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Abstract

A space X which carries topology 7 is a door space if each subset of X is either open or closed. In this paper a
characterization of the principle door and a formula for the number of the door topologies on a set X of n points are
given. Some properties of the principal connected topologies on non-empty set X are discussed and the minimal
7,-topologies on X are also characterized. Finally a few results about the number of the chain topologies on X are

proved.
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Introduction

Frohlich [1] defined the principal ultratopology on a set X to be the
topology on X which is strictly weaker than the discrete topology D on
X and which is of the form D =E uU(y), where U(y) is the principal
ultra filter generated by {y} and E_is the excluding point topology
on X with the excluding point z. In fact D, =E P, where P is the
particular point topology on X with the particular point y. Then, D _is
the principal ultratopology on X in which each open set containing z
contains y. Steiner [2] defined the minimal open set at a pointx € Xina
space X which carries topology 7 to be the open set U, € 7 such thatx e
U, and is contained in each open set containing x. Steiner also defined
the principal topology 7 on X to be the topology with the minimal basis
consists only of minimal open sets at the points of X, proved that 7
is the principal if and only if arbitrary intersections of open sets are
open and characterized the door topologies on X. In Farrag and Sewisy
[3,4] and Farag and Abbas [5] described algorithms for construction
and enumeration all strictly weaker topologies than a given topology
on a set X of n points, all topologies and all hyperconnected, all door,
connected and regular topologies on X .

Door Principal Topologies

Let X be a space which carries topology 7, Q and S be two any
properties of topologies on X. Then, 7, is:

(1) An E-topology on X if U{G € :GX}#X [4].
(2) A P-topology on X if N{G € :G¢}=¢ [4]

(3) An h-topology on X if GnH¢ for any G,H € 7\{¢}. This is
the irreducible [6] as well as is the hyperconnected [2]. If 7 is finite
then, h and P are equivalent but in general this is not true. For let,
t={N,4,N\{1,2,3,...,n}:ne N} where N is the set of the positive
integers then, (N,T) is h but not P.

(4) An E'-topology on X if there is a point p € X such that E
where, E_ is the excluding point topology in X.

(5) An P'-topology on X if there is a point p € X such that Pz,
where P_is the particular point topology on X with the particular point
peX

(6) An S(k)-topology on X if there are k singleton members of 7.
(7) A QvS-topology if it is Q or S.

(8) A QAS -topology if it is both Q and S.
(9) A Q\S -topology if it is Q and not S.

Throughout this paper |U| denote the cardinality of the set U. A
finite set of n points is denoted by X and N, N (Q) denote the number
of all topologies and the number of the Q -topologies on X . Then:

n-1

(1) N(E)=N,(P)=>,
topologies on X, [4].

"¢, N, where N, is the number of all

(2) N(E°AE)=N,(P°AP)=n and N (E"AP")=n(n-1)+1.
Proposition 2.1

Let X be a set of n points then,

NAEAP)=Y" "eN(P) =31 "aN(E) where Ny(E)=N,(P)=1.

Proof. Let AX besuch that|A|=k,1<kn.If ris an E-topology on X \A
then 7(4)={GuUA:Ger}U{g} isanondiscrete EP -topology on X . If
A=X then{¢}isnotatopologyon X while 7(4)={X, Vg U{g} ={X,.4}.
Clearly there are " ¢, nonempty subsets of X, with the cardinality k and so,

n n n-1,
N,(EAnP)= Zkzl N, (E)= Zkzo N (E)-
Secondly; if 7 is a p-topology on X \A then 7(4)={X,,G:Gez} is
an EAP-topology on X . If A=X then {¢} is not a topology on X while
T(A)={X,.4} - Similarly,

NAEAP)=31 "N, (P) =21 "¢, N,(P)
Example 2.2: By using Example 3 [4] then,

N(EAP)-NJ(E\P)=2111-1190= 921—2 *¢,N(E) -

k=0
Remark 2.3: An E'-nondiscrete topology 7 on a nonempty set

X may be principal or nonprincipal. For, if X is an infinite set then,

7={G c X : p ¢ G or X\Gis finite} is a nonprincipal E"-topology on X.
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Remark 2.4: A principal E'\E -topological space is not connected.

Remark 2.5: The P-topologies on a set X are only principal
since there is a point p € X such that {x}" ={p x}er and either
{x}" ={p,xjer or (x}"={x}er-

Remark 2.6: A principal topology 7 on a set X is E" if and only if 7,
is P" where, 7, ={X\G:Ger}.

