere. The deformation functor DefV : ar −→ Sets is defined by

DefV (S) = {S ⊗k A-modules MS |ki ⊗S MS
∼= Vi and MS

∼=k (Sij ⊗k Vj) = S ⊗k V }/ ∼=

Notice that the condition S-flat in the commutative case is replaced by MS
∼=k (Sij ⊗k Vj)

in the noncommutative case. (Here ∼=k means isomorphic as k-vector spaces, or equivalently, as
left S-modules).

Any covariant functor F : ar −→ Sets extends in a natural way to a functor F̂ on the
procategory âr by

F̂ (R̂) = lim
←−

n

F (R̂/ rad(R)n)

We use the notation ar(2) for the r-pointed Artinian k-algebras S for which (rad(S))2 = 0.

Definition 1.6. A prorepresenting hull ( or a local formal moduli ) for a pointed covariant
functor F : ar −→ Sets is an object Ĥ in âr such that there exists a proversal family V̂ ∈ F̂ (Ĥ)
with the property that the corresponding morphism Mor(Ĥ,−) −→ F of functors on ar is
smooth and an isomorphism when restricted to a morphism of functors on ar(2).

Definition 1.7. A surjective morphism π : R −→ S between two r-pointed Artinian k-algebras
is called small if kerπ · rad(R) = rad(R) ·kerπ = 0. If there exists a deformation MR ∈ DefV (R)
such that DefV (π)(VR) = VS , VR is called a lifting of VS to R.

The obstruction theory for the noncommutative deformation functor is the obstruction theory
in small lifting situations, and is given in the references [8, 9, 3, 15]. The main results from
these articles relevant for this work is the following (notice the fact that HHi(A,Homk(Vi, Vj)) ∼=
ExtiA(M,N) for k-algebras A and (right) A-modules M and N).
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Theorem 1.8. Given a small morphism π : R −→ S with kernel I = (Iij) in ar and MS ∈
DefV (S). There exists an obstruction o(π,MS) = (oij(π,MS)) ∈ Iij ⊗k HH2(A,Homk(Vi, Vj))
such that o(π,MS) = 0 if and only if there exists a lifting MR ∈ DefV (R) of MS. The set of
equivalence classes of such liftings is a torsor under

(Iij ⊗k Ext1A(Vi, Vj))

Proof. The proof can be found in [9]. The part essential for the computations in this paper is:
Assume 0 = oij = ψij ∈ HH2(A,Homk(Vi, Vj)). Then ψ = dφ, φ ∈ Homk(A, Iij ⊗k

Homk(Vi, Vj)). Put σ′ = σ + φ. Then σ′(ab)− σ′(a)σ′(b) = 0 because I2 = 0.

In [9] it is proved that DefV has a prorepresenting hull H(V ) = (Hi,j). Also, in [9] (Sections 5
and 6), the construction of a noncommutative scheme theory and moduli of isomorphism classes
of modules is given. Let π : A − mod → k − mod be the obvious forgetful functor. Then a
subalgebra

OA(V, π) ⊆ (Hi,j ⊗k Homk(Vi, Vj))

is constructed, and the restriction of the canonical homomorphism η,

η(V ) : A→ OA(V, π)

gives an action of OA(V, π) on V , extending the action of A. In this situation, this construction
is a closure operation, i.e. OA(V, π) ∼= OO(V, π). This O-construction is then extended to infinite
families of isomorphism classes of modules by ”sheafifying”, obtaining for every finite family V
a smaller k-algebra, O(V, π) containing the image of η(V ). The final noncommutative structure
sheaf Oπ is then a certain quotient of this O(−, π).

Definition 1.9. A family V of A-modules will be called a prescheme for A, if

η(V ) : A→ O(V, π)

is an isomorphism. Then (V,A) is called an affine prescheme. The family V will be called scheme
for A, if

η(V ) : A→ Oπ(V )

is an isomorphism.

