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Abstract 

Iterative clustering algorithms commonly do not lead to optimal 

cluster solutions. Partitions that are generated by these 

algorithms are known to be sensitive to the initial partitions that 

are fed as an input parameter. A “good” selection of initial 

partitions is an essential clustering problem. In this paper we 

introduce a new method for constructing the initial partitions set 

to be used by the Expectation-Maximization clustering algorithm 

(EM algorithm). Our approach follows ideas from the Cross-

Entropy method. We use a sample clustering provided by means 

of the EM algorithm as an alternative for the simulation phase of 

the Cross-Entropy method. Experimental results reflect a good 

performance with respect to the offered method.  
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1. Introduction 
Clustering methods are widely used in many different areas as a 

practical tool to understand hidden structures in complex data. 

The clustering goal is primarily to group jointly similar items. 

Consequently, it is assumed that beside the observed variables of 

each data item, there is a hidden, unseen variable representing 

the “cluster membership” of that item. A variety of iterative 

clustering procedures (e.g., k − means, and the EM algorithm) 

requires an initial partition of a dataset as an input parameter. In 

iterative clustering approaches, the quality of the generated 

partitions is strongly dependent on this initial partitions choice. 

An efficient selection of an initial partition is therefore, a must 

have requirement – since the paramount importance for 

successful implementation of clustering algorithms. This 

problem has been considered in many works (see, e.g. [1-3]).  

This paper proposes new method for constructing initial 

partitions to be used by the Expectation-Maximization clustering 

algorithm (EM algorithm). The presented approach follows ideas 

from the Cross-Entropy method, where we use a sample 

clustering produced by means of the EM algorithm as an 

alternative for the simulation phase. The provided Experimental 

results reflect a good performance of the offered method.  

The paper is organized as follows. The Gaussian Mixture Model 

framework is reviewed in Section2. Section3 provides a short 

description of the refinement clustering algorithm. Section4 

summarizes the Cross-Entropy method, and discusses its 

advantages and drawbacks. It also introduces the new 

initialization procedure. Numerical experiments are presented in 

Section5.  

 

2. The Gaussian Mixture Model 
Many clustering methods are based on a density estimation 

perception. Thus, the data is considered to be independently 

extracted from a mixed population while the mixing labels 

(cluster identifiers) are hidden. More specifically, if we consider 

the data 1{ }mx x,...,  to be a set of vectors in a subset X of then- 

dimensional Euclidean space 
nR  having clusters 

{ } 1,...,
j

C j k, = , then the underlying distribution µ of X is 

assumed to be written as  

1

k

j jj
pµ µ

=
= ,∑  

where set { 1,..., }
j

P p j k= , = is the cluster probabilities and 

1,...,
j

j kµ , = are the inner clusters distributions. The wide 

spread EM clustering algorithm suggests the Gaussian Mixture 

Model (GMM) of data fitting [5]. In this case, the 

distributions 1,...,
j

j kµ , =  are identified by multivariate 

Gaussian distributions ( )
j j

G x y σ| , where Y { 1,..., }
j

y j k= , =
 

and covariance matrices { 1 }
j
, j = ,...,kσΣ = . Thus, the 

clusters are ellipsoidal sets which are centered at the means
j

y , 

such that the covariance matrices 
j

σ  provide the clusters’ 

shape. Usually, these parameters are estimated from the data, and 

can be either allowed to vary between clusters, or guarded to be 

the same for all clusters. A categorization of several covariance 

models can be found in [6], and was presented also in [5].  

In the presence of incomplete data, the EM algorithm [5] is an 

iterative procedure that maximizes the log likelihood function. 

Here, the ‘complete’ data is considered to be 

i1 ik
( )  1  =(z ,...,z )

i i i i
s x , i = ,...,m,= z , z , where for i=1,..,m, 

j=1,…,k  

1 if x  belongs to group ,
 

0                      otherwise.

i
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The resulting complete-data log likelihood is: 

( )( )
1 1

( ) logP Y
m k

ij j i j j

i j

l z p G x y σ
= =

, ,Σ = | , .∑ ∑  (1) 

The algorithm starts from a random initialization of the hidden 

variables
i

z and iterates between the E-step, where these 

variables are evaluated from the data with the present parameter 

values, and the M-step in which Equation 1 is maximized with 

respect to the parameters.  The standard k -means algorithm can 

be viewed as a partial version of the EM algorithm 

corresponding to the uniform spherical Gaussian model, with 

equal sized clusters. The well recognized drawback of the EM 

algorithm is that it fails to converge to the global maximum. A 

simple and a standard way for handling this drawback, is by 

multiple runs of the algorithm, with different initial partitions. 

