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Introduction
This study was motivated when one of the authors was approached 

by a clinical investigator in the dental school who was seeking advice on 
how to design a research study consisting of a sequence of independent 
trials, each with only two possible outcomes (“success” and “failure”). 
Based on a previously published study he had conducted [1], as well 
as his clinical judgment and experience, the investigator had strong 
reason to believe that the observed number of “failures” in the study he 
was planning would likely be zero. His question for us was, “Assuming 
that there will be no failures in my study, how many trials do I need 
to conduct so that I can be reasonably sure that the true probability 
of failure is no greater than .05”? Since the trials can be assumed to 
be independent, it is reasonable to assume that X=the number of 
“failures” in the clinical study follows a binomial distribution, with 
n=the number of independent trials and π=the probability of “failure” 
on any one trial.  

Many research studies in clinical areas and other applied fields 
meet the assumptions of the binomial distribution (Without loss of 
generality, we will refer to the two outcomes as “success” and “failure” 
and the outcome of primary interest as “success”). Furthermore, it is 
not uncommon in these studies for x, the observed number of successes 
in a sample of size n, to be zero. Examples can be found [2-6].  

Only a few publications in the statistical literature have examined or 
compared methods for analyzing binomial data in which the observed 
number of successes is zero; for example, see [7-12]. Observing X=0 in 
a binomial sample lends itself to the Bayesian approach since one can 
condition on the observed data, and several authors have considered 
this approach [13-16]. In the present article, we approach the problem 
from a frequentist point of view; however, we also include a Bayesian 
approach for comparison purposes.

We restrict our attention to the situation in which one is interested 
only in finding the one-sided (upper) confidence limit for the true 
value of the binomial proportion when the number of successes has 
already been observed to be zero. The use of one-sided confidence 
limits in this situation is controversial [8,10], but some authors have 
recommended their use [17,18]. Following our discussions with the 
clinical investigator, we decided that a one-sided upper confidence limit 

would be appropriate. Our review of the relevant literature indicated 
that there was no clear consensus on the best upper confidence limit 
to use when the observed number of successes is zero, especially if 
one wished to approach the problem from a frequentist perspective. 
Hence, in order to be able to provide a well-informed response to the 
dental researcher's question, we concluded that it would be worthwhile 
to systematically compare the most widely-used binomial confidence 
interval (C.I.) methods under the assumption that x=0.  

In Section 2, we describe each of the methods for finding confidence 
limits for a binomial proportion that we compare; in Section 3, 
we describe our methodology for comparing the performance of 
these methods; in Section 4, we provide a summary of the results of 
our comparisons; and in Section 5, we discuss our results and make 
recommendations concerning the best methods to use in practice.

Methods
In this section, we describe the eight methods we compared 

for finding πu, the upper 100 (1-α)% confidence limit for the true 
probability of success for a binomial random variable, under the 
assumption that the number of successes has already been observed to 
be 0. We selected these methods either because (1) they are commonly 
covered in introductory statistics or biostatistics textbooks, or (2) they 
have been recommended for general use when finding confidence 
limits for a binomial proportion.    

One method we did not include is the Wald interval, which 
continues to be one of the most widely used methods for finding 
confidence limits for a binomial proportion. The Wald interval is based 
on the normal approximation to the binomial, and the approximate 
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Abstract
We consider confidence interval estimation for a binomial proportion when the data have already been observed and 

x, the observed number of successes in a sample of size n, is zero. In this case, the main objective of the investigator 
is usually to obtain a reasonable upper bound for the true probability of success, i.e., the upper limit of a one-sided 
confidence interval. In this article, we use observed interval length and p-confidence to evaluate eight methods for 
finding the upper limit of a confidence interval for a binomial proportion when x is known to be zero. Long-run properties 
such as expected interval length and coverage probability are not applicable because the sample data have already 
been observed. We show that many popular approximate methods that are known to have good long-run properties in 
the general setting perform poorly when x=0 and recommend that the Clopper-Pearson exact method be used instead.
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100 (1-α)% upper confidence limit for π for a one-sided interval is 
given by:

1 (1 ) / ,u p Z p p nαπ −= + −

where p=x/n is the observed proportion of successes and Z1-α is the 
standard normal deviate associated with an upper-tail area of α. 
However, when p=0, the Wald interval is (0, 0) for any confidence 
coefficient and is obviously uninformative. Nevertheless, such intervals 
are still reported in the scientific literature [2].