Remark 2.7: If § is the minimal basis for a P’-topology on a non-
empty set X. Then, |U| is 1 or 2 for each U € f3 and there is at least a
point p € X such that N{U € B:|U |=2} = {p} e . So, a P'\P -topological
space (X,7) is not connected because G=u{UeB:|U|=2} and
X\G=u{U € B: Pe U} are two nonempty members of .

Theorem 2.8: A principal topological space (X,7) is door if and only
ifitisE'P".

Proof. Clearly if 7 is an E'P"-topology on a set X then it is door.
Conversely; let (X,7) be a door principal nonultra topological space and

U, be the minimal open set at the point x for each x € X. Then, y € U \{x}
and X\{y} € implies that U_c X \{y} which implies that y € X\ {y}

which is impossible. Hence, X \{y} &z which implies that {y} € 7
because (X,7) is a door space. Let p € X be such that |U | > 3 then, x

€ X\{p} and |U > 2 implies that there is a point ¢ e U_\{x} . Hence
{p,tt ¢ v because U, Z {p,t} because |Up| >3.If X\{p,t} ez then
U, c X \{p,t} which implies that ¢ € X\ {p,} which is impossible.
Hence X \{p,t} ¢ 7 which contradicts the assumption that (X,7) is
door. Therefore, U ={x} for each x € X'\ {p} which implies that (X,7)
is E". If x € X such that |U |=2, then, there is a point p €U, \{x} such
that {p} € 7. If x,y € X are such that Uz, and |U, | U, [=2. Then,
there are two points ¢ € U, \ {x} and U, Z {x,r}.If g#r then {x,r} T
because U, ¢ {x,r} and X \{x,r}er implies that U, c X \{x,r}
implies that e X'\ {x,r} which is impossible. Hence, X\ {(x,r}er
which contradicts the assumption that (X,7) is door. This contradiction
implies that g=r=p. So, |Ux| is either 1 or 2 for each x € X and such that

U, U, |=2 and U, #U, implies that U, AU, ={p} thisisifand
onlyif N{U, e B:|U, [=2}={p}. So, (X,7) is P".

Corollary 2.9: A principal door topological space (X,7) is connected
ifand only if it is E,vP, where p € X.

Remark 2.10: In previous study [7] proved that a door topological
space (X,7) is T,

Clearly both the principal E" and P'-topological spaces are T,. It
is T, if T is nonprincipal E" in which there is a point p € X such that
{p}" ¢t and {p}" ={p}.

Theorem 2.11: Let X be a set
N(E)=N,(P)=n2"" -1)+1>

of n points then,

Proof. Let, 5 be the minimal basis for a nondiscrete E’-topology on
X . Then, 7is S(n—1) and so there is a point p € X such that {p}¢f and
the member U € § which is the minimal open set at the point p is such
that |U| 2 2.If |U |= k > 2, then U can be the minimal open set at each
of its points i.e. p can be any point of U. Accordingly, we may have k
distinct minimal bases f’s for E'-topologies on X . Since the number
of such subsets U’s of X is "c, then the number of the corresponding
distinct minimal bases for E'-topologies on X is k" ¢ Therefore,

2<k<n impliesthat: N,(E)=2 k "¢ +1=n@ -1)+1-

Secondly; let 8 be the minimal basis for a nondiscrete P*-topology
on X . Then there is a point p € X such that {p} € fand |U| is 1 or 2 for

each U € fsuchthat nU e g |U=2}={p}.If T={U ep:|U|=2} and
[T |=k—121 then TU{{p}}={{p}.{p.x}:{p.%:}sipsx )} B Clearly
any of the points X;,X,,...,X,_; can take the position of the point p and
we may have k distinct minimal bases for P'-topology on X . Since the
number of the subsets {p,x,,X,,....%; } of X is "c,, then the number
of the corresponding minimal bases for P'-topology on X, is k "¢, .
Therefore, 7 < f <, implies that:

N, (PY=2" k"¢, +1=nQ"" =1)+1-

Clearly, N (E*)=N,(P") and as a direct consequence of Theorems
(2.7) and (2.10) we have Theorem (2.12).

Theorem 2.12: The number of all door topologies on X is:

N, (DO)=n2" —n—1)+1-
Proof. N,(DO)=N,(E'v P )=N,(E")+N,(P')-N,(E°AP").