Often, a large number of re–runs is required, making the 

algorithm time complexity relatively high.  

 

3. The Refine Algorithm 
One of most successful initialization approaches for iterative 

refinement clustering algorithms was provided by U. Fayyad, C. 

Reina, and P.S. Bradley [4, 7]. The procedure is based on an 

efficient technique for estimating the distribution modes, and can 

be applied to various iterative clustering algorithms. The 

applicability of this method to the EM algorithm was 

demonstrated by the authors, and it was shown that refined initial 

centroids do indeed lead to improved partitions. This “Refine” 

algorithm can be described as follows: 

Input arguments: 

• k − the number of clusters;  

• SP − a vector of k  initial centroids;  

• Data −  the dataset;  

• J − the number of samples;  

• M − the sample size.  

The algorithm draws J small samples 1,...,
j

S j J, = , and 

applies the EM algorithm to generate a partition having k 

centroids 
j

CM . In case that some of the centroids are identical 

(i.e. the corresponding partition contains less than k clusters), 

then the sample 
j

S  is clustered again with a different initial 

vector SP. The union of centroids 1,...,
j

CM j J, =  is denoted 

as CM. The set CMis clustered by thek-means algorithm with the 

initial centroids 
j

CM , the centroids of the resulting partition 

are denoted by , 1,...,
j

FM j J=  and  

1

J

j

j

FMS FM
=

=U . 

The final set of k centroids FM is the set 
j

FM  maximizing the 

likelihood with respect to CM. A pseudo-code version of the 

algorithm is as follows:  

 

1. CM=∅; 

2. for 1j J= ,...,  

(a) Draw sample 
j

S  having size M from Data;  

(b) ( )
j j

CM EM SP S k= , , ;  

(c) 
j

CM CM CM= ∪ .  

3. FMS=∅ 

4. for 1j … J= , ,  

(a) ( )
j j

FM KMeans CM CM k= , ,  

(b) 
j

FMS FMS FM= ∪  

5. max ( )
j

FM Arg {Likelihood FM CM }= ,  

6. ( )Return FM  

 

4. Sequential Initialization of the EM Algorithm 

As mentioned above, usage of the EM algorithm for clustering 

can be considered as a method for solving an optimization 

problem which consists of the maximization of the log likelihood 

function (Equation (1)). One of the generic methods for this 

purpose is the Cross-Entropy (CE) method. CE finds many 

applications in different research fields (see the CE site 

http://iew3.technion.ac.il/CE/about.php). Generally speaking, 

the essence of the CE method is the following:  

1. Generate a sample of random data that fits parameters of the 

underlying distribution.  

2. Update the parameters in order to produce a “better” sample 

in the next iteration.  

3. Iterate the procedure until the process is “stabilized”.  

Application of CE to clustering and vector quantization has been 

provided in [8]. The method has been shown to be robust with 

respect to the choice of initial centroids. This task has been 

considered as an optimization problem  

1 1

2

1

1

min ( ) min ,
k k

j

k

k j
c …c c … c

j x C

L R c c x c
, , , ,

= ∈

= ,..., = −∑∑  (2) 

where 1 kc c, ...,  are the decision variables, in this case - centroids 

of the clusters { } 1,...,
j

C j k, = . 

In clustering applications, Step 1 of the procedure is performed 

by simulation [8]. However, the CE method has several 

disadvantages that are related mainly to the simulation phase. 

Specifically, a simulation task appears to be computationally 

expensive for high dimensional data. All simulations are 

performed under the assumption that the underlying distribution 

can be properly approximated by means of the Gaussian 

distribution. This assumption is rarely satisfied for real data, 

which is often sparse; as it appears in text mining applications 

[9]. Evidently, modeling of such a high-dimensional dataset, by 

means of a mixed normal law, can lead to a large deviation from 

the underlying distribution. This is an aspect of the so-called 

“curse of dimensionality”.  

The method proposed here avoids the simulation step presented 

in the CE approach. Instead, we consider the clustering task as 

an optimization problem with the objective function from 

Equation (1). Consequently, in a similar manner to the above 

described “Refine” Algorithm (see Section 3), we use the log 

likelihood value which is calculated according to Equation (1) as 

a criterion for “elite” samples selection instead of the 

concentration measures of [8] by means of Equation (2). 

