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Abstract
A space X which carries topology τ is a door space if each subset of X is either open or closed. In this paper a 
characterization of the principle door and a formula for the number of the door topologies on a set Xn of n points are 
given. Some properties of the principal connected topologies on non-empty set X are discussed and the minimal 
τ0-topologies on X are also characterized. Finally a few results about the number of the chain topologies on Xn are 
proved.
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Introduction
Frohlich [1] defined the principal ultratopology on a set X to be the 

topology on X which is strictly weaker than the discrete topology D on 
X and which is of the form Dyz=Ez∪U(y), where U(y) is the principal 
ultra filter generated by {y} and Ez is the excluding point topology 
on X with the excluding point z. In fact Dyz=Ez∪Py, where Py is the 
particular point topology on X with the particular point y. Then, Dyz is 
the principal ultratopology on X in which each open set containing z 
contains y. Steiner [2] defined the minimal open set at a point x ∈ X in a 
space X which carries topology τ to be the open set Ux ∈ τ such that x ∈ 
Ux and is contained in each open set containing x. Steiner also defined 
the principal topology τ on X to be the topology with the minimal basis 
consists only of minimal open sets at the points of X, proved that τ 
is the principal if and only if arbitrary intersections of open sets are 
open and characterized the door topologies on X. In Farrag and Sewisy 
[3,4] and Farag and Abbas [5] described algorithms for construction 
and enumeration all strictly weaker topologies than a given topology 
on a set Xn of n points, all topologies and all hyperconnected, all door, 
connected and regular topologies on Xn.

Door Principal Topologies
Let X be a space which carries topology τ, Q and S be two any 

properties of topologies on X. Then, τ, is:

(1) An E-topology on X if ∪{G ∈ :GX}≠X [4].

(2) A P-topology on X if ∩{G ∈ :Gφ}≠φ [4].

(3) An h-topology on X if G∩Hφ for any G,H ∈ τ\{φ}. This is 
the irreducible [6] as well as is the hyperconnected [2]. If τ is finite 
then, h and P are equivalent but in general this is not true. For let, 

= { , , \{1,2,3,..., }: }N N n n Nτ φ ∈  where N is the set of the positive 
integers then, (N,τ) is h but not P.

(4) An E*-topology on X if there is a point p ∈ X such that Epτ 
where, Ep is the excluding point topology in X.

(5) An P*-topology on X if there is a point p ∈ X such that Ppτ, 
where Pp is the particular point topology on X with the particular point 
p ∈ X.

(6) An S(k)-topology on X if there are k singleton members of τ.

(7) A Q∨S-topology if it is Q or S.

(8) A Q∧S -topology if it is both Q and S.

(9) A Q\S -topology if it is Q and not S.

Throughout this paper |U| denote the cardinality of the set U. A 
finite set of n points is denoted by Xn and Nn, Nn(Q) denote the number 
of all topologies and the number of the Q -topologies on Xn. Then:

(1) 1

=0
( ) = ( ) = n

n n k
N E N P −∑  n

k kc N  where Nk is the number of all 

topologies on Xk [4].

(2) ( ) = ( ) =n nN E E N P P n∗ ∗∧ ∧  and ( ) = ( 1) 1nN E P n n∗ ∗∧ − + .

Proposition 2.1

Let Xn be a set of n points then,
1

=0
( ) = n

n k
N E P −

∧ ∑  1

=0
( ) = nn

k k k
c N P −∑  ( )n

k kc N E  where 0 0( ) = ( ) = 1N E N P .

Proof. Let AXn be such that |A|=k,1≤kn. If τ is an E-topology on Xn\A 
then ( ) = { : } { }A G A Gτ τ φ∪ ∈ ∪  is a nondiscrete EP -topology on Xn. If 
A=Xn then {φ} is not a topology on Xn while ( ) = { } { } = { , }.n nA X Xτ φ φ φ∪ ∪  
Clearly there are n

kc  nonempty subsets of Xn with the cardinality k and so,

=1
( ) = n

n k
N E P∧ ∑  1

=0
( ) = nn

k n k k
c N E −

− ∑  ( )n
k kc N E .

Secondly; if τ is a p-topology on Xn\A then ( ) = { , : }nA X G Gτ τ∈  is 
an E∧P-topology on Xn. If A=Xn then {φ} is not a topology on Xn while 

( ) = { , }nA Xτ φ . Similarly,

1

=1 =0
( ) = ( ) = ( )n nn n

n k n k k kk k
N E P c N P c N P−

−∧ ∑ ∑  

Example 2.2: By using Example 3 [4] then,
4

5 5 =0
( ) ( \ ) = 2111 1190 = 921 =

k
N E P N E P∧ − − ∑ 5 ( )k kc N E .

