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Abstract

In this paper, we construct two variable and three variable models of the irreducible representation of Lie Algebra G, . The two variable models
are then transformed in terms of difference-differential operators using the Euler integral transformation while the three variable models are
transformed in terms of difference-differential operators using the two-fold Euler integral transformation. These models are then used to obtain

some generating functions and recurrence relations.
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Introduction

The connection between the Lie theory and the special functions
plays a crucial role in the formalism of Mathematical Physics,
handing a consolidated formalism to deal with the aggregate of
special functions and a collection of formulas such as the integral
representations, differential equations, composition theorems,
recurrence formulae, etc., Within the group-theoretic context, a
given class of special functions appears as a set of matrix elements
of irreducible representations of a given Lie group. The algebraic
properties of the group are then reflected in the differential equations
satisfied by a given family of special functions, while the geometry
of the homogeneous space ascertain the nature of the integral
representation linked with the family. Authors like Miller W [1] deal
with 3-, 4- and 5- dimensional Lie algebras where the special
functions appeared as matrix elements of the corresponding group
operators and also as basis functions of the representation spaces
[2-4]. The connection between the Lie algebras and Lie groups has
been discussed and the realization of the representation has been
connected with special functions, Monocha HL discussed the two
and three variable models of sl(2, C) and G(0, 1), i.e. the 3-and
4-dimensional Lie algebras and then use Mellin transformation to
obtain new models in terms of difference- differential operators [5,6].
Sahai V and Yadav S discussed the relation between p, g-analogue
of special functions and representations of certain quantum algebras
of two parameters [7-9]. The Author computed the matrix elements of
their representations in terms of the generalized p, g-hypergeometric
series, Sahai V and Srivastava Y constructed three variable models
of Lie algebra T, and then use Euler integral transform to transform
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the models in terms of the difference-differential operator, Chakrabarti
R and Jagannathan R studied quantum algebra supvq(2) and its two
parametric deformation [10,11].

In the present study, we construct two variable and three variable
models of the representation of Gu,v in terms of differential operators.
Then we make use of Euler integral transformation to transform the
two variable models in terms of difference-differential operators acting
on basis functions acting on the Gaussian hypergeometric functions
and we use two fold Euler integral transformation to transform the
three variable models in terms of difference differential operators
acting on basis functions acting on the product of two Gaussian
hypergeometric functions.

Section-wise coverage is as follows:

* In section 2, we review various definitions and theorems
needed for our discussion.

« In section 3, we construct new two variable and three
variable models of Lie Algebra G acting on basis function
involving F and the product of F functlons respectively.

« In section 4, we have used one-fold and two-fold Euler
Integral transformation to derive some results to be used in
our further work.

« In section 5, we reform two variable and three variable
differential models of G, acting on basis functions
involving ,F, and product of F functions with unit argument
respectively

« In section 6, we compute several new generating functions
and recurrence relations obtained from this study.

Preliminaries

Lie Algebra G,

The Lie Algebra Gu,v=L{Gu,v} as defined in is the three dimensional
complex Lie algebra with basis J*, J-, J® and commutation relations
[12]:

[BJ=ud,  [8d]=-v, [J*,J]=0 Q)
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where b, ¢, T € C; u, v are relatively prime positive integers, u
is odd.

Elements of the Lie algebra G, are of the type

0 0 0 o
0 —va, 0 «a

0 0 va, «
0 0 0 0

[

9

where ¢ :%, a, :%, a, :% are in the neighbourhood of

identity.
Basis elements for the Lie algebra G, are

0 0 0 0 00O 0

-V

Jr= ,J =

(=R = )
oS O O =

0
10
0
0

S O O O

0 0 0 0
0 1 0 0
0 0 0 0

oS o O

0
0 0
0 0
Let o be an irreducible representation of the Lie algebra G, on

the vector space V and let J*t=p(J%), J>=p(J9), then the operatoré Jt,
J? satisfy the same commutation relations as (1).