If one uses the normal approximation to the binomial with 
continuity correction, the upper confidence limit for π given by:

1 (1 ) / [1 / (2 )]p Z p p n nα−+ − +

[19]. When x=0, this reduces to 1 / (2 ),u nπ =  which is not a valid 
confidence limit because it does not depend on the confidence 
coefficient.  

The Agresti-Coull method

Agresti and Coull [20] proposed a modification to the standard 95% 
Wald interval that consisted of adding four pseudo observations (two 
successes and two failures) to the sample. When x=0, their “adjusted 
Wald” approximate 95% upper confidence limit is given by:

{ }[2 / ( 4)] 1.645 [2 / ( 4)] 1 [2 / ( 4)] / ( 4).u n n n nπ = + + + − + +

Wilson’s “Score” interval

Wilson [21] proposed a method based on inverting the score test 
of the null hypothesis H0: π=π0. It is similar to the Wald interval except 
that the standard error is based on the hypothesized null value π0 
instead of the observed proportion of success p. The approximate 100 
(1-α)%  upper confidence limit is given by

( )1 1

2 2/u Z n Z
α α

π
− −

= +

when zero successes are observed.

Continuity-corrected Wilson interval

Under some conditions, Wilson’s interval fails to maintain its pre-
specified 1-α nominal coverage probability [22]. Therefore, Casella [22] 
recommended using the continuity-corrected normal approximation to 
the binomial when inverting the score test. When x=0, the approximate 
upper limit for a 100 (1-α)% C.I. is:

( ) ( )2 2 2
1 1 1 10.5 / 2 0.5 (0.25 / ) ( / 4) / .u Z Z n Z n Zα α α απ − − − −

 = + + − + + 

Clopper-Pearson “exact” (C-P) method

Clopper and Pearson [23] proposed what is usually called the 
“exact” method for constructing binomial confidence limits. This 
method is based on the inversion of the exact test of H0: π=π0  using 
the binomial distribution. Thus, the upper limit of an exact 100 (1-α)% 
one-sided interval is found by solving for πU in the following equation:

( )0
{ !/ [ !( )!]} 1

U

x n kk
Uk

n k n k π π α−

=
− − =∑

When x=0 successes are observed, the exact method provides the 
following 100 (1-α)% upper confidence limit:

1/1 n
uπ α= − .

Louis [7] noted that 1/1 nα−  is “exactly the 95 percent Bayesian 
prediction interval based on a uniform prior distribution for π.” In 
addition, the C-P upper limit is equivalent to the upper limit of the 

modified Jeffreys interval proposed by Brown, Cai, and DasGupta [24] 
when x=0. 

Mid-P adjusted Clopper-Pearson method

Some authors have recommended using the mid-p adjustment [25] 
to help overcome the possibly extreme conservatism of the Clopper-
Pearson method, especially when n is small [26]. This approach 
involves inverting the mid-p adjusted exact test of H0: π=π0 .  The mid-p 
adjusted one-tailed p-value is obtained by subtracting half the point 
probability of the observed value of X from the appropriate one-tailed 
exact p-value. When x=0, the mid-p adjustment yields an upper 100 
(1-α)% confidence limit of 

1/1 (2 ) .n
uπ α= −

Poisson approximation 

The binomial distribution with large n and small π can be 
approximated by the Poisson distribution with parameter λ=nπ  
and the resulting approximation can be used to derive approximate 
confidence limits for π [27].  For x=0, the Poisson approximation to the 
binomial yields an approximate upper 100 (1-α)% confidence limit of

ln( ) / .u nπ α= −

The Poisson approximation for a 95% upper limit is equivalent to 
the Rule of 3, in which πu=3/n [28]. 

The single augmentation with an imaginary failure or success 
(SAIFS) method

Borkowf [29] suggested an approach similar to the Agresti-Coull 
method. His method adds an imaginary failure to the sample when 
finding the lower confidence limit and an imaginary success when 
finding the upper confidence limit. When zero success occur in a 
sample of size n, the SAIFS method gives a one-sided upper confidence 
limit of 

( )11 / ( 1)u Z nαπ −= + + .