Remark 2.3: An E*-nondiscrete topology τ on a nonempty set 
X may be principal or nonprincipal. For, if X is an infinite set then, 

= { :G X p Gτ ⊂ ∉  or X\G is finite} is a nonprincipal E*-topology on X.
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Remark 2.4: A principal E*\E -topological space is not connected.

Remark 2.5: The P*-topologies on a set X are only principal 
since there is a point p ∈ X such that { } = { , }x p x τ∧ ∈  and either 
{ } = { , }x p x τ∧ ∈  or { } = { }x x τ∧ ∈ .

Remark 2.6: A principal topology τ on a set X is E* if and only if τc 
is P* where, = { \ : }c X G Gτ τ∈ .

Remark 2.7: If β is the minimal basis for a P*-topology on a non-
empty set X. Then, |U| is 1 or 2 for each U ∈ β and there is at least a 
point p ∈ X such that { :| |= 2} = { }U U pβ τ∩ ∈ ∈ . So, a P*\P -topological 
space (X,τ) is not connected because = { :| |= 2}G U Uβ∪ ∈  and 

\ = { : }X G U P Uβ∪ ∈ ∉  are two nonempty members of τ.

Theorem 2.8: A principal topological space (X,τ) is door if and only 
if it is E*P*.

Proof. Clearly if τ is an E*P*-topology on a set X then it is door. 
Conversely; let (X,τ) be a door principal nonultra topological space and 
Ux be the minimal open set at the point x for each x ∈ X. Then, y ∈ Ux\{x} 
and X\{y} ∈  implies that \ { }xU X y⊂  which implies that \ { }y X y∈  
which is impossible. Hence, \ { }X y τ∉  which implies that {y} ∈ τ 
because (X,τ) is a door space. Let p ∈ X be such that |Up| ≥ 3 then, x 
∈ X\{p} and |Ux| ≥ 2 implies that there is a point \ { }xt U x∈ . Hence 
{ , }p t τ∉  because { , }pU p t  because |Up| ≥ 3. If \ { , }X p t τ∈  then 

\ { , }xU X p t⊂  which implies that \ { , }t X p t∈  which is impossible. 
Hence \ { , }X p t τ∉  which contradicts the assumption that (X,τ) is 
door. Therefore, Ux={x} for each \ { }x X p∈  which implies that (X,τ) 
is E*. If x ∈ X such that |Ux|=2, then, there is a point \ { }xp U x∈  such 
that {p} ∈ τ. If x,y ∈ X are such that Ux≠Uy and | |=| |= 2x yU U . Then, 
there are two points \ { }xq U x∈  and { , }xU x r . If q≠r then {x,r}∉τ 
because { , }xU x r  and \ { , }X x r τ∈  implies that \ { , }yU X x r⊂  
implies that \ { , }r X x r∈  which is impossible. Hence, \ { , }X x r τ∉  
which contradicts the assumption that (X,τ) is door. This contradiction 
implies that q=r=p. So, |Ux| is either 1 or 2 for each x ∈ X and such that 
| |=| |= 2x yU U  and x yU U≠  implies that = { }x yU U p∩  this is if and 
only if { :| |= 2} = { }x xU U pβ∩ ∈ . So, (X,τ) is P*.

Corollary 2.9: A principal door topological space (X,τ) is connected 
if and only if it is EP∨PP where p ∈ X.

Remark 2.10: In previous study [7] proved that a door topological 
space (X,τ) is T0.

Clearly both the principal E* and P*-topological spaces are T0. It 
is T4 if τ is nonprincipal E* in which there is a point p ∈ X such that 
{ }p τ∧ ∉  and { } = { }p p∧ .

Theorem 2.11: Let Xn be a set of n points then, 
1( ) = ( ) = (2 1) 1n

n nN E N P n∗ ∗ − − + ,

Proof. Let, β be the minimal basis for a nondiscrete E*-topology on 
Xn. Then, τ is S(n−1) and so there is a point p ∈ Xn such that {p}∉β and 
the member U ∈ β which is the minimal open set at the point p is such 
that |U| ≥ 2. If | |= 2U k ≥ , then U can be the minimal open set at each 
of its points i.e. p can be any point of U. Accordingly, we may have k 
distinct minimal bases β’s for E*-topologies on Xn. Since the number 
of such subsets U’s of Xn is n

kc  then the number of the corresponding 
distinct minimal bases for E*-topologies on Xn is k n

kc . Therefore, 
2 k n≤ ≤  implies that:

=2
( ) = n

n k
N E k∗ ∑  11 = (2 1) 1n n

kc n −+ − + .