Define the spectrum S of J® to be the set of all eigenvalues of J3.
Further, letthe irreducible representation p satisfies the condition:

Each eigenvalue of J® has multiplicity equal to one. Then there is
a countable basis for V consisting of all the eigenvalues of J3. This
guarantees that S is countable and that there exists a basis for V
consisting of vectors fm such that J% =mf .

From [13], a one variable model of the irreducible representaion
is given by:

Representation Q_ (v, m)

J=wz",
J =wz",
()
J=m,+z—,
dz
fm(z)zzn’

where me S={m+n: nis an integer}.

For each representation Qu'v(w, m,), there is a basis for V
consisting of vectors f , defined for each me S, such that

Jf, =wf, +u,
J [ =wl, =V (3)
J3fm =mf, .

Generating functions
Consider a two variable function F (z, t) which possesses a formal
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(not necessarily convergent for t=0) power series expansion in t given by

FE0=Y £,

where f (z) is a function of z in general for n=0, 1, .. .. Then the
expansion (??) is said to have generated the set f (z) and the function
F(z, t) is called the linear generating function or generating function
for the set f (z). The above relation (??) is called the generating
relation for the set f (z).

Recurrence relation

A recurrence relation for a function f(n) is an equation that
expresses f(n) in terms of one or more of the previous values of the
function f(n).

For example: Recurrence relation for Legendre’s polynomial P(n) is:
(n+1)P__(x)=(2n+1)xP (x) - nP__(x).

n+l

Two and Three Variable Models

In this section, we presented the two variable and the three
variable models of the Lie algebra G . Also, we examined multiplier
representation of the local Lie group Guv induced by the operators on
F, the space of all analytic functions in the neighbourhood of (x,, y,)
and (x,, y,, t,) respectively.

Two types of two variable models are constructed and following
are their representations:

Type 1

JT=wy' (1-x)",
J =wy (1-x)",
J=m,+ yi,
dy
S, y)=y"(1-x)",
where me S={m_+n: nis an integer}.

The multiplier representation A, (g)f of the Lie group G, induced
by the operators on F is
[4(2)f](x )= exp[wby"(l —x)

y(i-x)

+moTJf (x,ye"). (&)
Type 2

J+ — Wyu (1 _ x)—ll s

J o =wy (1-x)',

J=my+y—,
0 y@

Su(xy)=y"(1=x)",

where me S={m+n: nis an integer}.

The multiplier representation A,(g)f of the Lie group G, induced
by the operators on F is
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wbhy" N we(l—x)"

[4()f](x.) = exr’[(] .y > +m, T J S, peh). (M

Four types of three variable models are constructed and following
are their representations:

Type 3
Jr=wt'(I=-x)"(1-y)",
J =wy Tt (1-x)"(1-y),

Femy L, ®)
oy

S »)=y"(1=-x)"(1=-y)",
where me S={m_+n: nis an integer}.

The multiplier representation T,(g)f of the Lie group G,, induced
by the operators on F is

[ﬂ<g>f](x,y,r>=exp[ wbi?

_—
(=x)"(1=y)

e ) +mOTJXf<x,y,zeT>. ©)
Type 4
J+ — Wtu (1 _ x)u (1 _ y)“ ,

J =wt(1-x)"(1-y)", (10)

J=m, +t£,
ot

fm(xayat)ztn(l_x)n(l_y)na

where me S={m_+n: nis an integer}.

The multiplier representation T,(g)f of the Lie group G, induced
by the operators on F is

[L(2)f](x,y.0) = eXp(Wbt” (=x)"1=p)"+

we
r(1-x)"1-y)
Type 5

+m0T]><f(x,y,teT). an

Jr=wt"(1-x)"(1-y)",
J =wt(1-x)"(1-y), (12)

J’? =m0+tg,
ot

Su(xy,0)=1"(1-x)"(1-»)",
where me S={m_+n: nis an integer}.