In the situation of the present paper, the construction of noncommutative orbit spaces trans-
lates to the following simplification:

Definition 1.10. A finitely generated k-algebra R is called an affine moduli (or spectrum) for
a family V of A-modules if the maximal ideals in R is in one to one correspondence with the
family V , and if

ĤR
{R/mi}si=1

∼= ĤA
{Vi}si=1

for every subfamily {Vi}si=1 with corresponding subfamily of maximal ideals {mi}si=1. As such,
R is a moduli (affine spectrum) for its simple modules.
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In our situation, the results are achieved by the following:

Definition 1.11. Let R̂ ∈ âr. A finitely generated k-algebra R is called an algebraization of R̂
if R has r maximal (left) ideals mi, i = 1, . . . , r such that the formal moduli of the simple left
R-modules Vi = R/mi, i = 1, . . . , r is isomorphic to R̂, that is

ĤR
{Vi}ri=1

∼= R̂

The paper is organized as follows: Section 2 and 3 contains the classification of 3-dimensional
Lie-algebras as given for example in [4]. Section 4 considers the affine space of 3-dimensional
Lie algebras and its components. In section 5 we compute the closures of the orbits under the
GL3(k)-action giving the the isomorphism classes. These closures are the geometric points in our
noncommutative moduli, the objects of our study. In section 6 we compute the tangent space
dimensions of the moduli, and in section 7 we state the main result and explain it geometrically.

2 Moduli of Lie algebras

An n-dimensional Lie algebra g over k is determined by its structure coefficients clij , 1 ≤ l ≤ n,
given by its bracket product b = [·, ·] : g ∧ g −→ g, where a k-basis {e1, . . . , en} for g is chosen,
and

[ei, ej ] =
n∑
l=1

clijel, 1 ≤ i < j ≤ n

Writing up the Jacobi identity

[ei, [ej , ek]] + [ej , [ek, ei]] + [ek, [ei, ej ]] = 0

we can rewrite for every i < j < k and m, 1 ≤ i, j, k,m ≤ n, the Jacobi identity as follows:
n∑
l=1

(cljkc
m
il + clkic

m
jl + clijc

m
kl) = 0

An isomorphism of Lie algebras is an isomorphism of k-vector spaces g commuting with the
bracket:

g ∧ g b̃ //

g∧g
��

g

g

��
g ∧ g

b
// g

Thus g ∈ GL(n), and b̃ = g−1 ◦ b◦ (g∧ g). We choose the basis {ei∧ ej} for g∧g in lexicographic
order. Then the matrix of b with respect to these bases is b = (clij). We get

b̃ = g−1 · b · Coef(g)

where Coef(g) = (C(l,m, i, j)), that is

Coef(g)(ei ∧ ej) =
∑

1≤l<m≤n
C(l,m, i, j)el ∧ em
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for i < j, and C(l,m, i, j) is the determinant of g after removing all rows except the l‘th and
the m‘th, and removing all columns except the i‘th and the j‘th.

We use the notation

An = k[xlij ] 1≤i<j≤n
1≤l≤n

, Jnijkm =
n∑
l=1

(xljkx
m
il + xlkix

m
jl + xlijx

m
kl)

Put Lie(n) = An/(Jnijkm), Lie(n) = Spec(Lie(n)) and let GLn(k) denote the affine variety of
GLn(k), that is GLn(k) = Spec(k[xij ]det). Then GLn(k) acts on Lie(n) as above, and the set of
isomorphism classes of n-dimensional Lie algebras is in bijective correspondence with the orbits
of GL(n) in Lie(n).

The case n=1 contains only one Lie algebra, the abelian one, and in the case n = 2, the
situation is well known. It is known that there exists no orbit space Ln = Lien/GL(n) for n ≥ 2

3 Classification of 3-dimensional Lie algebras

As before, we choose a basis {e1, e2, e3} for g. Then the lexicographic ordering of ei ∧ ej ,
1 ≤ i < j ≤ 3 gives the basis {e1∧e2, e1∧e3, e2∧e3} on g∧g. The matrix of the bracket b = [·, ·]
with respect to this basis isc112 c113 c123

c212 c213 c223

c312 c313 c323


Fulton and Harris gives the following classification in [4]:

Lemma 3.1. There exists a k-vector space basis {e1, e2, e3} for a non abelian Lie algebra g such
that the matrix of structure coefficients of g is in one of the following forms:

sl2 =

0 −2 0
0 0 2
1 0 0

 , r3 =

0 0 0
1 1 0
0 1 0

 , la =

0 0 0
1 0 0
0 a 0

 , n3 =

0 0 1
0 0 0
0 0 0


and the only pairs of isomorphic Lie-algebras are {la, la−1}, a 6= 0. Moreover, the Heisenberg
Lie-algebra n3 is the only nilpotent one.

4 The k-scheme Lie(3)

In the 3 dimensional case, the Jacobi identity is given by the 3 equations

3∑
l=1

(xl23x
1
1l + xl31x

1
2l + xl12x

1
3l) = 0

3∑
l=1

(xl23x
2
1l + xl31x

2
2l + xl12x

2
3l) = 0

3∑
l=1

(xl23x
3
1l + xl31x

3
2l + xl12x

3
3l) = 0
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Put

S =

 2x1
23 x2

23 + x1
31 x3

23 + x1
12

x2
23 + x1

31 2x2
31 x3

31 + x2
12

x3
23 + x1

12 x3
31 + x2

12 2x3
12

 , A =

x2
12 − x3

31

x3
23 − x1

12

x1
31 − x2

23


Then the Jacobi identity can be written S ·A = 0. This gives the well known decomposition in
[4] of Lie(3) in two 6-dimensional irreducible components,

Lie(3) = Lie(3)(1) ∪ Lie(3)(2)

where Lie(3)(1) is given by the three equations corresponding to A = 0 and Lie(3)(2) is given by
the four equations corresponding to det(S) = 0, S · A = 0, see [2, 7]. Of course, S = (xij) also
works and gives another description of Lie(3)(2).

We shall give understandable descriptions of the orbits of the different Lie algebras in Lie(3)
under the action of GL3(k). In the following, we replace the coordinates {xki<j} by ordinary
matrix coordinates. That is, we make the following identifications:

x1
12 x1

13 x1
23

x2
12 x2

13 x2
23

x3
12 x3

13 x3
23

 =

x11 x12 x13

x21 x22 x23

x31 x32 x33


Thus the Jacobi identity is 2x13 x23 − x12 x33 + x11

x23 − x12 −2x22 x21 − x32

x33 + x11 x21 − x32 2x31

 x21 + x32

x33 − x11

−x12 − x23

 =

J1

J2

J3

 = 0

and the components are given accordingly by defining ideals in k[x11, . . . , x33]/(J1, J2, J3).

5 The closure of the orbits

To construct a classifying (not necessarily commutative) algebraic space for 3-dimensional Lie-
algebras, we can construct the space for the closures of the orbits under the given G = GL3(k)-
action. This is because the different orbits have different closures. Thus we start by finding
defining ideals of the orbit-closures. We use the notatation o(x) for the G-orbit of x ∈ Lie(3)
and o(x) for the closure of this orbit.

First of all, because the group action G×X → X is continuous, it follows that the orbits are
irreducible, i.e. the surjection G � o(x) ⊆ X is continuous and G is a linear irreducible group,
see e.g. [10]. Secondly, the dimensions of the orbits are given by their isotropy groups. The
isotropy group of x ∈ Lie(3) is the vector space Ix = {g ∈ G|g · x = x} = {g ∈ GL3(k)|g−1 · x ·
Coef(g) = x} = {g ∈ GL3(k)|x · Coef(g) = g · x}.

This is done in [2]. Letting ab denote the abelian Lie algebra, we have the following dimensions
of the closures of the orbits:

Lemma 5.1. We have:

dim o(ab) = 0, dim o(r3) = 5, dim o(la) = 5, a 6= 1,
dim o(l1) = 3, dim o(n3) = 3, dim o(sl2) = 6
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We use this information to find defining ideals of the closures of the orbits.

