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Abstract

Starting from a Hecke R-matrix, Jing and Zhang constructed a new deformation Uq(sl2)
of U(sl2) and studied its finite dimensional representations in [Pacific J. Math., 171 (1995),
437-454]. In this note, more irreducible representations for this algebra are constructed. At
first, by using methods in noncommutative algebraic geometry the points of the spectrum
of the category of representations over this new deformation are studied. The construction
recovers all finite dimensional irreducible representations classified by Jing and Zhang, and
yields new families of infinite dimensional irreducible weight representations.
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1 Introduction

Spectral theory of abelian categories was first initiated by Gabriel in [5]. In particular, Gabriel
defined the injective spectrum of any noetherian Grothendieck category. The injective spectrum
consists of isomorphism classes of indecomposable injective objects in the category endowed with
the Zariski topology. If R is a commutative noetherian ring, then the injective spectrum of the
category of all R-modules is homeomorphic to the prime spectrum of R. This homeomorphism
is a part (and the main step in the argument) of the Gabriel’s reconstruction Theorem [5],
according to which any noetherian commutative scheme can be uniquely reconstructed up to
isomorphism from the category of quasi-coherent sheaves on it.

The general spectrum of arbitrary abelian category was defined by Rosenberg [15]. Using this
spectrum, one can reconstruct any quasi-separated and quasi-compact scheme from the category
of quasi-coherent sheaves on the scheme.

Isomorphism classes of simple objects of any abelian category correspond to closed points of
its spectrum, and, under some mild finiteness conditions, this correspondence is bijective. For
instance, the correspondence is bijective for the category of modules over an associative ring,
or, more generally, for the category of quasi-coherent sheaves on a noncommutative (that is not
necessarily commutative) scheme.

Thus, in order to study irreducible representations, one can first study the spectrum of the
category of all representations, then single out its closed points.

As a specific application of spectral theory to representation theory, points of the spectrum
of the category of modules have been constructed for a large family of algebras, which are called
Hyperbolic algebras in [15]. And it is a pure luck that a lot of important “small” algebras,
including U(sl2) and its quantized versions, are Hyperbolic algebras.

Starting from a Hecke R-matrix, Jing and Zhang constructed a new deformation Uq(sl2) of
U(sl2) (which is denoted by Uq(sl2) in [7]). This algebra shares quite a few properties with
U(sl2), and all its finite dimensional irreducible representations are constructed explicitly in
[7]. On the other hand, Uq(sl2) has a natural bialgebra structure, but, it is not a Hopf algebra.
Besides, an example constructed in [7] shows that not all of its finite dimensional representations
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are completely reducible. So the representation theory of this new deformation differs from the
representation theory of the standard quantized enveloping algebra of sl2. Therefore, it seems
to be an interesting problem to further study the irreducible representations of Uq(sl2).

Note that Uq(sl2) also belongs to a general class of algebras studied in [2], where the irreducible
weight modules for these algebras are classified based on the study of certain dynamical system.
However, this note studies representations from the perspective of noncommutative algebraic
geometry, and serves the purpose of providing a more transparent construction of irreducible
weight representations for Uq(sl2). Indeed, based on sufficient knowledge about the structure of
Uq(sl2), we are able to carry out explicit calculations.

To solve the problem, we first construct families of points for the spectrum of the category of
representations for this deformation. Applied to the study of representations, our construction
recovers all finite dimensional irreducible representations of Uq(sl2) constructed in [7], and pro-
duces new families of infinite dimensional irreducible representations as well. This work can also
be regarded as one more nice application of the methods in noncommutative algebraic geometry
to representation theory. For more details about spectral theory, we refer the reader to [15].

The paper is organized as follows. In Section 2, we give a very brief review on the spectrum
of an abelian category. In Section 3, we review the concept of Hyperbolic algebras. In Section
4, we review some basic facts about the new deformation Uq(sl2) introduced by Jing and Zhang,
and prove some supplementary useful Lemmas. In Section 5, we construct families of points of
the spectrum for Uq(sl2). Then we use them to construct irreducible representations for this
new deformation Uq(sl2). We follow the notations in [7], but we will always denote the new
deformation by Uq(sl2). The base field will be fixed to be the complex field C, and q is not a
root of unity.