Connected Principal-Topology

Let (X,7) be a principle topological space, 8 be the minimal basis
for Tand let Tcf be such that N{B: B e T} ¢ and such that H € S\T
implies that H N[N{B:BeT}]=¢.If "{B:BeT}=V thenVetisa
minimal open set at each of its points since x € V implies that U e T

andif G € Tsuch thatx € G, then ¥ cU, c G . The family ¥/, :AeAjcr
of such minimal open sets in non-empty and is a pair wise disjoints
family of members of 7. Clearly,

(1) if "{G:GeT}=¢ for each Tcf then each member of f is
minimal at each of its points and by (X,7) is regular [5].

(2) if "{B:BeT}#¢ for each Tcf then there exists A € A
such that N{Be f:B#¢}=V which is the unique minimal open
set at each of its points and (X,7) is P. If 4, =V{U,:V, cU.}. Then,
U :U €T} # ¢ for, if 7is an E-topology on X then A =X for each A
€ A. Otherwise let, x € X, T3 be such that U e Tand MU :UeT}#¢
such that G € B\T implies that GN[NU:UeT}]=¢.

If "{U:UeT}=U" then UcUx and there is a point A € A such
that U=V, which implies that x € A.

Theorem 3.1: Letr be a principal topology on a set X,
{V,: A € A} ct be the family of all open sets each of which is minimal
at each of its points and 4, =U{U, :V, cU,} foreach A € A. If:

(a) V#X, then (X,7) is connected implies that A=V, for any A € A.

(b) (X,7) is connected then for each A € A there exists 4 € A such
that 4, N4, #¢.

(c) 4, A, #¢ for each two distinct points A, 4 € A then (X,7) is
connected but not conversely.

Proof. (a): Let A € A be any point such that V=X and x € X be any
point. Then t eV, N"U, implies that U_nV, # ¢ which implies by the
definition of A, that x € A, and if A=V, then x € V, in fact U=V,.
Therefore U, NV, # ¢ implies that x € V and the contrapositive of this
result is x e X \V, implies that U, NV, = ¢ implies that X \V, e
implies that (X,7) is not connected. Therefore (X,7) is connected implies
that A, V.

(b) Let, A € A be any point such that 4, N4, =¢ for each point
¢ € A. Then A and X\A, are open sets which implies that (X,) is not
connected. The contrapositive of this result, (X,) is connected implies
that for each A € Athereisy € Asuchthat 4, N4, #¢.
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(c) Let (X,7) be disconnected. Then there is a subset G of X such
that G,X\G er\{X,¢} . Then there is a point x € G which implies

that UcG and U{4, : L € A} = X implies that there is a point A € A

such that x € A which implies by the definition of A that there is a
point t € X such that VcU, and x € U, which implies that U cU,. Ift €

X\G then U, ¢ X\ G which implies that 7, cU, =G, a contradiction.
Hence t € Gwhich implies that V, cU, = G .If ¥y € 4, N (X \ G) then
y € A, implies that there is a point p € X such that yeU .V, cU,
and peX\G implies that V,cU,cX\G implies that
V, c GN(X\G) whilep e Gimplies that ¥ €U, © G which implies
that y € GN(X\G). Therefore 4, N(X \G)=¢ which implies that

AcG. Similarly there is a point ¢ € A such that 4, € X\ G . Hence
(X,7) is not connected implies that there are two points 1,z e A such

that 4, n4, = ¢ and the contrapositive of this result is if 4, "4, # ¢
for each two distinct points A,z € A then (X,7) is connected.
Conversely let, X={1,2,3,4,5,6,7} and B={{1}, {1,2,3}, {3}, {3.4,5},
{5}, {5,6,7,}, {7}} be the minimal basis for a topology 7 on X. Then,
(X,7) is connected while A({1})={1,2,3} and A({7})={5,6,7} are
disjoint.
Remark 3.2: If we denote the connected topologies on a set X by

CTD-topologies. Then, the number of the connected topologies on a
set X of n points is:

N,(CTD)=N,[(Pv E)v CTD\(Pv E)]=2N (E)\N,(P A E)+ N,(CTD\(Pv E)) -

Theorem 3.3: A principal T -topological space (X,7) is minimal T
if and only if the minimal basis 8 for 7 is totally ordered by the inclusion
operator.