Secondly; let β be the minimal basis for a nondiscrete P*-topology 
on Xn. Then there is a point p ∈ Xn such that {p} ∈ β and |U| is 1 or 2 for 

each U ∈ β such that { :| |= 2} = { }U U pβ∩ ∈ . If = { :| |= 2}T U Uβ∈  and 
| |= 1 1T k − ≥  then 1 2 1{{ }} = {{ },{ , },{ , },...,{ , }}kT p p p x p x p x β−∪ ⊂ . Clearly 
any of the points 1 2 1, ,..., kx x x −  can take the position of the point p and 
we may have k distinct minimal bases for P*-topology on Xn. Since the 
number of the subsets 1 2 1{ , , ,..., }kp x x x −  of Xn is n

kc , then the number 
of the corresponding minimal bases for P*-topology on Xn is k n

kc . 
Therefore, 2 k n≤ ≤  implies that:

=2
( ) = n

n k
N P∗ ∑  k  11 = (2 1) 1n n

kc n −+ − + .

Clearly, ( ) = ( )n nN E N P∗ ∗  and as a direct consequence of Theorems 
(2.7) and (2.10) we have Theorem (2.12).

Theorem 2.12: The number of all door topologies on Xn is:

( ) = (2 1) 1n
nN DO n n− − + .

Proof. ( ) = ( ) = ( ) ( ) ( )n n n n nN DO N E P N E N P N E P∗ ∗ ∗ ∗ ∗ ∗∨ + − ∧ .

Connected Principal-Topology
Let (X,τ) be a principle topological space, β be the minimal basis 

for τ and let T⊂β be such that { : }B B T φ∩ ∈ ≠  and such that H ∈ β\T 
implies that [ { : }] =H B B T φ∩ ∩ ∈ . If { : } =B B T V∩ ∈  then V ∈ τ is a 
minimal open set at each of its points since x ∈ V implies that Ux ∈ T 
and if G ∈ τ such that x ∈ G, then xV U G⊂ ⊂ . The family { : }Vλ λ τ∈ ∆ ⊂  
of such minimal open sets in non-empty and is a pair wise disjoints 
family of members of τ. Clearly,

(1) if { : } =G G T φ∩ ∈  for each T⊂β then each member of β is 
minimal at each of its points and by (X,τ) is regular [5].

(2) if { : }B B T φ∩ ∈ ≠  for each T⊂β then there exists λ ∈ ∆ 
such that { : } =B B Vβ φ∩ ∈ ≠  which is the unique minimal open 
set at each of its points and (X,τ) is P. If = { : }x xA U V Uλ λ∪ ⊂ . Then, 

{ : }U U T φ∩ ∈ ≠  for, if τ is an E-topology on X then Aλ=X for each λ 
∈ ∆. Otherwise let, x ∈ X, Tβ be such that Ux ∈ T and { : }U U T φ∩ ∈ ≠  
such that \G Tβ∈  implies that [ { : }] =G U U T φ∩ ∩ ∈ .

If { : } =U U T U ∗∩ ∈  then U*⊂Ux and there is a point λ ∈ ∆ such 
that U*=Vλ which implies that x ∈ A.

Theorem 3.1: Letτ be a principal topology on a set X, 
{ : }Vλ λ τ∈ ∆ ⊂  be the family of all open sets each of which is minimal 
at each of its points and = { : }x xA U V Uλ λ∪ ⊂  for each λ ∈ ∆. If:

(a) V≠X, then (X,τ) is connected implies that A≠Vλ for any λ ∈ ∆.

(b) (X,τ) is connected then for each λ ∈ ∆ there exists µ ∈ ∆ such 
that A Aλ µ φ∩ ≠ .

(c) A Aλ µ φ∩ ≠  for each two distinct points λ, µ ∈ ∆ then (X,τ) is 
connected but not conversely.

Proof. (a): Let λ ∈ ∆ be any point such that V≠X and x ∈ X be any 
point. Then xt V Uλ∈ ∩  implies that xU Vλ φ∩ ≠  which implies by the 
definition of Aλ that x ∈ Aλ and if Aλ=Vλ, then x ∈ Vλ in fact Ux=Vλ. 
Therefore xU Vλ φ∩ ≠  implies that x ∈ V and the contrapositive of this 
result is \x X Vλ∈  implies that =xU Vλ φ∩  implies that \X Vλ τ∈  
implies that (X,τ) is not connected. Therefore (X,τ) is connected implies 
that Aλ Vλ.

