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Introduction
The fluid flow generated by pulsatile motion of the boundary is 

found to have immense importance in aerospace science, nuclear 
fusion, astrophysics, geophysics and cosmical gas dynamics. The 
investigation in this direction was carried out by Chakraborty and 
Ray [1] who examined the magneto-hydrodynamic Couette flow of 
a viscous fluid between two parallel plates when one of the plates is 
set in motion by random pulses. Makar [2] presented the solution of 
magneto-hydrodynamic viscous flow between two parallel plates when 
one of the plates is subjected to velocity tooth pulses and the induced 
magnetic field is neglected. Bestman and Njoku [3] constructed 
the solution of hydromagnetic channel flow of an incompressible, 
electrically conducting viscous fluid produced by tooth pulses including 
the effect of induced magnetic field, ignored by the author [2], and using 
the methodology of Fourier analysis instead of applying the commonly 
used technique of Laplace transforms which involve complicated 
inversions. Ghosh and Debnath [4] considered the hydromagnetic 
channel flow of a two- phase fluid-particle system induced by tooth 
pulses and obtained solution using the method of Laplace transforms. 
Datta and Dalal [5,6] discussed the heat transfer to pulsatile flow of a 
dusty fluid in pipes and channels following the method of perturbation. 
On the other hand, Hayat et al. [7] studied some simple flows of an 
Oldroyd-B fluid using the method of Fourier transforms. Asgar et al. 
[8] also utilized the same methodology as that of authors [7] to solve the 
problem concerning Hall effects on the unsteady hydromagnetic flow 
of an Oldroyd-B fluid while Hayat et al. [9] constructed the solution of 
hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system 
following the method of perturbation. In the present paper, we intend 
to construct solution of hydromagnetic channel flow of a rotating 
Oldroyd-B fluid induced by tooth pulses with a view to its application 
in hydromagnetic spin-up in a contained fluid [10], the motion of the 
earth’s liquid core [11], the development of sunspot, the solar cycle and 
the structure of the magnetic stars [12] and in the determination of the 
effects of the external magnetic field and rotation on the flow of blood 
in the cardiovascular system, particularly at low rates of shear [13].

The problem is devoted to the study of unsteady hydromagnetic 
flow of an incompressible, electrically conducting Oldryod-B fluid 
confined in a channel bounded by two infinite rigid non-conducting 
parallel plates separated by a distant h when both the plates and the 
fluid are in a state of solid body rotation with a constant angular 
velocity Ω about the z-axis normal to the plates. The unsteady motion is 
supposed to generate impulsively from rest in the fluid due to velocity 
tooth pulses applied on the upper plate with the lower plate held fixed. 
Exact expression for the fluid velocity is obtained using the methods of 
Fourier analysis and Laplace transforms separately. The results for the 
skin-friction on the walls are also obtained in both the cases. It is shown 
that both the methods give the same exact solution of the problem. The 
effects of rotation, the magnetic field and the fluid elasticity on the 
components of fluid velocity and the wall skin-frictions are examined 
quantitatively. It is observed that the viscoelastic fluids grow and decay 
less faster than the ordinary viscous fluids. The magnetic field exerts a 
damping effect on such flows. The increasing and decreasing effects of 
rotation alone on the components of fluid velocity and skin-frictions 
during increasing and decreasing motions of the fluid are shown 
separately through pictorial representation.

Basic Equations
Following Oldroyd [14] the constitutive equations for an oldroyd-B 

fluid can be written as 

T=−p I + S,   (2.1)

1 2 1[1 ]ADS Ds
Dt Dt

l m l+ = +             (2.2)
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Where T=Cauchy stress tensor, p=fluid pressure, I=identity tensor, 
S=extra stress tensor, 1 2, ,m l l = viscosity coefficient, relaxation time, 
retardation time (assumed constants). 

