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Abstract

The problem of reconstructing the phases of a unitary matrix with prescribed moduli
is of a broad interest to people working in many applications, e.g in the circuit theory,
phase shift analysis, multichannel scattering, computer science (e.g in the theory of error
correcting codes, design theory). We propose efficient algorithms for computing Hermitian
unitary matrices for given symmetric bistochastic matrices A(n × n) for n = 3 and n = 4.
We mention also some results for matrices of arbitrary size n.
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1 Introduction

We will study the set of unistochastic matrices which is a subset of the set of bistochastic
matrices. We say that a matrix A ∈ Rn×n is bistochastic (doubly stochastic) if all its entries are
nonnegative real numbers and all its row sums and column sums are equal to 1. A unistochastic
matrix is a bistochastic matrix whose entries are the squares of the absolute values of the entries
of some unitary matrix U . We recall that a matrix B ∈ Cn×n is Hermitian if B = B∗, i.e. bij = bji

for i, j = 1, . . . , n. A matrix U ∈ Cn×n is unitary if U∗U = I. A matrix Q ∈ Rn×n is orthogonal
if QT Q = I. We say that a symmetric bistochastic matrix A ∈ Rn×n is H-unistochastic if there
exists a Hermitian unitary matrix U ∈ Cn×n such that aij = |uij |2, i, j = 1, . . . , n. If U is real
(so U is orthogonal) then A is called H-orthostochastic.

Perhaps the van der Waerden matrix (Wn) is the most famous unistochastic matrix. Its
elements are all equal to 1

n . For example, for n = 4 there exists an orthogonal preimage U (2U
is called an Hadamard matrix):

W4 =
1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , U =

1
2




1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1




so W4 is even orthostochastic (and also H- orthostochastic). However, it is easy to verify that
W3 is not H-unistochastic!

Hadamard’s Conjecture (still open!) says that for n > 2 the Hadamard matrices exist when
n = 4k and only for such n, see W.Tadej et al. [5] for explicit examples of the Hadamard
matrices.

We consider the following research problems.
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Sweden, October 11–13, 2007.



On constructing Hermitian unitary matrices with prescribed moduli 257

• I. Given a bistochastic matrix A ∈ Rn×n check if there exists a unitary matrix U ∈ Cn×n

such that aij = |uij |2, i, j = 1, . . . , n (so A is unistochastic).
• II. Given a symmetric bistochastic matrix A ∈ Rn×n check if there exists a Hermitian

unitary matrix U ∈ Cn×n such that aij = |uij |2, i, j = 1, . . . , n (so A is H-unistochastic).

For n = 2 every bistochastic matrix A is symmetric and is orthostochastic (U can be chosen
to be orthogonal). We have

A =
[

c2 s2

s2 c2

]
, U =

[
c s
s −c

]
, c = cos Θ, s = sin Θ

Given a 3× 3 bistochastic matrix A it is easy to check whether it is unistochastic or not (see
e.g [2]). We get

A =




a2
1 b2

1 c2
1

a2
2 b2

2 c2
2

a2
3 b2

3 c2
3


 , U =




a1 b1 c1

a2 b2e
iΦ . . .

a3 b3e
iΨ . . .


 , 0 ≤ ai, bi, ci ≤ 1

Therefore the problem is to form a triangle from 3 line segments of given lengths Li =
aibi, i = 1, 2, 3. Then A is unistochastic if and only if the chain-link conditions are fulfilled:
|L2 − L3| ≤ L1 ≤ L2 + L3. In this case

cosΦ =
L2

3 − L2
2 − L2

1

2L1L2
, cosΨ =

L2
2 − L2

1 − L2
3

2L1L3
, cos (Φ−Ψ) =

L2
1 − L2

2 − L2
3

2L2L3

Some methods for constructing unitary preimages to 3×3 bistochastic matrices are discussed
in [3].

However, for a given 4×4 bistochastic matrix A it is not easy to check whether it is unistochas-
tic or not! There are only partial results, so it is reasonable to try to develop efficient algorithms
to check whether a given bistochastic matrix A(n × n) is unistochastic or not. We focus our
attention only on symmetric bistochastic matrices and their Hermitian unitary preimages.

2 New results

For simplicity define a matrix

M = (mij)i,j=1,...,n, where mij =
√

aij , i, j = 1, . . . , n

Notice that without loss of generality we can seek a Hermitian unitary matrix U(n× n) in the
dephased form, i.e. such that the first row and the first column of U are the same as the first
row and the first column of M . It is obvious because if U is not dephased, we can find a unitary
diagonal matrix D such that the matrix Û = ±DUD∗ satisfies these conditions and it is still
Hermitian.

Given a 3×3 symmetric bistochastic matrix A it is easy to check whether it is H-unistochastic
or not.

Notice that we can assume that the diagonal elements of A are ordered in such a way that
a11 ≤ a22 ≤ a33. If ap1p1 ≤ ap2p2 ≤ ap3p3 for some permutation {p1, p2, p3} of {1, 2, 3}, then we
can permute rows and columns of A. Define a permutation matrix P = [ep1 , ep2 , ep3 ], where
I = [e1, e2, e3]. Then Ã = P T AP has the desired property. Note also that A is H-unistochastic
iff Ã is H-unistochastic. That is, U is a unitary preimage for A iff P T UP is a unitary preimage
for Ã.
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As it was said above, we can assume that a Hermitian unitary U has the dephased form

U =



√

a11
√

a12
√

a13√
a12

√
a22 (s1)

√
a23 (z)√

a13
√

a23 (z)
√

a33 (s2)


 , s1, s2 ∈ {−1, 1}, z ∈ C, |z| = 1

Theorem 2.1. Let A(3 × 3) be a symmetric bistochastic matrix, 0 < ai,j < 1 for all i, j and
a11 ≤ a22 ≤ a33. Then A is H-unistochastic if and only if the following matrix

U =



√

a11
√

a12
√

a13√
a12

√
a22(s)

√
a23(−s)√

a13
√

a23(−s)
√

a33(s)




where s = −1 or s = 1, is orthogonal.