The multiplier representation T,(g)f of the Lie group G, induced
by the operators on F is

. _ wbt"(1-x)"  we(l-y)" “r .
[E(g)/](x,y.t)—exp[ T ray +mnTJ VCS AT (13)

Type 6
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Jr=wt"(1-x)"(1-y)",

J =wt(1-x)(1-y)", 12)

J? =m, +t2,
ot

fuy, ) =1"(1-x)"(1-y)",

where me S={m+n: nis an integer}.

The multiplier representation T,(g)f of the Lie group G,, induced

by the operators on F is

B wbt'(1-y)"
[T,(2)./](x,y,0) =exp [—(1 ey
+%+mozjf(x,y,teT). (15)

Euler Integral Transformation
One fold Eeuler transformation

Let V be the complex vector space of all functions f(x), expressible
as a power series about x=0. We use [14],

h(pB,y) =111 (x)]

_ L'(y) " A= )y d
G g T @

Rev2>Rep 20.

(16)

Then, W=IV is an isomorphic image of V under the transformation
I: f(x) — h(B, v). Now we obtain transform of certain expressions,
needed for our discussion, under the transformation | in terms of
difference operators defined as:

E h(B,y)=h(B+u,y), 17
Lﬂuh(ﬂoy) = h(ﬁ_uoy)’

The following are the transformations under I:
=D =2)..y —u)
1[a- = L h, 18
ey e Wy S 9
=P =f+D.y=f+u-D .
N +D..(y+u=-1) "

na-x"f1=

Two Fold Euler transformation

Let V be the complex vector space of all functions f(x), expressible
as a power series about (x, y)=(0,0). We use [15],
h(B,y, 1, 0) =111 (x,9)] 19)
_ L(Yrs)
LTI (y = BHrd—p
x X =y A=) f )y,

Reyv2Rep20,Red52Ren20.

Then, W=IV is an isomorphic image of V under the transformation
I: f(x,y) — h(R, v, 1, 3). Now we obtain transform of certain
expressions, needed for our discussion, under the transformation |
in terms of difference operators defined as:
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Eﬂuh(ﬂ,j/,é‘,ﬂ) :h(ﬂ+u,y,5,,u)

Lﬂuh(ﬂs 7!53 ,Ll) = h(ﬂ_u’ 7> 59 /u) (20)

The following are the transformations under I:

A= 1-y)" /]

_ (=D =2)..7—u)F=1)(F=2).. (5 —1) L
=-B-Dr-B-2)..y-B-u)S—pu-)6-B-2).(6—p—u) """
I[(1-x)"1-y)" /] @1
_ =B =By = Bru=1)E - ) S —p+1)..(S—p+u— l)E o

N +D..(y +u=1)G)S+1).. 5 +u—1)

A-x)"(1-y) /]

G- - pA ) (S— pru=D =D =2y -1)
OO+ D@ U177 52y 6wy

Transformed Models of G,

In this section, we transformed the aforementioned two variable
and three variable models in terms of difference-differential operators
with the basis functions appearing in terms of hypergeometric
functions. For this, we use a theorem as in [6].

Theorem: Let o be an irreducible representation of G in
terms of basis operators {J3, J*, J-} on a representation spacé v
with basis functions {f : m € S}. Then the transformation | induces
another irreducible representation o of the Lie algebra G on the
representation space W=IV having basis {h m € S} in terms of
operators {K®K*,K-}, where

K*z[J*I’l, K’=IJ’I’1, K3=IJ3I’1, (22)
h,=1f ,meS.
That is, o and o are isomorphic.
We present below the transforms of models of Type I, I, Ill, IV, V
and VI introduced in section 3.
Type I’
K =y (7—5)(7/—5+1)....(7—5+u—1)Eu
NG +D.(y+u-1) r
K =wy -Dy=2)..(r—v) . (23)
(=p-D(y-p-2)..(r-B-v)
K =m, +ydiy,
h,(B.y.y)=y",F(=n,B;y31),
where m € S={m +n: n is an integer}.
Type I’
Kt = =Dy =2)..(y —u) )
y=B-Dr-B-2).(y-B-u) "
Kk =y V=P = Dy = fru-T) E,. 24)
Ny +D..(y+v-1)
K =m, +yi,

dy
h,(B.y,»)=y",Fi(=n,B;y;1),
where m € S={m +n: n is an integer}.