The tensor A1 is defined as 

A1=∇V+(∇V)T :                 (2:3)

In a cartesian system, D
Dt

 (upper convected time derivative) 
operating on any tensor B1

Is T1 1
1 1 1(v. ) B ( v) B ( V)DB B B

Dt t
¶

= + Ñ - Ñ - Ñ
¶                   (2.4)

It is to be mentioned here that this model includes the viscous fluid 
as a particular case for 1 2l l= ; the Maxwell fluid when l2=0 and an 
oldroyd-B fluid when 0<l2<l1<1.

The stress equations of motion for an incompressible electrically 
conducting oldroyd-B fluid in a rotating system in presence of an 
external magnetic fluid are 

.v 0Ñ =                        (2.5)

[ (v. ) V 2 V ( r)] .T J BV
t

r
¶

+ Ñ + W´ +W´ W´ =Ñ + ´
¶                  (2.6)

0. 0,B B JmÑ = Ñ´ =                  (2.7ab)

* *
0, [E V B]BE J

t
s

¶
Ñ´ =- = + ´

¶
              (2.8ab)

where V=(u,v,w)=fluid velocity, r2=(x2 + y2), =fluid density, J=current 
density, B=magnetic flux density, E*=electric field, 0m =magnetic 
permeability (assumed constant), s0=electrical conductivity (assumed 
finite) and Ω=angular velocity of solid body rotation.

Formulation of the Problem
In view of the physical nature of the problem, as shown in Figure 

1, we take

V=(u(z; t); v(z; t); 0); S=S(z; t);                               (3.1a)

B=(0; 0; B0); Ω=(0; 0; Ω)                          (3.1b)

Where z-axis is normal to the plate, x-axis is along the plate and 
y-axis perpendicular to it with origin at the plate.

The equation (2.2) then yields

2
1 xx xz 2[ S 2S ] 2 ( )xx

u uS
t z z

l ml
¶ ¶ ¶

+ - =-
¶ ¶ ¶                                  (3.2a)

1 xy yz xz 2[ S S ] 2 ( )( )xy
u u u uS S

t z z z z
l ml

¶ ¶ ¶ ¶ ¶
+ - - =-

¶ ¶ ¶ ¶ ¶
                     (3.2b)

2

1 xz zz 2[ S S ] ( ) ( )xz
u u uS

t z z z t
l m ml

¶ ¶ ¶ ¶
+ - = +

¶ ¶ ¶ ¶ ¶
                  (3.2c)

2
1 yz 2[ S 2S ] 2 ( )yy yy

u uS
t z z

l ml
¶ ¶ ¶

+ - =-
¶ ¶ ¶                   (3.2d)

2

1 zz 2[ S 2S ] ( )yz yz
z t

u u vS
t z z

l m ml
¶ ¶ ¶ ¶

+ - =- +
¶ ¶ ¶ ¶ ¶

                         (3.2e)

1[ S 0zz zzS
t

l
¶

+ =
¶                                  (3.2f)

Integrating (3.2f), we get 1(z) exp[ (t/ )]zzS F l-                    (3.3)

Where F(z) is an arbitrary function of z. We shall investigate the 
possibility of the solution in which F(z)=0 i.e., Szz=0 [9].

We now assume that no applied or polarization voltage exists i.e, 
E*=0 so that no energy is added or extracted from the fluid by the 
electric field. We further assume that the magnetic Reynolds number 
is very small which is plausible for most electrically conducting fluids. 
This implies that the current is mainly due to induced electric field 
so that j=σ0(u×B) and the applied magnetic field remains essentially 
unaltered by the electric current flowing in the fluid. We also assume 
that the induced magnetic field produced by the motion of the fluid is 
negligible compared to the applied magnetic field so that the Lorentz 
force term in (2.6) becomes −σ 0 B0

2 V:

The equations of motion in (2.6) then reduces to

2
0 0[ 2 ] xz

z

Su pv B u
t x

r s
¶¶ ¶

- W =- + -
¶ ¶ ¶              (3.4a)

2
0 0[ 2 ] yz

z

Su pu B u
t y

r s
¶¶ ¶

+ W =- + -
¶ ¶ ¶               (3.4b)

0p
z

¶
- =

¶
              (3.4c)

Where p is the modified pressure including the centrifugal force 

term. The Equation (3.4c) shows that ,p p
x y

¶ ¶
¶ ¶  have the same value as 

in the free stream. Accordingly, we assume that both the quantities are 
zero. 