Remark 5.2. We do not prove radicality of the ideals. Gerhard Pfister has implemented the
algorithm of Krick-Logar and Kemper for computing radicals in Singular [5]. This algorithm
proves that that the defining ideals below for the closures of the orbits of sl2, l1, l−1, n3, r3 and
la for several choices of a are radical, but it remains to prove this for general a. However, these
ideals, or rather their quotients are the objects of our study. The main result then proves to give
a reasonable algebraic classifying structure. Of course, this indicates that all ideals in question
are radical.

5.1 sl2

sl2 =
(

0 −2 0
0 0 2
1 0 0

)
is an element in Lie(3)(1) which is of dimension 6. Thus o(sl2) = Lie(3)(1). This

means that a defining ideal for o(sl2) is

as = (x21 + x32, x33 − x11, x12 + x23)

5.2 l−1

It is well known ([7]) that the intersection of the two components of Lie(3) is the closure of
the orbit of l−1. This is so because o(l−1) ⊆ Lie(3)(1) ∩ Lie(3)(2) and because the dimensions
coincide. Letting

s =

∣∣∣∣∣∣
2x13 x23 − x12 x33 + x11

x23 − x12 −2x22 x21 − x32

x33 + x11 x21 − x32 2x31

∣∣∣∣∣∣
a defining ideal of the closure of the orbit of l−1 is

al−1 = (s, x21 + x32, x33 − x11, x12 + x23)

5.3 n3

n3 is an element in Lie(3)(2), and is characterized by the fact that its rank is 1. Letting sij be
the ij-minor of the matrix (xij) we find that a defining ideal of the closure of the orbit of n3 is

an3 = (x21 + x32, x33 − x11, x12 + x23, sij), 1 ≤ i, j ≤ 3

5.4 la, a 6= −1, 1

From [4], it is well known that on the complement of the intersection of the two components,
the expression

Ji,j =
Tr(ad(xi) ad(xj))

Tr(ad(xi)) Tr(ad(xj))

takes the same value C = 1+a2

(1+a)2
on the isomorphism classes of la, a 6= −1, 1. We compute and

find that GL3(k) takes any Jij into any other Jkl, i 6= j, k 6= l, and any Jii into any other Jll.
We also check for one choice that Jij = Jii, i 6= j. As our defining ideal of the closure of the
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orbit of la, a 6= −1, 1 is invariant, we see that for C 6= 1
2 , J = C contains Lie-algebras from only

one orbit, the orbit of la, where C = 1+a2

(1+a)2
, and thus this algebraic set must be the closure of

the orbit. The different expressions for J are the following fractions:

J(1,1) =
(C3

13)2 + (C2
12)2 + 2C2

13C
3
12

(C2
12 + C3

13)2

J(1,2) =
C3

12(C2
23 − C1

13)− C1
12C

2
12 + C3

23C
3
13

(C2
12 + C3

13)(C3
23 − C1

12)

J(1,3) =
C2

13(C3
23 + C1

12) + C1
13C

3
13 + C2

23C
2
12

(C2
12 + C3

13)(C1
13 + C2

23)

J(2,2) =
(C3

23)2 + (C1
12)2 − 2C1

23C
3
12

(C3
23 − C1

12)2

J(2,3) =
C1

23(C2
12 − C3

13)− C2
23C

3
23 + C1

13C
1
12

(C1
12 − C3

23)(C1
13 + C2

23)

J(3,3) =
(C2

23)2 + (C1
13)2 + 2C1

23C
2
13

(C1
13 + C2

23)2

This results in the following: For a 6= −1, 1, o(la) is given by the ideal generated by the
following polynomials:

j1(a) = x2
32 + x2

21 + 2x22x31 − C(x21 + x32)2

j2(a) = x31(x23 − x12)− x11x21 + x33x32 − C(x21 + x32)(x33 − x11)
j3(a) = x22(x33 + x11) + x12x32 + x23x21 − C(x21 + x32)(x12 + x23)

j4(a) = x2
33 + x2

11 − 2x13x31 − C(x33 − x11)2

j5(a) = x13(x21 − x32)− x23x33 + x12x11 − C(x11 − x33)(x12 + x23)

j6(a) = x2
23 + x2

12 + 2x13x22 − C(x12 + x23)2

So ala = (j1(a), . . . , j6(a)), a 6= −1, 1.