Borkowf showed that replacing the z1-α quantile with a t1-α quantile 
with n-1 degrees of freedom could improve coverage probabilities, so 
that is the method we will consider here. 

Bayes-Laplace HPD interval

The Bayes-Laplace (B-L) highest posterior density (HPD) credible 
interval for a binomial proportion is derived using the Bayesian 
approach with a non-informative Bayes-Laplace prior of beta (1, 1).  
Tuyl, Gerlach, and Mengerson [14] recommended the B-L prior as a 
consensus prior when x=0 is observed, and this approach yields the 
following 100 (1-α)% upper confidence limit:

1/ ( 1)1 n
uπ α += −  .

Example:

We illustrate the methods described above using data from the 
clinical study that motivated this investigation [30]. Because dental 
devices emit electromagnetic energy, dental patients with implanted 
biotechnological devices can be at risk for adverse events relating to 
the functioning of their implants. The implant of interest in [30] was 
a neurostimulator (NS) device commonly used to relieve various 
types of pain, including spinal axial pain, ischemic limb pain, certain 
anginal pain syndromes, and chronic diabetic neuropathic pain. The 
purpose of the study was to investigate the effects of electromagnetic 
interference on an NS during the operation of three dental devices: an 
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electric pulp tester, an apex locator, and an electrocautery unit. The 
investigator wished to estimate the proportion of experimental trials in 
which the dental device would damage an NS device located in different 
tissues. Based on his previously published study [1], in which he found 
that various dental devices had no impact on cochlear implants, the 
investigator had strong reason to believe that the observed number 
of “failures” in the NS study he was planning would also be zero.  He 
wished to know the number of trials he would need to conduct to be 
95% confident that the true probability of failure is no greater than 
πmax=0.05.  A sample size calculation for the C-P method assuming that 
a one-sided confidence limit would be used in the data analysis yielded 

max = ln( )/ ln(1 ) ln(.05) / ln(1 .05) 59.n α π− = − ≈

The investigator chose to perform 70 independent trials in order 
to ensure that data from an adequate number of valid trials would 
be available. Once the study data were collected, no damage to the 
NS implant was observed in any of the n=70 trials. For purposes of 
illustration, we calculated the upper 95% confidence limit using these 
data for each of the eight methods described above (Table 1).  In Table 
1, we have also indicated the confidence coefficient of the C-P interval 
based on each of these upper limits. These coefficients range from 
90.0% for the mid-p adjusted C-P upper limit to 98.5% for the Agresti-
Coull upper limit.

Criteria for comparing the confidence interval methods

In this article, we use two criteria to evaluate the different methods 
for constructing upper one-sided binomial confidence limits when x 
is known to be zero: observed interval length and p-confidence [31]. 
Properties such as coverage probability and expected interval length 
that are typically used to evaluate long-run performance of C.I. 
procedures are not applicable for our study because we consider only 
the situation when the data have already been observed and the value 
of x is known to be zero. Therefore, the expected values required for 
coverage probability and expected interval length cannot be calculated. 

Observed interval length

Observed interval length is calculated by subtracting the lower 
confidence limit of a C.I. from the upper confidence limit. Since we 
are only interested in calculating the upper confidence limit for a one-
sided interval, the lower limit is assumed to be zero, and therefore the 
observed interval length is simply the value of the upper confidence limit. 

P-Confidence

In the general case, p-confidence is defined for the binomial in 
terms of the equal-tail p-value function using the binomial distribution 
and the observed number of successes [31]. In the upper-tailed one-
sided case, when x=0, the p-value function reduces to a function of π 
alone:

( ,0) Pr( 0 | ).P Xπ π= =

Let πu=the upper confidence limit of the one-sided 100(1-α)% C.I. 
computed using any particular method (continuity-corrected Wilson, 
Agresti-Coull, etc.). For a C.I. I(0) based on zero successes,

(0)
-confidence 1 sup P( ,0) 100%

I
p

π
π

∉

 = − × 
 

(0)
[1 sup Pr( 0 | )] 100%.