We now combine (3.4a) and (3.4b) with the help of (3.2c) and 
(3.2e) to obtain

where H(t - T) = 0, t < T and H(t - T) = 1, t >T.                                       (3.5)

Where q=u + i v is the complex velocity of the fluid.

We now introduce the non-dimensional quantities
2

2 0 0
1

1 01 1

, , , , ,Bz h t qz d t q M
Uv v

s
l

l rl l
= = = = =

2
1

1

2 , , 0 1.E k kl
l

l
= W = £ £

in equation (3.5) and on dropping bars we get

2
2

2(1 )[ ] (1 ) (1 )qq qiEq k M
t t t z t
¶ ¶ ¶ ¶ ¶

+ + = + - +
¶ ¶ ¶ ¶ ¶

                                                      (3.6)

The problem now reduces to solving (3.6) subject to the boundary 
and initial conditions given by

q(z, t) = 0 at z = 0, t > 0; q(z, t) = f(t) at z = d, t > 0                      (3.7 a, b) 

andFigure 1: Geometry of the flow configuration.
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[q(z, t), (z,t)] = [0,0] at tq for all z
t

¶
£

¶
               (3.7c)

where f(t) representing the tooth pulses is an even periodic function 
with period 2T and strength E0 T.

Solution of the Problem
Method of fourier analysis

According to the nature of f(t) mentioned above, the mathematical 
form of u(d, t) may be written as

0

1

( , ) ( ) 2 ( 1) ( ) ( )n

n

Eq d t t H t t nT H t nT
T

¥

=

ì üï ïï ï= + - - -í ýï ïï ïî þ
å                                                      (4.1)

where H(t - T) = 0, t < T and H(t - T) = 1, t >T.
Using half-range Fourier series, the condition (4.1) can also be 

expressed in the form

0 0
2 2

0

4 1u( , ) cos (2 1)
2 (2 1)m

E E td t m
m T

p
p

¥

=

ì üï ïï ï= - +í ýï ï+ ï ïî þ
å                      (4.2)

By virtue of (4.2) we assume the solution of (3.6) as

(2m 1) (2m 1)

2m 1 2 1
0 1

1(z, t) [q (z)e q (z)e ] (t)sin( )
2

i t i t
T T

s m n
m n

n zq q W
d

p p p¥ ¥+ - +

+ +
= =

= + + +å å       (4.3)

Where q is the conjugate of q. The first two terms in (4.3) are 
chosen so as to satisfy (4.2)

While the last term accommodates the initial condition.

Substituting (4.3) in (3.6) and then using (3.7a) and (4.2), we have 
the following equations

With appropriate conditions as
2

2
2 0s

s
d q L q
dz

- =                              (4.4)

With qs=0 on z=0; qs=
0

2
E

 on z=d      
2

22 1
12 2 0m

m m
d q

L q
dz

+
+- =         (4.5)

With
0

2 1 2 1 2 2

4 10 0, |
(2 1)m m

Eq on z q on z d
mp+ += = =- =
+

And

2 2 2 2 2
2 2

n2 2(1 M iE) (M iE) W 0n nd W dWn k n
dt d dt d

p p
+ + + + + + + =           (4.6)

With

n n n(t) W (0), W (t) W (0) at t 0nW ¢ ¢= = =       

Where Wn(0) and nW (0)¢  are to be determined.