(b) Let, λ ∈ ∆ be any point such that =A Aλ µ φ∩  for each point 
µ ∈ ∆. Then A and X\Aλ are open sets which implies that (X,) is not 
connected. The contrapositive of this result, (X,) is connected implies 
that for each λ ∈ ∆ there is µ ∈ ∆ such that A Aλ µ φ∩ ≠ .
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(c) Let (X,τ) be disconnected. Then there is a subset G of X such 
that , \ \ { , }G X G Xτ φ∈ . Then there is a point x ∈ G which implies 
that Ux⊂G and { : } =A Xλ λ∪ ∈ ∆  implies that there is a point λ ∈ ∆ 
such that x ∈ A which implies by the definition of A that there is a 
point t ∈ X such that V⊂Ut and x ∈ Ut which implies that Ux⊂Ut. If t ∈ 
X\G then \tU X G⊂  which implies that tV U Gλ ⊂ ⊂ , a contradiction. 
Hence t ∈ G which implies that tV U Gλ ⊂ ⊂ . If ( \ )y A X Gλ∈ ∩  then 
y ∈ Aλ implies that there is a point p ∈ X such that ,p py U V Uλ∈ ⊂  
and \p X G∈  implies that \PV U X Gλ ⊂ ⊂  implies that 

( \ )V G X Gλ ⊂ ∩  while p ∈ G implies that py U G∈ ⊂  which implies 
that ( \ )y G X G∈ ∩ . Therefore ( \ ) =A X Gλ φ∩  which implies that 
A⊂G. Similarly there is a point µ ∈ ∆ such that \A X Gµ ⊂ . Hence 
(X,τ) is not connected implies that there are two points ,λ µ ∈ ∆  such 
that =A Aλ µ φ∩  and the contrapositive of this result is if A Aλ µ φ∩ ≠  
for each two distinct points ,λ µ ∈ ∆  then (X,τ) is connected.

Conversely let, X={1,2,3,4,5,6,7} and  β={{1}, {1,2,3}, {3}, {3,4,5}, 
{5}, {5,6,7,}, {7}} be the minimal basis for a topology τ on X. Then, 
(X,τ) is connected while ({1}) = {1,2,3}A  and ({7}) = {5,6,7}A  are 
disjoint.

Remark 3.2: If we denote the connected topologies on a set X by 
CTD-topologies. Then, the number of the connected topologies on a 
set Xn of n points is:

( ) = [( ) \ ( )] = 2 ( ) \ ( ) ( \ ( ))n n n n nN CTD N P E CTD P E N E N P E N CTD P E∨ ∨ ∨ ∧ + ∨ .

Theorem 3.3: A principal T0-topological space (X,τ) is minimal T0 
if and only if the minimal basis β for τ is totally ordered by the inclusion 
operator.

Proof. Let, (X,τ) be a T0-topological space such that the minimal 
basis β is totally ordered by the inclusion operator and τ* be a strictly 
weaker topology on X that τ. Then, by Theorem (2.8) [3] there are two 
distinct points ,y z X∈  such that = =yz yzDτ τ τ∗ ∩  such that y∉Uz. 
Then, z∉Uy because β is totally ordered by the inclusion operator which 
implies that =y y zU U U∪  so, Uy is the minimal open set at both the 
points y and z in τyz which implies that (X,yz) is not T0. Therefore, (X,τ) 
is minimal T0.

Conversely; let (X,τ) be the minimal T0-topological space, ,y z X∈  
be two distinct points such that y∉Uz and y∉Uy. If =yz yzDτ τ ∩  and G 
∈ τyz such that z ∈ G then,

(1) yUz implies that τ≠τyz,

(2) , y zy z U U∈ ∪  implies that y z yzU U τ∪ ∈ ,

(3) G ∈τyz implies that G ∈ τ and

(4) z ∈ G implies that y ∈ G because G ∈ Dyz which implies that 

y zU U G∪ ⊂ . Hence, y z yzU U τ∪ ∈  is the minimal open set at 
z. If \ { , }x X y z∈  then =x y zU U U∪  implies that either Ux=Uy 
or Ux=Uz which contradicts the assumption that y∉Uz and z∉Uy. 
Hence, x y zU U U≠ ∪  for each \ { , }x X y z∈  and zUy implies that 

y y zU U U≠ ∪ . Then, (X,τyz) is T0 which contradicts that (X,τ) is 
minimal T0. This contradiction because of the incorrect assumption 
that y∉Uz and z∉Uy. Therefore, either y ∈ Uz or z ∈ Uy for any two 
distinct points ,y z X∈ . This completes the proof.