2 Basic facts about the spectrum of any abelian category

In this section, we are going to review some basic notions and facts about the spectrum of any
abelian category for the purpose of understanding the rest of this work. First, we review the defi-
nition of the spectrum of any abelian category, then we explain its applications in representation
theory.

Let CX be an abelian category. Let M,N ∈ CX be any two objects in CX ; We say that
M � N if and only if N is a subquotient of the direct sum of finite copies of M . It is easy to
verify that � is a preorder. We say M ≈ N if and only if M � N and N � M . It is obvious
that ≈ is an equivalence. Let Spec(X) be the family of all nonzero objects M ∈ CX such for all
nonzero subobject N of M , N � M . The spectrum of the abelian category CX is defined [15]
by

Spec(X) = Spec(X)/ ≈

It is endowed with a natural analogue of the Zariski topology.
The spectrum of an abelian category is one of the fundamental notions of noncommutative

algebraic geometry.
The spectrum also has important applications in representation theory. This is due to the

fact that there is a natural embedding of the set of isomorphism classes of simple objects of the
category CX into the set of closed points of Spec(X). If every nonzero object of the category
CX has a simple subquotient, then the embedding is a bijection. In particular, if A is an
algebra and CX is the category of left A-modules, then the closed points of Spec(X) are in
a bijective correspondence with isomorphism classes of irreducible A-modules. The spectrum
Spec(X) has much better functorial properties than the set of its closed points, like in the
case of commutative algebraic geometry. So one can study the spectrum via the methods in
noncommutative algebraic geometry, then apply to representation theory ([15]).
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2.1 The left spectrum of a ring

If CX is the category A−mod of left modules over a ring A, then it is sometimes convenient to
express the points of Spec(X) in terms of left ideals of the ring A. In order to do it, the left
spectrum Specl(A) was defined in [15], which is by definition the set of all left ideals p of A such
that A/p is an object of Spec(X). The relation � on A−mod induces a specialization relation
among left ideals, in particular, the specialization relation on Specl(A). Namely, A/m � A/n
iff there exists a finite subset x of elements of A such that the ideal (n : x) = {a ∈ A | ax ⊂ n}
is contained in m. Following [15], we denote this by n ≤ m. Note that the relation ≤ is just the
inclusion if n is a two-sided ideal. In particular, it is the inclusion if the ring A is commutative.
The map which assigns to an element of Specl(A) induces a bijection of the quotient Specl(A)/ ≈
of Specl(A) by the equivalence relation associated with ≤ onto Spec(X). From now on, we will
not distinguish Specl(A)/ ≈ from Spec(X) and will express results in terms of the left spectrum.

The rest of this paper is a typical application of spectral theory to representation theory of
“small” algebras.

3 Hyperbolic algebras R{θ, ξ} and points of the spectrum

Hyperbolic algebras are studied by Rosenberg in [15] and by Bavula under the name of Gener-
alized Weyl algebras in [1]. Hyperbolic algebra structure is very convenient for the construction
of points of the spectrum. And a lot of interesting algebras such as U(sl2) and its quantized
versions have a Hyperbolic algebra structure. Points of the spectrum of the category of modules
over these algebras have been constructed in [15]. In this section, we review some basic facts
about Hyperbolic algebras and two important construction theorems due to Rosenberg ([15]).
Let θ be an automorphism of a commutative algebra R; and let ξ be an element of R. Then we
have the following definition from [15].

Definition 3.1. We denote by R{θ, ξ} the corresponding R−algebra generated by x, y subject
to the following relations:

xy = ξ, yx = θ−1(ξ), xa = θ(a)x, ya = θ−1(a)y

for all a ∈ R. And R{θ, ξ} is called a Hyperbolic algebra over R.

First, we look at some basic examples of Hyperbolic algebras.

Example 3.1. The first Weyl algebra A1 is a Hyperbolic algebra over R = C[xy] with θ(xy) =
xy+1; U(sl2) and its quantized versions are Hyperbolic algebras too. And the reader to referred
to [15] for more details about Hyperbolic algebras.

Let CX = R{θ, ξ}−mod be the category of left modules over R{θ, ξ}. The Hyperbolic algebra
structure is very convenient for the construction of points of the spectrum Spec(X). We replace
the study of Spec(X) by the study of the left spectrum Specl(R{θ, ξ}) of the hyperbolic algebra
R{θ, ξ} (see 2.1 above).