Type lII’

K =i =D =2)...(y mu)(6 =1)(6 =2)..(6 —u)
r=B-D@=B=2.(y =B -u)6 - u=1)(6 - £ =2)..(6 — pt—u) b
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k= =BG =AYy = fru=D(E =~ ) S = p+D)..6—p+v=D) o

NG +D.(y +v=D)(S)S +1).. (5 +v—1) o
K3 =m, Jrz‘i
dy’
h,(Boy, 1, 0,0)=t"  F\(n, B; ;1) , Fi(n, 56,1) (25)

where m € S={m +n: n is an integer}.
Type IV’
Kt TP = BADly = frru =D ) =4S p4u=1)
(7)(7+1) (7 +u—=1)(0) S +1)..(d +u—1) o
P ~D( =2y =7 =VHE =N =2)...(5 =
(r-p- 1)(7 B=2)..(y=B-v)S—u~1)(6~pu-2). (5 u=v) Enav

K =m, +ti,
dt

by (Byys 1,8, = 1", Ei(=n, B 731) L Fy(=n, 1136,1) (26)

where m € S={m +n: n is an integer}.

Type V’
K =g LD =LAy = fru=-DE-DE-2).(5=w) . |
(7)(7+1) (ru=D(—pu—D)(—pu—2).(S—p—u) "
(S=p)(S—p+D)..(S—pu+v=D(-D(y=2)..(r-v)
Y=B-D1—B-2).(y=B-V)S— -1 - u=2)..(—pu—v) "

K’ =my+t—,
dt

h,(B.y,p,6,0) =1", Fi(=n, B 731) L F(n, 1136,1) (27)
where m € S={m +n: n is an integer}.
Type VI’

o =g =BG =) (S = 4 v=D)(y =D =2y =)
NG D8 +u—DG B0 —B=2y—fu) "

K g GBI =BHD .y = fv=DE-DE =257
G+ D+ v G- DO— -2 (G —p—v) 7o

K =m, +ti
dt
b, (B,y,p,6,0) =t" ,Fi(=n, B3 731) L Fi(=n, 11;6,1) (28)
where m € S={m +n: n is an integer}.
The above models satisfy the following:

[K3,K*]=uK*, [K3,K']=—VK', [K*,K']:O, (29)

and thus lead to representation of Gp’q Also,

K+hm = Whm+u’

K h,=wh, , (30)

K’h, =wh,
Recurrence Relations and Generating
Functions

In this section, we have used models of Type I, II, lll, IV, V and
VI for obtaining generating functions and the transformed models of
Type I', I, 1P, IV', V" and VI’ for obtaining recurrence relations. We

present the results as follows:
Generating functions

Introducing new group parameters r, h defined by b=rh¥/(u+v) and
c=rh~/(u+v) and then putting =0, h=1, w=1, k=0 in equation (5), (7),
(9), (12), (13) and (15), we get
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3

{(va-x)" +(y(1—x))"’}} = > I ("), Fy(-1:=x)y", (31)

I=—0

,
exp

u+v

l Y “ Y X A s .. !
- _“”{[(l—x)j +[(l-x)) H,Zz” () Fy (=25, -

r t X t - N
ex _wv{(a—x)(l—y)] +((1—x>(1—y>j H‘,.Zf’ "

X Fl=x), Fy(i= ) (33)

o

5=l

£

(((A=x)(A=p))" + (A -x)(1- y))"’}} =217,

I=—0

€X

o

p
e
X F(=L=2) F (==, (3

o] 7 {[tax)j"{tﬂx)jﬂ} = 31 Fy (),

|u+v 1-y) (1-») =

) ) < F, (=)t (35)

ro(ta=-»Y) (- || & .
o “”{[ (1—x)j +[<1—x)j } = 2R G,

< F (L= (3)

where, [ is the group theoretic generalization of Bessel

functions and is defined as in [1],

jl(nﬁnz)i (r(u_"_v))(uﬂ))s (37)

p
I = :
: (u+v = (In,+sv)!(In,+su)!