5.5 l1

We see that both r3 and l1 is contained in the ideal given by J = 1
2 , for instance

J(1,1) =
12 + 12 + 2 · 0 · 0

(1 + 1)2
=

12 + 12 + 2 · 1 · 0
(1 + 1)2

=
1
2

Thus both of the closures of the orbits are in the zero set of the ideal (j1(1), . . . , j6(1)).
Considering the invariant ideal

(x13, x22, x31, x23 − x12, x33 + x11, x21 − x32)

we see that this ideal contains l1, but not r3 because x22 6= 0 there. This implies that

al1 = (j1(1), . . . , j6(1), x13, x22, x31, x23 − x12, x33 + x11, x21 − x32)

and it follows that

al1 = (x13, x22, x31, x23 − x12, x33 + x11, x21 − x32)
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5.6 r3

Because the orbit of r3 has to be the open set Z((j1(1), . . . , j6(1))) − Z(al1), it follows that its
closure is the zero set of ar3 = (j1(1), . . . , j6(1)). Thus the objects of our study are given as
A]G-modules, where A = Lie(3), G = GL3(k) with its given action on A in this case, and where
A]G is the skew group algebra.

6 Tangent space dimensions

Let A be a finitely generated k-algebra with an action of a linearly reductive group G. In
this paper, the interest is classification of the orbits in Spec(A) under the action of G. If the
closures of two different orbits are different, we can consider classification of the closures of
the orbits as well as the orbits themselves. If ∇ : G −→ Autk(A) is the action of G on A,
and if the ideal of the closure of the orbit of x ∈ Spec(A) is ax, then A/ax has an induced
G-action ∇ : G −→ Autk(A/ax). Thus the obstruction theory above has to be generalized to
the category of A−G-modules which is the category of A modules M with G-action such that
the two operations commute, i.e. ∇g(ma) = ∇g(m)∇g(a). This is just the theory in [9] on
A]G-modules.

This obstruction theory makes it possible to generalize the algorithm from [12]. This is
done in [14] and will be published elsewhere. In this paper it turns out that the liftings are
unobstructed, and so we will only need the tangent spaces. We need the following fact from [6]:

Lemma 6.1. Let M , N be two A−G-modules where G is reductive. Then

ExtiA−G(M,N) ∼= ExtiA(M,N)G

If a moduli space for 3-dimensional Lie algebras exists, it should have the expected tangent
space dimensions corresponding to the correct cohomology. If a commutative modulispace M
exists, the tangent space in a point g ∈ M is the Chevalley-Eilenberg-MacLane cohomology
Hp
CE . The commutative theory is well known, see [1], and it has been proved that there exists no

commutative algebraic moduli. In the construction of the noncommutative moduli, the tangent
spaces between the modules are studied. For Lie-algebras the correct cohomology giving these
tangent spaces is not known. However there exists such a cohomology in the category of A-
modules, namely Ext1A(M,N). This is the reason for passing from Lie algebras to A-modules,
or in fact A−G-modules in our situation.

As explained in [9] the tangent space of the non commutative moduli of a family of A −G-
modules is given by Ext1A−G(V,W ), where V,W runs through all possible selections of pairs of
A−G-modules. In our situation, A = Lie(3), G = GL3(k) with the given action on Spec(A) =
Lie(3). The A−G-modules we consider are

sl2 = s = A/as, r3 = A/ar3 , l−1 = A/al−1 , n3 = A/an3

la = A/ala , a 6= −1

To be able to compute the tangent spaces above, we need the following general fact which was
proved in [14]. We assume that G is a linear reductive group acting on a k-algebra A of finite
type, k algebraically closed.
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Lemma 6.2. Let a ⊆ b be two G-invariant ideals in A. Then

Ext1A−G(A/a, A/b) ∼= HomA(a/a2, A/b)G

and the action of g ∈ G is given by

∇̃g : HomA(a/a2, A/b) −→ HomA(a/a2, A/b)

where ∇̃g(φ) = ∇g ◦ φ ◦ ∇g−1 and ∇g : a/a2 −→ a/a2 and ∇g−1 : A/b −→ A/b are the actions
induced from ∇g : A −→ A.