For the left spectrum of the Hyperbolic algebra, we have the following two crucial construction
theorems due to Rosenberg from [15].

Theorem 3.1 ([15], Theorem 3.2.2.). 1. Let P ∈ Spec(R), and the orbit of P under the
action of the automorphism θ is infinite.

(a) If θ−1(ξ) ∈ P , and ξ ∈ P , then the left ideal

P1,1 := P + R{θ, ξ}x + R{θ, ξ}y

is a two-sided ideal from Specl(R{θ, ξ}).
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(b) If θ−1(ξ) ∈ P , θi(ξ) /∈ P for 0 ≤ i ≤ n− 1, and θn(ξ) ∈ P , then the left ideal

P1,n+1 := R{θ, ξ}P + R{θ, ξ}x + R{θ, ξ}yn+1

belongs to Specl(R{θ, ξ}).
(c) If θi(ξ) /∈ P for i ≥ 0 and θ−1(ξ) ∈ P , then

P1,∞ := R{θ, ξ}P + R{θ, ξ}x

belongs to Specl(R{θ, ξ}).
(d) If ξ ∈ P and θ−i(ξ) /∈ P for all i ≥ 1, then the left ideal

P∞,1 := R{θ, ξ}P + R{θ, ξ}y

belongs to Specl(R{θ, ξ}).

2. If the ideal P in (b), (c) or (d) is maximal, then the corresponding left ideal of Specl(R{θ, ξ})
is maximal.

3. Every left ideal Q ∈ Specl(R{θ, ξ}) such that θν(ξ) ∈ Q for a ν ∈ Z is equivalent to one left
ideal as defined above uniquely from a prime ideal P ∈ Spec(R). The latter means that if
P and P ′ are two prime ideals of R and (α, β) and (ν, µ) take values (1,∞), (∞, 1), (∞,∞)
or (1, n), then Pα,β is equivalent to P ′

ν,µ if and only if α = ν, β = µ and P = P ′.

Theorem 3.2 ([15], Proposition 3.2.3.). 1. Let P ∈ Spec(R) be a prime ideal of R such that
θi(ξ) /∈ P for i ∈ Z and θi(P )−P 6= 0 for i 6= 0, then P∞,∞ = R{θ, ξ}P ∈ Specl(R{θ, ξ}).

2. Moreover, if P is a left ideal of R{θ, ξ} such that P ∩ R = P , then P = P∞,∞. In
particular, if P is a maximal ideal, then P∞,∞ is a maximal left ideal.

3. If a prime ideal P ′ ⊂ R is such that P∞,∞ = P ′
∞,∞, then P ′ = θn(P ) for some integer n.

Conversely, θn(P )∞,∞ = P∞,∞ for all n ∈ Z.

4 A new deformation Uq(sl2) of U(sl2)

Starting from an R−matrix, Jing and Zhang constructed a new deformation Uq(sl2) of U(sl2)
(which is still denoted by Uq(sl2) in [7]). This new deformation is a bialgebra deformation of
U(sl2) [7]. In this section, we first recall the definition of this new deformation Uq(sl2). Then we
verify that Uq(sl2) has a Hyperbolic algebra structure over a polynomial ring in two variables.
Finally, we will state and verify some supplementary useful formulas, which will be used in the
next section.

Let C be the field of complex numbers and 0 6= q be an element of C. Let Uq(sl2) be the
C−algebra generated by e, f, h subject to following relations:

qhe− eh = 2e, hf − qfh = −2f, ef − qfe = h +
1− q

4
h2

It is easy to see that this new deformation Uq(sl2) shares a lot of properties with U(sl2). How-
ever, this new deformation Uq(sl2) is just a bialgebra deformation of U(sl2) without having a
Hopf algebra structure. The finite dimensional irreducible representations of this algebra were
constructed in [7], and an example was constructed to show that not every finite dimensional
representation is completely reducible.

In addition, it has a Casimir element which is defined as follows:

C = ef + fe +
1 + q

4
h2 = 2qfe + h +

1
2
h2 = 2ef − h +

q

2
h2

We have the following basic lemma about this Casmir element C from [7].
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Lemma 4.1 ([7], Lemma 3.4). The Casimir element C q−commutes with generators of Uq(sl2)
in the following sense:

eC = qCe, fC = q−1Cf hC = Ch

We have the following corollary of Lemma 4.1.