Corollary 3.4: Let, (X,τ) be T0 then (X,τyz) is T0 if and only if y∉Uz 
and z∉Uy for any two distinct points ,y z X∈  where =yz yzDτ τ τ≠ ∩ .

Proof. As a direct consequence of the proof of Theorem(3.2) y∉Uz 
and z∉Uy implies that (X,yz) is T0 for any two distinct points ,y z X∈ .

Conversely; if (X,τyz) is T0 then, y y zU U U≠ ∪  which implies that 
zUy and y ∈ Uz implies that τ=yz which implies that y∉Uz.

Corollary 3.5: Let, (Xn,τ) be a minimal T0-topological space. then, 
there is a point p ∈ X such that = { ,{ },{ , },{ , , },..., }np p x p x t Xτ φ . So, the 
number of the minimal T0-topologies on Xn is Nn (min. T0)=n!.

In the chain topology on a set Xn is the topology whose members 
are completely ordered by the inclusion operator. Clearly the minimal 
T0-topologies on Xn are chain topologies and the chain topologies on 
Xn are connected [8]. Stephen [8] proved that the number of all chain 
topologies on a set Xn is : 1

=0
( ( )) = n

n k
N CH k −∑  n

kc  ( )kN CH . Where CH-

topology on Xn is a chain topology on Xn and 0 ( ) = 1N CH .

The members of a chain topology τ on Xn are such that: 
1 2 ... r nG G G Xφ ⊂ ⊂ ⊂ ⊂ ⊂  in which G1 is nonempty and either 

singleton or nonsingleton. Accordingly τ is either S(1) or S(0) and so 
( ) = ( (0) ) ( (1) )n n nN CH N S CH N S CH+ . If 1| |=G k  and ( )nN CH  then τ is 

said to be CH(k)-topology on Xn and the number of the chain topologies 
in such case is denoted by ( )nN CH . So, ( (1)) = ( (1) )n nN CH N S CH , 

=2
( (0) ) = ( ( ))n

n nk
N S CH N CH k∑  and 

=1
( ) = ( ( ))n

n nk
N CH N CH k∑ .

Theorem 3.6: Let Xn be a set of n points then:

(1) ( ( )) = ( )−
n

n k n kN CH k c N CH ,

(2) 1

=0
( ) = ( )−∑

nn
n k kk

N CH c N CH ,

(3) 1

=
( ( )) = ( ( ))−∑

nn
n r rr k

N CH k c N CH k  and

(4) 2

=0
( (0) ) = ( )−∑

nn
n k kk

N S CH c N CH  where

0 ( ) = 1N CH .

Proof: Let A⊂Xn be such that | |= ,1A k k n≤ ≤ . If τ is a chain 
topology on Xn\A then, ( ) = { : } { }A G A Gτ τ φ∪ ∈ ∪  is an ( )CH k
-topology on Xn. Clearly there are n

kc  distinct nonempty subset of Xn 
with cardinality k and therefore:

(1) ( ( )) = ( )−
n

n k n kN CH k c N CH ,

(2) 1

=1 =0
( ) = ( ) = ( )−

−∑ ∑
n nn n

n k n k k kk k
N CH c N CH c N CH

Let k ∈ N and A⊂Xn be such that 1 1k n≤ ≤ −  and | |=A r k≥ . 
If τ is a CH(k)-topology on A then ( ) = { , : }nA X G Gτ τ∈  is a ( )CH k
-topology on Xn. If r=n then A⊂Xn and if τ is a CH(k)-topology on A 
then τ(A)=τ,

(3) 1
=( ( )) = ( ( ))−Σn n

n r k r rN CH k c N CH k

Clearly if > 0k n ≥  then, ( ( )) = 0nN CH k  and so 0 ( (1)) = 0N CH . 

Also, if k=n then A=Xn which implies that τ={Xn,φ} which implies that 
( ) = { , }nA Xτ φ  which implies that ( ( )) = 1nN CH n . Therefore, using (1)

(4) 2

=2 =2 =0
( (0) ) = ( ( )) = ( ) = ( )−

−∑ ∑ ∑
n nn n n

n n k n k k kk k k
N S CH N CH k c N CH c N CH .

Conclusion
It is show that we are interested in finding the characterization of 

the principle door and a formula for the number of the door topologies 
on a set Xn of n points are given. Some properties of the principal 
connected topologies on a nonempty set X are discussed and the 
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minimal T0-topologies on X are also characterized. Also, a few results 
about the number of the chain topologies on Xn are given.
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