Also notice the following:

Lemma 6.3. For all selections of pairs of ideals a, b among asl2, al−1, an3, ala, a 6= −1, 1, al1,
ar3 we find that if a * b then Ext1A(A/a, A/b) = 0.

Proof. Using Singular [5], we can find free resolutions and compute that Ext1A(A/a, A/b) = 0,
Hence Ext1A(A/a, A/b)G = 0.

With these preliminaries, we are left with some straight forward calculations, all based on
the same technique: Consider the standard elementary 3 × 3-matrices Eij , 1 ≤ i < j ≤ 3,
(interchange rows i and j), Ei(c), 1 ≤ i ≤ 3, c 6= 0 (multiply the i‘th. row with c), Eij(c),
1 ≤ i 6= j ≤ 3, (add c times the i‘th. row to the j‘th). Then these elements generate GL3(k) = G
and the invariants under G are the elements invariant under these generators. We compute the
action of each elementary matrix in the generator set of G on the variables xij by the rule

∇g(xij) = g−1 · (xij) · Coef(g)

Then we find the induced action on the generators of the ideals and use lemma 6.2 to compute
the invariant homomorphisms.

We will give two computations as examples, both of importance, and state the rest.

6.1 Example. Computation of Ext1
A−G(l−1, l−1)

We recall that al−1
= (s, x21 + x32, x33 − x11, x12 + x23). Assume that φ = (h, f1, f2, f3) :

al−1
/(al−1

)2 −→ A/al−1
is invariant.

For g = c · Id =
(
c 0 0
0 c 0
0 0 c

)
, we find Coef(g) =

(
c2 0 0
0 c2 0
0 0 c2

)
, and so the action of this element on

a general point is given by

g−1 ·

x11 x12 x13

x21 x22 x23

x31 x32 x33

 · Coef(g) =
1
c
· c2 ·

x11 x12 x13

x21 x22 x23

x31 x32 x33

 = c ·

x11 x12 x13

x21 x22 x23

x31 x32 x33


Thus, if φ is invariant, the composition

al−1
/(al−1

)2
∇g−→ al−1

/(al−1
)2

φ−→ A/al−1

∇g−1

−→ A/al−1

leaves φ unaltered. In particular ∇g−1(φ(∇g(s))) = φ(s) ⇐⇒ ∇g−1(c3 · h) = h, which implies
that h is homogeneous of degree 3. Furthermore, we find ∇Eij (s) = −s, 1 ≤ i < j ≤ 3,
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∇Ei(c)(s) = cs, 1 ≤ i ≤ 3, ∇Eij(c)(s) = s, 1 ≤ i 6= j ≤ 3. Thus we are looking for a homogeneous
polynomial h of degree 3 with the same properties as s above. It is easy to check that

h =

∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣
fulfills the conditions, and it is straight forward to check that it is the only such (in the same
way as in the next example). We find that h ∈ al−1

, that is h = 0. Using similar techniques, we
find that f1 = f2 = f3 = 0. So Ext1A−G(l−1, l−1) is of k-dimension 0.

6.2 Example. Computation of Ext1
A−G(la, la), a 6= 1,−1

Recall that for a 6= 1,−1, ala = (j1(a), . . . , j6(a)). We find the following actions on (j1, . . . , j6):

(j1, j2, j3, j4j5, j6)