I
X

π
π

∉
= − = ×

[1 Pr( 0 | )] 100%uX π= − = ×

[1 (1 ) ] 100%.n
uπ= − − ×

Vos and Hudson [31] give the following interpretation of 
p-confidence: “The p-confidence is a measure of how large the associated 
p values are for parameters outside an interval. If we are interpreting a 
C.I. as the inversion of a hypothesis test, then values of the parameter 
outside a good approximate C.I. should not have associated p values 
that are appreciably larger than α where (1−α) × 100% is the confidence 
level.” Thus, it is desirable for p-confidence to be close to the nominal 
100(1-α)% confidence coefficient for approximate confidence intervals.  

The relationship between coverage probability, which is a measure 
of the long-run performance of a C.I. procedure, and p-confidence, 
which is a “post-data” measure of performance, has a connection 
with the relationship between Neyman’s Type I error rate and Fisher’s 
p-value in hypothesis testing [31]. The concept of p-confidence is closely 
related to the concept of consonance [32], and therefore is especially 
helpful when thinking of C.I.’s as inversions of hypothesis testing 
procedures, as in the present article.  It is useful when interpreting the 
interval (0, πu) to ask the question: “How large could the probability of 
zero successes in n trials be for values outside this interval?” The answer 
is “1–p-confidence.”

For example, consider the 95% Agresti-Coull interval when x=0.  

Method Formula for 
Upper Limit

Upper Limit Clopper-Pearson
Confidence Coefficient†

Agresti-Coull [ ][2 / ( 4)] 1.645 2 / ( 4) [1 2 / ( 4)] / ( 4)n n n n+ + + − + + 0.0580 98.5

Wilson ( )1 1

2 2/Z n Z
α α− −

+
0.0372 93.0

Continuity-Corrected Wilson { }2 2 2
1 1 1 1[0.5 ( / 2) ] 0.5 (0.25 / ) ( / 4) / ( )Z Z n Z n Zα α α α− − − −+ + − + + 0.0500 97.2

Clopper-Pearson 1/1 ( ) nα− 0.0419 95.0

Mid-P Adjusted 
Clopper-Pearson

1/1 (2 ) nα− 0.0324 90.0

Poisson Approximation ln( ) / nα− 0.0428 95.3

SAIFS ( )1,11 / ( 1)nt nα− −+ +
0.0376 93.2

Bayes-Laplace Prior 1/ ( 1)1 ( ) nα +− 0.0413 94.8

SAIFS: Single Augmentation with an Imaginary Failure or Success
†The Clopper-Pearson confidence coefficient based on the specified upper limit. 

Table 1: Upper Confidence Limits for One-sided Intervals when x=0, n=70, α=.05.
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The values of p-confidence for these intervals range from 95% for n=5 
to 98.5% for n=100.  In other words, the probability of zero successes in 
n trials for values outside these intervals ranges from 0.015 for n=100 
to 0.05 for n=5.  In contrast, the probability of zero successes in n trials 
for values outside the 95% C-P interval is 0.05 for all n.

Another criterion that can be used to evaluate C.I.’s after the data 
have been observed is p-bias [31]. However, p-bias is equal to zero 
for the one-sided intervals examined in this article, so it will not be 
considered further. 

Acceptability limits
To assist us in determining if the p-confidence for an approximate 

C.I. procedure differs in a meaningful way from the nominal 100 (1-α)% 
confidence level, we adapted the following “liberal” guideline proposed 
by Bradley [33] for evaluating the robustness of a statistical test:  if the 
true significance level differs from the nominal level by no more than 
α /2, one can conclude that the test is robust. If the true significance 
level differs by more than α/2 from the nominal level (either above or 
below), one can conclude that the test is not robust.  In the present 
study, we applied the Bradley criterion as follows: if the p-confidence 
differed from the nominal confidence level by no more than α/2, 
we concluded that the p-confidence for that procedure was within 
acceptable limits. If the p-confidence differed by more than α/2 from 
the nominal confidence level (either above or below), we concluded 
that the p-confidence for that method was not acceptable.  Thus, for a 
90% C.I., the p-confidence for a C.I. procedure must be between 85% 
and 95% to be acceptable; for 95% and 99% C.I.’s, these limits are 92.5% 
to 97.5% and 98.5% to 99.5%, respectively.  