Corollary 4.1. The element h commutes with ef .

Proof. This follows directly from the definition of C and Lemma 4.1. �

Let us denote ef by ξ and e, f by x, y respectively. Let R = C[ξ, h] be the subalgebra
of Uq(sl2) generated by ξ, h, then R is a polynomial ring in two variables ξ, h, which is thus
commutative. We will verify that Uq(sl2) is a Hyperbolic algebra over R.

First of all, let us define an endomorphism θ of R by

θ(h) = qh− 2, θ(ξ) = qξ + q2h +
q2 − q3

4
h2 − (q + 1)

It is obvious that θ is an algebra automorphism. In addition, we have the following basic

Lemma 4.2. The following identities hold:

1. xh = θ(h)x, xξ = θ(ξ)x;
2. yh = θ−1(h)y, yξ = θ−1(ξ)y;
3. xy = ξ, yx = θ−1(ξ).

Proof. The verification of the above lemma is straightforward, and is left to the reader. �

From Lemma 4.2, we obtain the following

Proposition 4.1. Uq(sl2) is a Hyperbolic algebra over R.

Proof. This follows directly from the definition of Hyperbolic algebras and Lemma 4.2. �

Corollary 4.2. The Gelfand-Kirillov dimension of Uq(sl2) is 3.

Proof. This follows from the fact that Uq(sl2) is a Hyperbolic algebra over a polynomial algebra
in two variables. Since the Gelfand-Kirillov dimension of the latter is 2, the Gelfand-Kirillov
dimension of Uq(sl2) is 3. �

Before we finish this section, we would like to state another useful lemma, which will be
needed in the next section.

Lemma 4.3. One has

θn(h) = qnh− 2
qn − 1
q − 1

and

θn(ξ) = qnξ +
qn+1(1− qn)

4
h2 +

qn+1(qn − 1)
q − 1

h− (qn − 1)(qn+1 − 1)
(q − 1)2

for all n ∈ Z.
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Proof. First of all, we prove the statement is true for n ∈ Z≥0. When n = 0, the statement is
obviously true. And we have θ(h) = qh− 2. Suppose that the statement is true for n− 1. Note
that we have

θn(h) = θ(θn−1(h)) = θ

(
qn−1h− 2

qn−1 − 1
q − 1

)
= qnh− 2

qn − 1
q − 1

So we have proved the first statement for n ≥ 0 by using induction. Similar argument shows
that the statement is true for all n ∈ Z.

Now we are going to prove the second statement. Since C is in R, then we have xC = θ(C)x
and xC = qCx by Lemma 4.1. So we have θ(C) = qC. Hence θn(C) = qnC. Thus

2qnξ − qnh +
qn+1

2
h2 = 2θn(ξ)−

(
qnh− 2

qn − 1
q − 1

)
+

q

2

(
qnh− 2

qn − 1
q − 1

)2

Therefore, we have

θn(ξ) = qnξ +
qn+1(1− qn)

4
h2 +

qn+1(qn − 1)
q − 1

h− (qn − 1)(qn+1 − 1)
(q − 1)2

for all n ∈ Z. �

5 Construction of points of the spectrum for Uq(sl2)

In this section, we construct families of points of the spectrum of the category of representations
of Uq(sl2) using the construction theorems quoted in Section 2 from [15]. As a result, we will
obtain families of irreducible weight representations of Uq(sl2).

First of all, we have the following basic

Proposition 5.1. Let P = (ξ − α, h − β) be a closed point of Spec(R). Then {θn(p) | n ∈ Z}
is a finite set if and only if α = − 1

(q−1)2
andβ = 2

q−1 .