Actually, we consider a more general optimization problem.  

As in the CE approach, we start by outlining the parameters of 

our algorithm:  

• k −  the number of clusters;  

• N −  the number of drawn samples;  
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• M −  the sample size;  

• ρ −  the fraction of correct (“elite”) samples.  

The algorithm consists of the following steps:  

1. Draw N random samples , 1,...iS i N= , of size M from the 

dataset, and set counter co=1.  

2. Apply the EM algorithm to the samples, and generate clusters 

with centroids
ji

y , and covariance matrices 

1,..., ,  1,...
ji

j k i NΣ , = =  for the partitions 

( ),  1,..., .i iS i NΠ =  Initial parameters of the EM algorithm 

are chosen randomly for 1co = , and are borrowed from 

iteration co-1 ifco>1. Recall, that random initialization is 

generated by a random assignment of the dataset elements to 

clusters. The GMM parameters (see Section 2) are calculated 

according to this assignment.  

3. Calculate the partition quality values  1,...,iL i N, = , 

according to Equation (1).  

4. Rank the sequence  1,...,iL i N, =  and take 

[ ]elite
N Nρ= “elite” samples corresponding to the biggest 

[ ]Nρ  values of iL , say, 
1 eliteN

S S, ..., .  

5. Re-compute the GMM model parameters involved in the EM 

algorithm by means of the algorithm for partition of the 

united sample  

1

ˆ

eliteN

ico

i

SS
=

= U  

(The choice of EM initial parameters is indicated in Step 2 

above).  

6. If the stop criterion is met, then stop and accept the obtained 

GMM parameters as an estimate for the true GMM 

parameters. Otherwise, set co = co+1 and go to Step 2.  

 

A stopping criterion can be formulated in terms of process 

stabilization. As a first decisive factor, we can consider -in terms 

of stabilization - the log likelihood empirical values. 

Specifically, it is possible to calculate this value for 

co
L
)

according to the EM- partitions obtained for the sets
co

S
)

 in 

Step5. The process is stopped if the difference between two 

consecutive values
co

L
)

 and
1co

L +

)
 is within some predefined 

tolerance.   

Another criterion deals with the solution stabilization. Note that 

such a rule is going to be more complicated in comparison with 

CE clustering. The main challenge is the inherent symmetry of 

clusters with respect to their labels permutation, that leads to 

cluster correspondence problems in the two samples 
co

S
)

 

and
1co

S +

)
.  

Here, in order to compare two solutions, we assign each item of 

the dataset X to the clusters of the EM- partitions of
co

S
)

 

and
1co

S +

)
according to the maximal probabilities calculated by 

means of the GMM with the obtained parameters. Let us denote 

these assigns by coα and 1coα + . An element of the dataset may 

be labeled differently. Accordingly, the clusters’ labeling of the 

mentioned EM solutions can be permuted in a different way. We 

solve the labeling corresponding problem by resting upon a 

natural suggestion that the most intersected clusters induced in 

the dataset by the partitions of
co

S
)

 and
1co

S +

)
 correspond to one 

another. So, we look over all possible cluster labels permutations 

for a permutation that minimizes the actual misclassification 

between two sequential steps.  

Specifically, let us denote kΨ as the collection of all possible 

permutations for the set{1 2 }k, , ..., . A favored permutation 
co

ψ ∗
 

has to provide the smallest misclassification between the two 

classifications, i.e.  

 
1

argmin( ( ( ) ( ( )))
co k co co

D X Xψ ψ Ψ α ψ α∗

+= ∈ | , ,  

whereD is the misclassification measure: 