E12 (j4, j2,−j5, j1,−j3, j6)
E13 (j6, j5, j3, j4, j2, j1)
E23 (j1,−j3,−j2, j6, j5, j4)
E1(c) (c2j1, cj2, cj3, j4, j5, j6)
E2(c) (j1, cj2, j3, c2j4, cj5, j6)
E3(c) (j1, j2, cj3, j4, cj5, c2j6)
E12(c) (j1 + 2cj2 + c2j4, j2 + cj4, j3 − cj5, j4, j5, j6)
E13(c) (j1 − 2cj3 + c2j6, j2 + cj5, j3 − cj6, j4, j5, j6)
E23(c) (j1, j2 − cj3, j3, j4 + 2cj5 + c2j6, j5 + cj6, j6)
E21(c) (j1, j2 + cj1, j3, j4 + 2cj2 + c2j1, j5 − cj3, j6)
E31(c) (j1, j2, j3 − cj1, j4, j5 + cj2, j6 − 2cj3 + c2j1)
E32(c) (j1, j2, j3 − cj2, j4, j5 + cj4, j6 + 2cj5 + c2j4).

In addition we can see that if E = c · Id, then ∇E(xij) = (cxij) also implying that ∇E(ji) = c2ji,
1 ≤ i ≤ 6.

Now φ : ala/a
2
la
−→ A/ala is determined by its image of j1, . . . , j6, that is φ(ji) = hi, 1 ≤ i ≤ 6.

That φ is invariant means that it is invariant under the composition

ala/a
2
la

∇g−→ ala/a
2
la

φ−→ A/ala
∇g−1

−→ A/ala

for all g ∈ G, that is for all the generators of G. First, let g = c · Id. Then the invariance of
φ means that ∇g−1(c2hi) = hi for 1 ≤ i ≤ 6. This forces each hi to be homogeneous of degree
2. Then g = Ei(c), 1 ≤ i 6= j ≤ 3 tells us which degree 2 monomials that are possible. Finally,
investigating the action of g = Eij(c), 1 ≤ i 6= j ≤ 3 gives

φ =α((x21 + x32)2, (x21 + x32)(x33 − x11), (x21 + x32)(x12 + x23),

(x33 − x11)2, (x11 − x33)(x12 + x23), (x12 + x23)2).

Then we have to prove that this invariant morphism (with α = 1) is an element in Ext1A(la, la),
which means that it really is an A-module homomorphism φ : ala/a

2
la
−→ A/ala . This follows
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from the fact that φ · S = 0, where S is the syzygy-module of ala . Thus {φ} is a k-vector space
basis for the 1-dimensional space Ext1A−G(la, la).

Notice that exactly the same computation yields the computation of Ext1A−G(r3, r3) and for
Ext1A−G(r3, l1). Thus {φ} is also a basis for the 1-dimensional space Ext1A−G(r3, r3) and for
Ext1A−G(r3, l1).

The result of this computation is the following:

section 6.4. For a 6= 1,−1, Ext1A−G(la, la) = 1. Also Ext1A−G(r3, r3) = 1, Ext1A−G(r3, l1) = 1.
For all other possible selections of pairs of orbits V,W , Ext1A−G(V,W ) = 0.

7 Noncommutative moduli

7.1 The formal noncommutative moduli

In the present situation we consider the closures of the orbits

cl(o(r3) ⊇ cl(o(l1))⇐⇒ ar3 ⊆ al1

To ease the tracking of the algorithm for computing the local formal moduli, we set

V1 = A/ar3 , V2 = A/al1

and we use the notation

ar3 = (j1, . . . , j6), al1 = (x13, x22, x31, x23 − x12, x11 + x33, x21 − x32) = (h1, . . . , h6)

To compute the obstructions in the Yoneda complex we choose free resolutions of V1 and V2 in
the following way, where we have added the basis for Ext1A−G(V1, Vi), i = 1, 2:

0 V1
oo Aoo A6

d11=(j1...j6)
oo

ξ111

~~~~
~~

~~
~~

A20
d12oo

ξ112

}}{{
{{

{{
{{

. . .oo

0 V1
oo Aoo A6oo

ξ121