In the above,

2
2 2 2 m m[M i(E )](1 i ) (2m 1)(M iE),L

1m m
m

L and
i k T
b b p

b
b

+ + + +
= + = =

+

The solutions of equations (4.4)-(4.6) are

0 sinh(Z)
2 sinhs
E Lzq

Ld
=                                         (4.7)

0
2 1 2 2

4 sinh1(z)
(2m 1) sinh

z
m

m d
m

E Lq
Lp+ =-

+                         (4.8)

2 11 2
1 2

n
1 2 1 2

(t) W (0) (0)
m t m tm t m t

n n
m e m ee eW W

m m m m
--¢= +

- -
                      (4.9)

Where
1

2 22 2 2 2 2 2
2 2 2

1 2 2 2 22 ,2 (1 ) 1 4n k n k nm m M iE M iE M iE
d d d
p p p

é ù
ì üê úï ïæ ö æ öï ï÷ ÷ê úï ïç ç÷ ÷=- + + + + + + - + +ç çí ý÷ ÷ê úç ç÷ ÷ç çï ïè ø è øê úï ïï ïî þê úë û

    (4.10)

The initial conditions in (3.7b) provide

2 2 2 2 2 2 2 2 2 2
00

(0) 1 8 1( 1) Re
(2 1) ( )

n

m m

Wn n
E n L d m n L d

p
p p p

¥

=

é ù
ê ú= - -ê ú+ + +ë û

å    (4.11)

2 2 2 2 2
00

(0) 8 ( 1) Im
(2 1) ( )

n
m

m m

W n n
E m n L d

b
p p

¥

=

¢ -
=

+ +å                                                             (4.12)

The m-series in (4.11) and (4.12) are of orders bm
-3 and bm

-2 when 
m ®¥ . The n-series is also convergent since m1; m2 are of order -N1

2 
and m1-m2 has the order N1

2 as n ®¥where 
2 2

2 2
1 2

n kN M
d
p

= + .

Finally, the fluid velocity takes the form
21 2

1 2
2 2

0 10 0 1 2 0 1 2

sinh (0) (0)( , ) sinh 4 Re
2sinh (2 1) sinh

sin

m t m tm t m ti mt
m n n

m nm

L z W W m e m eq z t Lz e e e
E Ld m L d E m m E m m

n z
d

b

p

p

¥ ¥

= =

ì ü¢ï ï--ï ï= - + +í ýï ï+ - -ï ïî þ
å å      (4.13)

which in the limit t → ∞ provides the steady velocity field
2 2 n

0
2 2

0 10

2 2
2

2 2 2 2 2 * 2 2 2 2
0

4 ( 1)Re
2sinh (2 1) sinh

1 8 1 1[ Re ]e (M iE) t
(2m 1)

i mt
m

m nm

m m

S LL e n
E Ld m L d d

n
L d n L d n d

b p
p

p
p p p

¥ ¥

= =

¥

=

-
= - + ´

+

- - + +
+ + +

å å

å
         (4.14)

where the harmonic part contains the effect of fluid elasticity due to the 
presence of pulsation.

On the other hand, the solution corresponding to classical viscous 
fluid in a rotating system can be obtained from (4.13) in the limit k → 1. 
This solution is given by

2 2 2 2

2 2 2 2 2 2 2
0 10

2 2 2 2
(M n /d iE) t

2 2 2 2 2 2 2 4
0

sinh( , ) sinh 4 1 8Re ( 1) [
2sinh (2 1) sinh

1 ] e sin
(2 1) ( ) ( )

i mt
nm

m nm

m m

L zq z t Lz e n
E Ld m L d L D n

M d n n z
m M d n E d d

b

p

p
p p p

p p
p b

*¥ ¥

*
= =

¥
- + +

=

= - + - -
+ +

+
´

+ + + +

å å

å    (4.15)