Recurrence relations

From Model of Type I, we get
=By =B+ D(y=B+ u=-1,F(nBiy+u; 1) = (N + ..

x(y+ u=1),F(-=n-u,pB;y; 1), (38)
=D =2)...(y =v), F(=n, Biy—v; ) = (y=B-D(y - p-2)...

X7 ==y E(nty, By D). (39)

Similarly, we get recurrence relation from Models of Types II', III’,

IV, V'and VI’ and are as follows:

=D =2y —w), F(n, fry—u; 1) = (y=B-D(r-f-2)..
x(y=B-w),F(n+u, By D, (40)
=Py =B+ Dy =B+v=1,E(m fiy+v; ) = () + D).
x(+v=DFn=q, By D (41)
(=D =2y —u)6 =16 =2)..(6 ) Fy(y —u, 6-u) = (y—ﬁ—l)( 2)
X(7=f=2).(y=B-u)S—p-1(6-u=2)..(6 - p—u)Fy(n+u),

=By =B+ Dy = BHv=D(G ~)(S—pa+ .S —pa+v=1)

xEy(y+v, 6+v) = (0)(y+ Dy +v=D0) 0+ 1)..(d +v-1)F,(n—V), “3

where in (42) and (43), F, stands for
Fy(n, B, 7, p, 6) =,F(n, Biy; 1),F(n, ;6 ). (44)
=P y=B+ Dy =B+u-1)0 -6 —p+ 1)..(6 - p+u-1)

xFy(y+u, 6+u) = () y+ Dy +u-1)0) 5+ 1)..(6 +u-1)F(n+u), (45)

=D =2)..(r =6 -0 -2).(6 -V (y—v, 6-v) = (= -1 (46)
X(y=p=2)y=B-N—p—1)(6—pu=2)..(0 —u—-v)F(n-v),

where in (46) and (47), F stands for

Fy(n, B, 7, 11, 8) = ,F(=n, Bi7; 1), F(-n, 1;5; 1). (47)

=B =B+ Dy = B+u-1)(0-1)(6-2)..(6 ~w)Fy(y +u,6 —u) (48)
=N +D-y +u—)E = pu=1)(E — p=2)..(S — =)} Fy (n +u),

@) —p+ D)= p+v=1(y =Dy =2)..(y —VE,(y—v, 6+v)

=(@)S+ D..(S+v=D(y=B-Dy—B=2)..(r = B—V)F,(n—-V), (49)
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where in (49) and (50), F, stands for
Fy(n, B, v, 1, 6) =, F(=n, Biy; D, E(n, 1;6; 1. (50)

=)0 —p+ V(- p+u=-D(y =Dy =2)..(y —w)F(y —u, 6+u)

= (0)6+ D..(d+u=-)(y=-B-D(-p-2)..(y - B-u)Fy(n+u), (61)
=B =B+ D).y = B+v=D(E = 1NE=2).(S=V)Fy(y +v, 5-)

= D@+ Doy +v=1)F = =1 = #=2)..( = = V) Fy (n =), (52)
where in (52) and(53), F, stands for

Fy(n, By, py 8) =, F(n, Biys D, F(=n, 11365 1). (53)

Conclusion

It is widely known that the special function theory has a vast
body of literature, The findings of this study not only add to the
body of knowledge but also shed light on how group theory and
special function theory relate to one another. It is asserted that these
identities and recurrence relations are novel. However, the literature
does contain specific cases of these generating functions. For
instance, when u, v=1, we have the same outcomes as in.
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