Results
Observed interval length

Figure 1 displays the ratio of observed C.I. length relative to the 
length of the C-P interval for n=5 (1) 10 (5) 50 (10) 100 and a nominal 
confidence level of 95%.  (Similar figures for 90% and 99% intervals 
are available from the second author.  The conclusions based on these 
figures are very similar to those based on Figure 1).  Of the seven 
methods that were evaluated relative to the C-P method, the Wilson 
and mid-p methods produce the shortest intervals for values of n 
between 5 and 100 (Figure 1). The B-L HPD intervals and the SAIFS 

intervals for n>10 are also consistently shorter than the C-P intervals. 
The 95% C.I.’s based on the Poisson approximation (the Rule of 3) and 
the continuity-corrected Wilson intervals are always longer than the 
C-P intervals. The Agresti-Coull method consistently produces the 
longest 95% intervals for n>10. 

P-Confidence

Figures 2 through 4 give the range of p-confidence values for n=5 
(1) 10 (5) 50 (10) 100 and confidence coefficients of 90%, 95%, and 99%, 
respectively.  The “acceptability” limits are indicated on the figures by a 
dotted, black, boldface line. 

For 90% C.I.’s, the C-P method, the continuity-corrected Wilson 
method, the SAIFS method, and the B-L HPD method maintain 
p-confidence within the acceptable limits of 85% to 95% for all n (Figure 
2). Intervals based on the Poisson approximation have acceptable 
p-confidence except when n=5. The mid-p and Wilson intervals have 
p-confidence well below the lower acceptability limit of 85% for all 
values of n.

Similar to the results for 90% intervals, the p-confidence results 
for 95% intervals for the continuity-corrected Wilson method and the 
SAIFS method fall within the acceptability limits for all n (Figure 3). 
For the B-L HPD intervals, p-confidence falls within the acceptability 
limits as long as n ≥ 7. 

In contrast, the 95% Agresti-Coull intervals maintain p-confidence 
above 98% for n ≥ 20. The Poisson (Rule of 3) intervals have high values 
of p-confidence for values of n<9 but as n increases, the p-confidence 
falls between the acceptability limits. The mid-p method maintains a 
p-confidence of 90%, well outside the lower acceptability limit. The 
Wilson intervals eventually reach an acceptable level of p-confidence 
when n ≥ 30, but p-confidence can be as low as 88.5% for smaller values 
of n.

For 99% C.I.’s, p-confidence for the mid-p intervals is 98%, 
below the lower acceptability limit of 98.5% (Figure 4). Except for 
small values of n, the SAIFS intervals have p-confidence below 98.5% 
and can be as low as 96.6%. For n<20, the Poisson approximation 
method produces p-confidence as high as 99.9%. The continuity-
corrected Wilson intervals have acceptable p-confidence only for n<10; 
otherwise, p-confidence is greater than the upper acceptability limit. 

Figure 1: Ratio of interval length relative to the Clopper-Pearson (C-P) 
interval for the seven 95% confidence intervals when n=5 (1) 10 (5) 50 (10) 
100. A-C: Agresti-Coull Interval; Wilson_CC: Continuity-Corrected Wilson 
Interval; SAIFS: Single Augmentation with an Imaginary Failure or Success; 
B-L: Bayes-Laplace Highest Posterior Density Interval.

Figure 2:  P-confidence for the seven 90% confidence intervals when n=5 
(1) 10 (5) 50 (10) 100. The bold face dotted lines indicate the arbitrary 
“acceptability limits” defined in the text. Wilson_CC: Continuity-Corrected 
Wilson Interval; C-P: Clopper-Pearson Interval; SAIFS: Single Augmentation 
with an Imaginary Failure or Success; B-L: Bayes-Laplace Highest Posterior 
Density Interval.
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In contrast, the Wilson intervals produce p-confidence less than the 
lower acceptability limit for n<9 and acceptable values otherwise. The 
B-L HPD intervals have unacceptable p-confidence for n ≤ 10, but 
acceptable values otherwise.