Where 2 ( )m mL M i E b* = + +

The result (4.15) in a non-rotating system (E=0) yields

2 2 2 2

1
2 2 2 2 2 2 2

0 10 1

2 2 2 2
(M n /d iE) t

2 2 2 2 2 2 2 4
0

sinh( , ) sinh 4 1 8Re ( 1) [
2sinh (2 1) 2sinh

1 ] e sin
(2 1) ( )

mi t
n

m n

m m

L yu y t My e n
E Md m L d M d n

M d n n z
m M d n d d

b

p

p
p p p

p p
p b

¥ ¥

- =

¥
- + +

=

= - + - -
+ +

+
´

+ + +

å å

å
    (4.16)

Where 2
1 mL M ib= +

The solution (4.16) is identical to that of Bestman and Njoku [3]. 
In particular, when T → 0 and E0=2 the general result (4.13) reduces to

2 1n
1 2

2 2 2 2
1 1 2

sinh ( 1)(z, t) 2 sin
sinh

m t m t

n

m e m eLy n n zq
Ld L d n m m d

p
p

p

¥

=

--
= +

+ -å                       (4.17)

which describes the hydromagnetic channel flow of a rotating 
Oldroyd-B fluid generated by impulsive motion of the upper plate with 
a constant velocity. The result (4.17) in dimensionless form and in the 
limit M → 0; E → 0 coincides exactly with that of authors [7] while the 
result (4.16) in the limit T → 0 and E0=2V agrees completely with that 
of Soundalgekar [15].

The skin-friction on the plates z=0 and z=d are given by
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å

å
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2

(e e )]}
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  (4.19)

Above results in the limit k → 1 (viscous fluid) reduces to
2 2 n

0
2 2

0 10

2 2
2

2 2 2 2 2 * 2 2 2 2
0

4 ( 1)Re
2sinh (2 1) sinh

1 8 1 1[ Re ]e (M iE) t
(2m 1)

i mt
m
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m m
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= =
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=
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And

2 2

2

* *

2 2 *
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2 2 2 2 2 2 * 2 2 2
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(M 2 iE) t

coshcosh 4 Re
2sinh (2 1) sinh

1 8 1 1[ Re ]
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n
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S L L dL Ld e
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n
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e

b
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+
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+ + +

å

å å                         (4.21)

However, when T→0 and E0=2, (4.20) and (4.21) provide the 
hydromagnetic solutions in a rotating system which are given by

2 2 n 2 2
2

0 2 2 2 2 2
1

2 ( 1) (M iE) t
sinh n

L n nS e
Ld d L d n d

p p
p

¥

=

-
= + - + +

+å                            (4.22)

And
2 2 2 2

2 2 2 2 2
1

cosh 2 (M 2 iE) t
sinhd

n

L Ld n nS e
Ld d L d n d

p p
p

¥

=

= + - + +
+å           (4.23)

Finally, when E → 0, (4.22) and (4.23) provide the classical results as

2 2 n 2 2
2

0 2 2 2 2 2
1

2 ( 1) (M ) t
sinh n

M n nS e
Md d M d n d
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=
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= + - +
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n
d

d
n

d nS e
d d M d n
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p

¥ - + +

=

= +
+å                      (4.24)

II. Method of Laplace transforms

The problem, when solved by the method of Laplace transform 
technique, reduces to solving the transformed equation

2 2
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(1 )(s m iE) 0

1
d q s q
dz ks

+ + +
- =

+
                         (4.25)

subject to the conditions

0
20 0, tanh( )at z d

2
E sTq at z q
Ts

= = = =                (4.26)

The expression for the fluid velocity q(z,t) then obtained as
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Where 
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= = + =
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However, in the limit k → 1,the result (4.27) reduces to
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The result (4.28) is in excellent agreement with those of author [2] 
and authors [4] in the limit E → 0.

The corresponding expressions for skin-friction at the plates are
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where L =
2 ,M iE+  H=H1 + H2;
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The result (4.13) obtained by the method of Fourier analysis when 
compared with (4.27) obtained by the method of Laplace transforms 
reveals that the two results are exactly identical in respect of their steady 
and harmonic parts but the transient parts of them are of different 
forms. In order to show that these two results for the fluid velocity 
represent the same exact solution of the problem we incorporate the 
analysis given in the appendix.