1 1

1
( ( ) ( ( ))) ( ( ) ( ( )))co co co co

x X

D X X x x
X

α ψ α χ α ψ α+ +

∈

, = ,∑
 

Here, 1( ( ) ( ( )))co cox xχ α ψ α +,  is an indicator function of the 

event 1( ) ( ( ))co cox xα ψ α +≠ . The straightforward solution for 

this problem requires testing all k!  possible permutations. On 

the other hand, this task is a special case of the minimum 

weighed perfect bi-variant matching problem, which can be 

solved by the well-known Hungarian method with computational 

complexity 
3( )O k [10]. Furthermore, to express a stopping 

criterion of the algorithm, we compare the sets 
( ) ( ){( , ),  }co co

co i i
y i = 1,...,kσΘ =  of the GMM parameters, 

that were found by the algorithm in the step co. actually, the 

convergence of coΘ  for co → ∞  is a desired criterion and we 

can stop the process if the value 

( ) ( 1) 2 ( ) ( 1) 2

1 2( ) ( )
1 1

( ) || ||
co co

k k
co co co co

co i ii i
i i

w y y w
ψ ψ

σ σ∗ ∗

+ +

= =

∆ = − + −∑ ∑
 

is 

sufficiently small. Here, • 2
 stands for the 

2L matrixes norm, 

and 1 2,w w  are the control coefficients. A different criterion 

aiming to bound L∞  norm of the diagonal elements of the 

obtained covariance matrices is also available in the literature 

[8]. 

 

5. Experimental Results 
Evaluation of the described methodology has been provided by 

numerical experiments on real datasets. First, we consider the 

well known Iris Flower Dataset available at 

http fmwww bc edu ec p data micro iris dta: / / . . / − / / / . . 

This dataset contains features of three different classes of 

flowers:  

• 0 - Iris Setosa,  

• 1 - Iris Versicolour,  

• 2 - Iris Virginica.  

There are 50 examples for each class in the dataset. Each 

example has a four dimensional feature vector. The obtained 

clustering results are evaluated by the well known Rand index 

[11]. In addition,the partition quality was evaluated by means of 

the “misclassified” items number which we denote by Dif. We 

compare four initial partition building techniques. Those are:  

• EM+ - clustering via EM algorithm using our sequential 
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initialization procedure (see Section 4), with assignment to 

the nearest centroid;  

• Refine  - clustering via EM- algorithm using the 

initialization by the Algorithm Refine of U. Fayyad, C. 

Reina, and P.S. Bradley in (see Section 3),  

• EMM- clustering via EM algorithm, using our sequential 

initialization procedure, with final clustering of the data by 

means the standard EM algorithm,  

• EM- a data clustering by means the standard EM algorithm, 

without any additional initialization procedures.  

The outcomes shown in the following tables demonstrate good 

performance of clustering via EM+ - algorithm based on our 

sequential initialization procedure.  

 

Table 1: Data set Iris, K = 3, R = 40, ρ = 0.2  

40N =  Rand Dif Dif (%)  60N =  Rand Dif Dif (%)  

EM+  0.982  14  9.33  EM+  0.971  3  2   

REFINE  0.957  5  3.33  REFINE  0.953  5  3.33   

EMM  0.957  5  3.33  EMM  0.953  5  3.33   

EM  0.785  61  40.67  EM  0.507  63  42   

 

The second dataset is selected from the text collections available 

at  

http www dcs gla ac uk idom ir_resources test_collections: / / . . . . / / / / .

 

It consists of the following three text collections:  

• DC0–Medlars Collection (1033 medical abstracts), 

• DC1–CISI Collection (1460 information science abstracts), 

• DC2–Cran field Collection (1400 aerodynamics abstracts). 

This dataset has been considered in a number of papers (e.g. 

[12]). Following the well known “bag of words” vector space 

model (e.g. [9]) 300 and 500 “best” terms were selected (see [13] 

for term selection details). This dataset is known to be well 

separated with the help of the two leading principal components. 

This representation was used in our experiments. 

 

Table 2: Three text collection represented by300 terms, K = 3, R 

= 30, ρ = 0.25  

30N =  Rand Dif  Dif 

(%)  
40N =  Rand Dif  Dif 

(%)   

EM+  0.962  114  2.93  EM+  0.951  150 3.86   

REFINE  0.935  206  5.29  REFINE  0.935  206 5.29   

EMM  0.935  206  5.29  EMM  0.935  206 5.29   

EM  0.745  1380  35.47  EM  0.935  206 5.29   

 

Table 3: Three text collection represented by500 terms, K = 3, R 

= 60, ρ = 0.25  

40N =  Rand Dif  Dif (%) 60N =  Rand Dif Dif (%)  

EM+  0.968  95  2.44  EM+  0.973  82  2.11   

REFINE  0.962  118  3.03  REFINE 0.962  118 3.03   

EMM  0.753  1358 34.90  EMM  0.962  118 3.03   

EM  0.962  117  3.01  EM  0.962  118 3.03   
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