Discussion and Conclusion
Our results indicate that that many popular approximate methods 

that are known to have good long-run properties in terms of coverage 
probability and expected interval length in the general binomial setting 
perform poorly when x=0. For example, the Agresti-Coull method 
consistently produces unnecessarily long 95% C.I.’s, resulting in values 
of p-confidence much larger than 95%. Thus, we recommend that the 
Agresti-Coull method not be used when x=0. Although the mid-p 
interval has been recommended for general use when finding a C.I. for 
a binomial proportion, it should not be used when zero successes are 

observed because it produces intervals that is much too short, resulting 
in unacceptably low p-confidence. 

If one wishes to use an approximate method, the Wilson, 
continuity-corrected Wilson, Poisson, SAIFS, and Bayes-Laplace HPD 
intervals are all acceptable for various combinations of sample size and 
confidence coefficient. However, none of these methods had acceptable 
values of p-confidence for all combinations of n=5 (1) 10 (5) 50 (10) 
100 and nominal confidence coefficients of 90%, 95%, and 99%.

Despite criticism that the C-P method tends to produce confidence 
intervals that are too long in the general estimation setting [18, 20], 
this method performed quite well when x=0. The moderate length of 
the C-P intervals, relative to the other methods, together with the fact 
that C-P intervals will always have p-confidence equal to the nominal 
confidence level, regardless of sample size, lead us to recommend 
the C-P method for general use when x=0. An additional advantage 

Figure 4: P-confidence for the seven 99% confidence intervals when n=5 (1) 10 (5) 50 (10) 100. The bold face dotted lines indicate the arbitrary “acceptability limits” 
defined in the text. Wilson_CC: Continuity-Corrected Wilson Interval; C-P: Clopper-Pearson Interval; SAIFS: Single Augmentation with an Imaginary Failure or 
Success; B-L: Bayes-Laplace Highest Posterior Density Interval.

Figure 3: P-confidence for the eight 95% confidence intervals when n=5 (1) 10 (5) 50 (10) 100. The bold face dotted lines indicate the arbitrary “acceptability limits” 
as defined in the text. A-C: Agresti-Coull Interval; Wilson_CC: Continuity-Corrected Wilson Interval; C-P: Clopper-Pearson Interval; SAIFS: Single Augmentation 
with an Imaginary Failure or Success; B-L: Bayes-Laplace Highest Posterior Interval. Note that for 95% intervals, the Poisson approximation is equivalent to the 
Rule of Three.
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is that when x=0 the C-P interval is equivalent to a Bayesian credible 
interval based on the modified Jeffreys prior recommended by Brown, 
Cai, and DasGupta [24] for general use when estimating the binomial 
parameter. In terms of the clinical problem that prompted our 
investigation, the C-P interval has another advantage in that it has a very 
simple interpretation for the client:  “We can be quite certain that the 
probability of damaging the neurotransmitter is less than 4.2% because, 
if it is greater than that, observing no damaged neurotransmitters in 
70 patients is very unlikely, occurring with probability less than 0.05.”

One could argue that we "stacked the deck" in favor of the C-P 
method in our comparison of the various methods since any exact C.I. 
method will always have p-confidence equal to the nominal confidence 
level, regardless of sample size [31].  However, several authors 
have argued against use of confidence intervals based on the C-P 
method under any circumstances and instead recommended that an 
approximate method be used; for example [20,29,34,35]. Agresti and 
Coull [20] even titled their article "Approximate is Better than ‘Exact’ 
for Interval Estimation of Binomial Proportions."  	

Because of this "exact vs. approximate" controversy, we undertook 
our study to examine the behavior of commonly used and commonly 
recommended approximate methods, in addition to the exact C-P 
method, in the special situation when x=0. We defined "acceptability 
limits" based on a modification of Bradley's robustness criterion 
to assist us in evaluating the p-confidence of the approximate C.I. 
methods. If one of the approximate methods had achieved acceptable 
p-confidence for all combinations of n and confidence coefficient that
we considered, we would have also recommended it for routine use
when x=0, especially if it was competitive with the C-P method in
terms of observed interval length. However, none of the approximate
methods satisfied these conditions. For this reason, we recommend
that the Clopper-Pearson exact method be used to estimate the upper
confidence limit of a one-sided interval whenever x=0 is observed.
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