Numerical Results and Discussions
The nature of pulses subjected on the upper plate produces both 

the developing (increasing) and the retarding (decreasing) flows in the 
fluid. To investigate the effects of various flow parameters on the fluid 
velocity corresponding to developing flow at t=0.5 and the retarding 
flow at t=1.75, the exact solution (4.13) is evaluated for the cases E=0, 
E=0.1 and E=1.0 when T=1. The non-zero values of flow parameters 
are chosen arbitrarily within their range of validity. The changing 
nature of the velocity components are incorporated in Figures 2 and 
4(a,b) to 6(a,b) for different values of the fluid elasticity k, the magnetic 
field M and the rotation E.



Citation: Ghosh S (2015) On Hydromagnetic Channel Flow of an Oldroyd-B Fluid Induced by Tooth Pulses in a Rotating System. J Appl Computat 
Math 4: 211. doi:10.4172/2168-9679.1000211

Page 5 of 8

Volume 4 • Issue 2 • 1000211
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

It is observed from Figure 3 that in absence of rotation (E=0) and for 
fixed values of the magnetic field M, the decrease in elastic parameter 
k decreases the fluid velocity u=E0 when the flow is developing 
and increases the same when the flow is retarding. Such a result is 
expected because the fluid is more and more viscoelastic for smaller 
and smaller values of k with k=1 representing the clean viscous fluid 
and the viscoelastic fluids neither grow nor decay as quickly as clean 
viscous fluids. It is further noticed that the effect of k on u=E0 whether 
decreasing or increasing enhances with the increase of the magnetic 
field although the magnetic field has an overall damping effect on the 
flow for fixed values of k. As a result the effect of k persists even when 
the steady state is attained (eqn.(4.14)).

However, in presence of rotation, the fluid velocity component 
u=E0 varies in a manner similar to that of non-rotating case excepting 
a significant diminution in its magnitude with the increase of rotation 
for all values of k and M when the flow is developing. On the contrary, 
exactly reverse effect is found when the flow is retarding. On the other 
hand, the increase in magnetic field continues to produce its damping 
effect on all kinds of flow in presence of rotation and the elasticity k of 
the fluid. The above findings are exhibited in Figures 4a and 5a. More 
specifically, for fixed values of M,k,T, the decreasing and increasing 
effects of rotation E on the component of fluid velocity u=E0 respectively 
for the increasing and decreasing motion is shown in Figure 6a.

It is noticed that the lateral component of fluid velocity v=E0 appears 
in a contained fluid only in presence of rotation. In the developing flow, 
the magnitude of v=E0 increases with the increase of rotation E and the 
elasticity k but decreases with the increase of the magnetic field M. A 
reverse effect with respect to elastic parameter k is found when the flow 

is retarding. The variation of fluid velocity component v=E0 for different 
values of flow parameters and time is illustrated in Figures 4b and 5b 
while the increasing effects of rotation E for fixed values of (M,k,T) on 
the magnitude of v=E0 both for the increasing and decreasing motions 
are presented in Figure 6b.

To investigate the effects of various flow parameters on the 
components of skin-friction on the plates, the results (4.18) and (4.19) 

Figure 2: Tooth pulses.

Figure 3: Fluid velocity component u/E0for different values of (t, M, k) in a 
non-rotating system (E=0) when T=1.0, d=1. 

Figure 4a: Fluid velocity component u/E0for different values of (t, M, k) in a 
rotating system (E=0.1) when T =1.0, d=1. 

 

Figure 4b: Fluid velocity component u/E0for different values of (t, M, k) in a 
rotating system (E=0.1) when T =1.0, d=1.