Proof. If

α = − 1
(q − 1)2

and β =
2

q − 1

then

θn(h− β) = qnh− 2
qn − 1
q − 1

− β = qn(h− β) + (qn − 1)β − 2
qn − 1
q − 1

In addition,

θn(ξ − α) = qn(ξ − α) +
(

qn+1(1− qn)
4

h +
qn+1(qn − 1)

q − 1
+

qn+1(1− qn)β
4

)(h− β

)
+

qn+1(1− qn)β2

4
+

qn+1(qn − 1)β
q − 1

+ (qn − 1)α− (qn+1 − 1)(qn − 1)
(q − 1)2

So the orbit of P is finite if and only if

(qn − 1)β − 2
qn − 1
q − 1

= 0

and

qn+1(1− qn)β2

4
+

qn+1(qn − 1)β
q − 1

+ (qn − 1)α− (qn+1 − 1)(qn − 1)
(q − 1)2

= 0
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hence if and only if

α = − 1
(q − 1)2

and β =
2

q − 1

that completes the proof. �

For the rest of this section, we may assume that β 6= 2
q−1 . We have the following

Theorem 5.1. Suppose that q is not a root of unity and s ∈ Z≥0

2 is a half non-negative integer.
Let

P = Mα,β = (ξ − α, h− β) =
(

ξ − q−2s − 1
1− q2s

, h− 2
1∓ q−s

1− q

)
be a maximal ideal of R, then the corresponding point

P1,n+1 = R{θ, ξ}P + R{θ, ξ}x + R{θ, ξ}yn+1

of the left spectrum Specl(R{θ, ξ}) is a closed point. Hence the representation R{θ, ξ}/P1,n+1

corresponding to this point is a finite dimensional irreducible representation of Uq(sl2).

Proof. If

P = (ξ − α, h− β) =
(

ξ − q−2s − 1
1− q2s

, h− 2
1∓ q−s

1− q

)
then we have θ−1(ξ) ∈ P and θ2s(ξ) ∈ P . Thus the statement follows from (b) of part (1) of the
Theorem 3.1. �

Remark 5.1. The representations constructed above recover all finite dimensional irreducible
representations as constructed in [7].

Now we are going to construct some new families of infinite dimensional irreducible weight
representations. Suppose P = Mα,β = (ξ − α, h− β) is a maximal ideal of R, then we have the
following

Theorem 5.2. 1. If

α = β − q − 1
4

β2 and β 6= 2
1∓ q−s

1− q

for all non-negative half integer s, then the corresponding point

P1,∞ := R{θ, ξ}P + R{θ, ξ}x

of the spectrum is closed. And the corresponding representation R{θ, ξ}/P1,∞ is an infinite
dimensional irreducible highest weight representation.

2. If

α = 0 and β 6= 2
1∓ q−(s+ 1

2
)

1− q

for all half positive integers s, then the corresponding point

P∞,1 := R{θ, ξ}P + R{θ, ξ}y

of the spectrum is closed, and the corresponding representation R{θ, ξ}/P∞,1 is an infinite
dimensional irreducible lowest weight representation.
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Proof. We will only verify the first part of this statement, and the rest is similar. According
to Lemma 4.4, we have

θ−1(ξ) = q−1ξ − q−1h− 1− q

4q
h2

If

α = β − q − 1
4

β2 and β 6= 2
1∓ q−s

1− q

then we have θ−1(ξ) ∈ P and θn(ξ) /∈ P for all n ≥ 0, so that P1,∞ := R{θ, ξ}P + R{θ, ξ}x
is a closed point of the left spectrum Specl(R{θ, ξ}) by Theorem 3.1, hence the corresponding
representation R{θ, ξ}/P1,∞ is an infinite dimensional highest weight irreducible representation.
�

Theorem 5.3. Let Mα,β = (ξ − α, h− β) be a maximal ideal of R such that

α 6= q(qn − 1)
4

β2 − q(qn − 1)
q − 1

β +
(qn − 1)(qn+1 − 1)

(q − 1)2qn

for all n ∈ Z, then the point P∞,∞ = R{θ, ξ}P ∈ Specl(R{θ, ξ}) is a closed point of the left spec-
trum, and the corresponding representation R{θ, ξ}/P∞,∞is an infinite dimensional irreducible
weight representation.

Proof. The proof is a direct verification of the conditions in Theorem 3.2, and we will omit it
here. �

Remark 5.2. It is tempting to construct some nonweight irreducible representations for Uq(sl2)
[17, 18]. Unfortunately, the Whittaker model does not work here. The difficulty lies in that
the algebra Uq(sl2) has a trivial center. So it would be an interesting problem to find a way of
constructing nonweight irreducible representations for this new deformation Uq(sl2).
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