~~~~
~~

~~
~~

A20oo

ξ122

}}{{
{{

{{
{{

. . .oo

0 V2
oo Aoo A6

d21=(h1...h6)
oo A21

d22

oo . . .oo

where

ξ11
1 = ξ12

1 = ((x21 + x32)2, (x21 + x32)(x33 − x11), (x21 + x32)(x12 + x23), (x33 − x11)2,

(x11 − x33)(x12 + x23), (x12 + x23)2)

and where ξ11
2 and ξ12

2 are given by the condition

d1
2 ◦ ξ11

1 + ξ11
2 ◦ d1

1 = d1
2 ◦ ξ12

1 + ξ12
2 ◦ d2

1 = 0
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Then the cup products (second order generalized Massey products) are given by their first term
in the Yoneda complex. That is

ξ11
1 ◦ ξ11

2 = ξ12
1 ◦ ξ12

2 = 0

where the last equality is ”strict”, meaning that the product of the matrices are zero in A.
Notice that the obstruction calculus for A − G-modules and A-modules are compatible. This
tells us that the infinitesimal family defines a lifting to

ĤV1,V2 =
(
k[[t]] << u >>

0 k

)
hence this is a pro-representing hull.

7.2 The noncommutative moduli Lie(3)

Consider the family of 3-dimensional Lie-algebras given as the zero zet of (j1(a), . . . , j6(a)) where

j1(a) = x2
32 + x2

21 + 2x22x31 − C(x21 + x32)2

j2(a) = x31(x23 − x12)− x11x21 + x33x32 − C(x21 + x32)(x33 − x11)
j3(a) = x22(x33 + x11) + x12x32 + x23x21 − C(x21 + x32)(x12 + x23)

j4(a) = x2
33 + x2

11 − 2x13x31 − C(x33 − x11)2

j5(a) = x13(x21 − x32)− x23x33 + x12x11 − C(x11 − x33)(x12 + x23)

j6(a) = x2
23 + x2

12 + 2x13x22 − C(x12 + x23)2

whwre C = 1+a2

(1+a)2
. This family contains each isomorphism class la, a 6= 1,−1, and r3 exactly

once. Renaming this family to g(C) we have

g(C) =

0 0 0
1 0 0
0 a 0

 , C 6= 1
2
, and g

(
1
2

)
=

0 0 0
1 1 0
0 1 0


Given a k-algebra A. An A-module V is given by a morphism φ : A→ Endk(V ). Using this,

the obstruction theory and formation of moduli can be done in the Hochschild cohomology. In
particular the tangent space of the deformation functor in this case is HH1(A,Homk(Vi, Vj)) ∼=
Derk(V )/Triv . See ([15]) for a standard example. This is used to suggest an algebraization
of the local formal moduli where the maximal ideals on the diagonal represents the geometric
point, i.e. the quotients of the maximal ideals on the diagonal are the simple modules.

The tangent space dimensions then suggests an algebraization of Ĥ(g(C), l1) to be(
k[t11] < t12 > /(t11 − 1

2)t12

0 k

)
This can not be the case because then

Ĥ(g(
1
2

), k) =
(
k[[t11]] << t12 >> /t11t12

0 k

)
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which is contradicting any possible definition of moduli. This is explained the following way:
g(1

2) deforms to
(

0 0 0
λ 1 0
0 λ 0

)
and the closure of the orbit of this Lie-algebra contains

(
0 0 0
λ 0 0
0 λ 0

)
. These

points are however collapsed to one point when dividing out with the group action. Thus the
correct algebraization is

H =

(
k[C] k[C](C− 1

2
) < t12 >

0 k

)

where the entry k[C](C− 1
2
) < t12 > means the cyclic left k[C]-module generated by t12 with

coefficients in k[C](C− 1
2
), the localization of k[C] in the maximal ideal (C − 1

2). We have proved
following:

section 7.1. The noncommutative moduli Lie(3) is

M =



k[C] k[C](C− 1
2
) < t12 > 0 0 0 0

0 k 0 0 0 0
0 0 k 0 0 0
0 0 0 k 0 0
0 0 0 0 k 0
0 0 0 0 0 k


where the two first rows correspond to the Lie-algebras g(C) and l1 respectively, and where the
four last rows corresponds to sl2(k), n3, l−1, and ab = g0 (respectively).
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