 

Figure 5a: Fluid velocity component u/E0for different values of (t, M, k) in a 
rotating system (E=1.0) when T =1.0, d=1. 
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are evaluated numerically for the case E=1.0 when T=1.0 and d=1. The 
results are presented in Figures 7a to 10b. It is observed from Figures 
7a and 8a that the longitudinal component of skin-friction on both 
the plates fluctuate in a manner similar to that of pulses imparted in 
the fluid. On the lower plate, the longitudinal component of skin-
friction decreases with the decrease of the elasticity k for all values of 

the magnetic field M when the flow is developing but a reverse effect 
is found when the flow is retarding. On the contrary, the magnitude 
of the longitudinal component of the skin-friction at the upper plate 
although decreases with decrease of the elasticity k but increases with 
the increase of the magnetic field M when the flow is developing and a 

 

Figure 5b: Fluid velocity component u/E0for different values of (t, M, k) in a 
rotating system (E=1.0) when T =1.0, d=1. 

 

Figure 6a: Fluid velocity component u/E0for different values of (E,t) when 
T=1.0, M=0.5, k=0.4, d=1. 

 

Figure 6b: Fluid velocity component u/E0for different values of (E,t) when T 
=1.0, M= 0.5, k= 0.4, d=1. 

Figure 7a: Longitudinal component of skin friction S0/E0at the lower plate for 
different values of (M, k) when T =1.0, d=1. 

Figure 7b: Lateral component of skin friction S0/E0at the lower plate for 
different values of (M, k) when T =1.0, d=1. 

Figure 8a: Longitudinal component of skin friction Sd/E0at the upper plate for 
different values of (M, k) when T =1.0, d=1. 
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reverse effect with respect to the elasticity k is found for all values of the 
magnetic field M when the flow is retarding. The curves corresponding 
to M=0.0 and k=1.0 in Figures 7a and 8a represent the quantitative 
response of the longitudinal component of skin-friction respectively 
on the lower and the upper plate for the case of classical viscous fluid.

It is further noticed from Figure 9a that for fixed values of M,k,T, 
the longitudinal components of the skin-friction at the lower plate 
decrease with the increase of rotation E when the flow is developing 
but increase with E when the flow is retarding. However, a reverse 
effect is found at the upper plate which is evident from Figure 10a. On 
the other hand, the magnitude of lateral components of skin-frictions 
on both the plates increase with the increase of the elastic parameter 
k for all values of the magnetic field M as evidenced from Figures 7b 
and 8b. However, the lateral component of skin-frictions are negative 
at the lower plate and positive at the upper plate for all values of M 
and k. Finally, for fixed values of (M,k,T) the magnitude of the lateral 
component skin-frictions on both the plates increases with the increase 
of rotation E as exhibited in Figures 9b and 10b.

Conclusion
An analysis concerning the hydromagnetic channel flow of an 

Olroyd-B fluid induced by tooth pulses in a rotating system has been 

Figure 8b: Lateral component of skin friction Sd/E0 at the upper plate for 
different values of (M, k) when T =1.0, d=1. 

Figure 9a: Variation of Longitudinal component of skin friction S0/E0 at the 
lower plate with rotation (E) for fixed values of (T, M, k) and d=1. 

Figure 9b: Variation of Lateral component of skin friction S0/E0at the lower 
plate with rotation (E) for fixed values of (T, M, k) and d=1. 

Figure 10a: Variation of Longitudinal component of skin friction Sd/E0at the 
upper plate with rotation (E) for fixed values of (T, M, k) and d=1. 

Figure 10b: Variation of Lateral component of skin friction Sd/E0at the upper 
plate with rotation (E) for fixed values of (T, M, k) and d=1. 

presented in this paper. Both the method of Fourier analysis and the 
method of Laplace transforms are adopted to arrive at the solution 
of the problem separately. It is shown that both the methods provide 
the same exact solution of the problem. The quantitative analysis of 
the results are incorporated following the solutions obtained by the 
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method of Fourier analysis not due to compulsion. One can also use 
the solutions obtained by the method of Laplace transforms to explain 
the results quantitatively. The present analysis seems to be useful in 
various branches of science and technology with particular reference to 
geophysical and physiological fluid flow situations.
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