Proof. Let, (X,7) be a T,-topological space such that the minimal
basis f3 is totally ordered by the inclusion operator and 7" be a strictly
weaker topology on X that 7. Then, by Theorem (2.8) [3] there are two
distinct points y,ze X such that 7" =7, =7ND,_ such that ye U,
Then, z¢ U because f is totally ordered by the inclusion operator which
implies that U, =U, LU, so, U, is the minimal open set at both the
points y and z in T, which implies that (X,yz) is not T,. Therefore, (X,7)
is minimal T,

Conversely; let (X,7) be the minimal T;-topological space, ¥,z € X
be two distinct points such that yg U and ye U . If 7. =7 "D, and G
€ 7, such that z € G then,

(1) yU, implies that 77,
(2) y,zeU, VU, implies that U LU ez,
3G €7, implies that G € T and

(4) z € G implies that y € G because G € D, which implies that
U,uU,cG. Hence, U,uU, ez, is the minimal open set at
z. If xeX\{y,z} then U =U, LU, implies that either U=U,
or U=U, which contradicts the assumption that y¢U, and z¢U,
Hence, U #U, U, for each xe X\{y,z} and zU implies that
Uy ;th VU, . Then, (X,Tﬂ) is T, which contradicts that (X,7) is
minimal T;. This contradiction because of the incorrect assumption
that ygU, and z¢ U . Therefore, either y € U, or z € U, for any two

distinct points ¥,z € X . This completes the proof.
Corollary 3.4: Let, (X,7) be T, then (X,Tyz) is T, if and only if yg U,
and z¢ U, for any two distinct points ¥,z € X' where 27 _=7nD, .

Proof. As a direct consequence of the proof of Theorem(3.2) yg U,
and z¢ Uy implies that (X,yz) is T, for any two distinct points y,z € X

Conversely; if (X,Tyz) is T, then, Uy U ) WU, which implies that
zU and y € U, implies that 7= which implies that y¢ U..

Corollary 3.5: Let, (X ,7) be a minimal T -topological space. then,
there is a point p € X such that 7={4,{p}.{p.x},{p,x.1},...X,} . So, the
number of the minimal To—topologies onX isN, (min. T0)=n!.

In the chain topology on a set X is the topology whose members
are completely ordered by the inclusion operator. Clearly the minimal

T,-topologies on X are chain topologies and the chain topologies on
X are connected [8]. Stephen [8] proved that the number of all chain
topologies on a set X is: N,(CH(k))= z}:ﬂ "¢, N,(CH).Where CH-
topology on X is a chain topology on X and N,(CH)=1.

The members of a chain topology 7 on X are such that:
$cG cGc..cG cX, in which G, is nonempty and either
singleton or nonsingleton. Accordingly 7 is either S(1) or S(0) and so
N,(CH)=N,(S(0)CH)+N,(S()CH) - If |G |=k and N,(CH) then Tis
said to be CH(k)-topology on X and the number of the chain topologies
in such case is denoted by N,(CH). So, N,(CH(1))=N,(S(1)CH),

N,(SO)CH)=Y"" N,(CH(k)) and N,(CH)=3"" N,(CH()) .

k=l n

Theorem 3.6: Let X, be a set of n points then:

(1) N (CH(k))="¢c,N, ,(CH),

n-k

() N,(CH)= 3" "¢,N,(CH)

(3) N,(CH(k)) =" ¢ N, (CH(k)) and

n=2"

(4) N,(S()CH)=""""¢,N,(CH) where
Ny(CH)=1-

Proof: Let AcX, be such that |4|=k,1<k<n.If Tis a chain
topology on X\A then, r(4)={Gud:Ger}u{g} is an CH(k)
-topology on X . Clearly there are "¢, distinct nonempty subset of X
with cardinality k and therefore:

(1) N,(CH(k)) =" ¢,N,_(CH),

n—-1"

@) N,(CH) =" 'e,N, (CH)=Y"""¢,N,(CH)

Let k € N and AcX be such that 1<k <n-1 and |4|=r>k.
If 7 is a CH(k)-topology on A then 7(4)={X,,G:Ger} isa CH(k)

-topology on X . If r=n then AcX, and if 7 is a CH(k)-topology on A
then 7(A)=1,

k=

(3) N,(CH(k))=Z2"}"c,N, (CH(k))

r=k Cr
Clearly if k>n>0 then, N,(CH(k))=0 and so N (CH(1))=0.
Also, if k=n then A=X which implies that 7={X ,¢} which implies that
t(4)={X,,¢} whichimplies that N,(CH(n))=1. Therefore, using (1)

n?

(4) N,(SOCH) =" N,(CH®) =" "¢,N, (CH) =" "c,N,(CH).

k=0
Conclusion

It is show that we are interested in finding the characterization of
the principle door and a formula for the number of the door topologies
on a set X of n points are given. Some properties of the principal
connected topologies on a nonempty set X are discussed and the
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minimal T, -topologies on X are also characterized. Also, a few results
about the number of the chain topologies on X, are given.
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