Now we consider the case n = 4. Assume that all the elements of a symmetric bistochastic
matrix A are nonzero. We show that our problem can be reduced to the linear system of
equations.

Write A(4× 4) and U as follows

A =




m2
1 a2

2 a2
3 a2

4

a2
2 m2

2 b2
3 b2

4

a2
3 b2

3 m2
3 c2

4

a2
4 b2

4 c2
4 m2

4


 , U =




m1 a2 a3 a4

a2 m2(s2) b3(z1) b4(z2)
a3 b3(z1) m3(s3) c4(z3)
a4 b4(z2) c4(z3) m4(s4)




where sk ∈ {−1, 1} and zk ∈ C, |zk| = 1. Here 0 < ak, bk, ck,mk < 1 is assumed in order to avoid
trivial cases.

By the orthogonality of the first column of U and the columns 2, 3, 4 we obtain

m1a2 + a2m2(s2) + a3b3(z1) + a4b4(z2) = 0
m1a3 + a2b3(z1) + a3m3(s3) + a4c4(z3) = 0
m1a4 + a2b4(z2) + a3c4(z3) + a4m4(s4) = 0

We can assume that the signs sk are prescribed, in an algorithm we have to check all the
combinations of signs (±1).

Let zk = xk + iyk for k = 1, 2, 3. Then xk = re(zk) can be computed as a unique solution
of the following linear system of equation Bx = f , where x = [x1, x2, x3]T and f = [f2, f3, f4]T ,
where fk = −ak(m1 + mk(sk)) for k = 2, 3, 4. Here

B =




a3b3 a4b4 0
a2b3 0 a4c4

0 a2b4 a3c4


 =




a3 a4 0
a2 0 a4

0 a2 a3







b3 0 0
0 b4 0
0 0 c4




Then det(B) = −2 (a2a3a4)(b3b4c4) 6= 0, so there exists a unique solution x of the linear
system Bx = f . We can compute it as follows x = B−1f , where

B−1 =
1

2a2a3a4




1
b3

0 0
0 1

b4
0

0 0 1
c4







a2a4 a3a4 −a2
4

a2a3 −a2
3 a3a4

−a2
2 a2a3 a2a4




Now it is easy to compute yk. We should check the conditions: |xk| ≤ 1 for k = 1, 2, 3. Then
we can compute yk from the formulae

y1 = ±
√

(1− x1)(1 + x1), y2 = −a3b3y1

a4b4
, y3 =

a2b3y1

a4c4
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Finally, we have to verify the orthogonality of the computed matrix U .
We have only some partial results for arbitrary size n. Notice that all the eigenvalues of a

Hermitian unitary matrix U ∈ Cn×n are real and equal to −1 or 1. There exists a unitary matrix
Q ∈ Cn×n such that U = QDQ∗, Q∗Q = I, where D = diag(1, 1, . . . , 1,−1,−1, . . . ,−1).

If we impose an additional condition on U , a Hermitian unitary preimage of A to be found,
namely that U = QDQ∗ with Q∗Q = I and D = diag(1, 1, . . . , 1,−1). Now it is not difficult to
solve our problem! Notice that writing D = I − 2 diag(0, . . . , 0, 1) = I − 2 eneT

n , we obtain
U = I − 2 (Qen)(Qen)∗ = I − 2 qnq∗n, so U is a reflection (Householder transformation).

Let z = qn, z = [z1, z2, . . . , zn]T . Then U = I − 2 zz∗, where z∗z = 1. We assume that
a1,1 6= 1 (for otherwise the problem reduces to the case (n − 1) × (n − 1)). Then we can
choose z1 being real and positive because U does not depend on scaling of z (if z = αu with
u∗u = 1 and |α| = 1, then U = I − 2 uu∗). Moreover, if D is a unitary diagonal matrix then
DUD∗ = I−2 (Du)(Du)∗ is also a Householder matrix, so we can search for U in the dephased
form. Then the desired Householder matrix U is real and must have the following form to have
the correct moduli in the first row of U

U = I − ppT

(1−m11)
, p = [1−m11,−m12, . . . ,−m1n]T

Notice that

pT p = (1−m11)2 + m2
12 + . . . + m2

1n = 2(1−m11)

so U is orthogonal (UT U = UU = I). The only thing to do is to compute U and check
the condition |uij | = mij = √

aij for i, j = 1, . . . , n. How to improve the orthogonality of
the computed U in floating point arithmetic? To improve the orthogonality of the columns
of U we propose reorthogonalization. We apply QR decomposition to U . To compute QR
decomposition we can use the Householder or Givens methods or special versions of Gram-
Schmidt orthogonalization methods (see eg. [6]). Here is a code for MATLAB using the function
qr (the Householder method):

[Q,R]=qr(U);
M=A.^(1/2); Z=Q./abs(Q); U=M.*Z; I=eye(n);
error_U=norm(I-U’*U));
error_A=norm(A-abs(U).*abs(U));

The numerical tests in MATLAB confirm the advantage of the proposed algorithms.

References

[1] G. Auberson, A. Martin, and G. Mennessier. On the reconstruction of a unitary matrix from its
moduli. Comm. Math. Phys. 140 (1991), 523–542.
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