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Abstract

Let A be the realification of the matrix algebra determined by Jordan algebra of hermi-
tian matrices of order three over a complex composition algebra. We define an involutive
automorphism on A with a certain action on the triple system obtained from A which give
models of simple compact Kantor triple systems. In addition, we give an explicit formula
for the canonical trace form and the classification for these triples and their corresponding
exceptional real simple Lie algebras. Moreover, we present all realifications of complex ex-
ceptional simple Lie algebras as Kantor algebras for a compact simple Kantor triple system
defined on a structurable algebra of skew-dimension one.
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1 Introduction

Models of Kantor triple systems defined on the 2 x 2-matrix algebra determined by the Jordan
algebra J = Hj (AC) of hermitian 3 x 3-matrices over complex composition algebras AC consid-
ered over the field C of complex numbers appeared in a unified formula given by I. L. Kantor
[17, 18] in connection with exceptional Lie algebras and a classification theorem over C.

The notion of (simple) structurable algebras was given by B. N. Allison [1] who studied
in particular those of skew-dimension one [3]. Moreover, the connection between Kantor triple
systems and structurable algebras was studied by H. Asano and S. Kaneyuki [7] who also defined
and studied [5, 15] compact Kantor triple systems in connection with classical real Lie algebras
and a classification theorem over the field R.

In this paper we continue the work on compact simple Kantor triple systems of [5] and
[20, 21, 22] giving, by a unified formula (Theorem 1), the classification of exceptional compact
simple Kantor triple systems defined on the realification of the 2 x 2-matrix algebra determined
by Jordan algebra J = H3(AC) of hermitian 3 x 3-matrices over a complex composition algebra
AC corresponding to realifications of complex exceptional simple Lie algebras (Theorem 2). In
addition, we give an explicit formula for the quadratic canonical trace form for these Kantor triple
systems (Corollary 1). Further, we present all realifications of complex exceptional simple Lie
algebras as Kantor algebras for a compact simple Kantor triple system defined on a structurable
algebra of skew-dimension one (Theorem 2, Proposition 5).

The results presented here are a continuation of [20] where models of exceptional compact
simple Kantor triple systems defined on the 2 x 2-matrix algebra determined by Jordan algebra
J = H3(A) of hermitian 3 x 3-matrices over a real composition algebra A have been given.
Related results are those of [10] where a construction of exceptional simple 5-graded Lie algebras
U= @%:_QUZ and an explicit realization of the subspaces U; have been given by different methods.
Moreover, the notion of Kantor triple systems and their structure theory have been generalized
by (€,0)-Freudenthal-Kantor triple systems [13, 24] such that Kantor triple systems coincide
with (—1,1)-Freudenthal-Kantor triple systems. A realization of exceptional simple 5-graded
Lie algebras in terms of Freudenthal-Kantor triple systems have been given by N. Kamiya [14].



30 Daniel Mondoc

The models of compact simple Kantor triple systems considered here start with a structurable
algebra A, its associated Kantor triple system Ba(z,y,2) := V,y(2),2,y,2 € A, and an invo-
lutive automorphism . Then the new triple product B(x, ¢(y), z) is considered, which gives
again a Kantor triple system. Suitable elections of A and ¢ (here ¢(y) = 7™, where ~ is the
standard involution and ~ denotes a certain involution on A) give compact simple models.

The structure of this paper is as follows. Section 2 serves a preliminary purpose; we give
a short overview of the basic definitions and known results on triple systems, graded Lie al-
gebras and structurable algebras. The main results mentioned above, on Ba(z,¢(y),2), the
corresponding canonical trace form and the corresponding exceptional real simple Lie algebras
are proved in section 3.

2 Triple systems, graded Lie algebras and structurable algebras

Let U be a Lie algebra over a field F of characteristic zero. U is called a graded Lie algebra
(abbreviated as GLA) if it is a Lie algebra of the form U = @®;°___U; such that [U;, U] C Upyy.

A GLAU = @2 _ U is called 5-graded if Uy, = 0 for any integer n > 2.

Let U be a finite dimensional vector space over the field F and B : U x U x U — U be a
trilinear map. The pair (B, U) is called a triple system over F.

For z,y € U define the linear endomorphisms L, ,, R;, and S;, on U by

Lyy(2) :=B(x,y,2), Ryy(z):=B(zz,y) (2.1a)
Sz y(2) == B(z,z,y) — By, 2z, ), zeU (2.1b)

A triple system (B, U) is called a generalized Jordan triple system (abbreviated as GJTS) if
the following identity is valid [7] (§1):

[Lay, Luy] = Ly, e~ Lur, ), wv,2,y€eU (2.2)

Let (B,U) and (B',U’) be two GJTS’s. We say that a linear map F of U into U’ is a
homomorphism if F satisfies the identity F(B(z,y,z)) = B'(F(x), F(y), F(z)), forall z,y,z € U.
Moreover, if F' is bijective, then F' is called an isomorphism. In this case the GJTS’s (B, U) and
(B',U’) are said to be isomorphic.

Let (B,U) be a GJTS and Vi, k = 1,2, 3, be subspaces of U. We denote by B(V1, Va, V3) the
subspace of U spanned by elements B(z1, z2,x3), 2 € Vi, k = 1,2,3. A subspace V of U is called
an ideal of (B, U) if the following relations hold B(V,U,U) C V, B(U,V,U) C V, B(U,U,V) C V.
The GJTS (B, U) is called simple if B is not a zero map and (B, U) has no non-trivial ideal.

Starting from a given GJTS (B,U), I. L. Kantor [17] constructed a certain GLA L(B) =
®°_ U such that U_; = U. The Lie algebra £(B) is called the Kantor algebra for (B,U) [5].
A GJTS (B, U) is called of the n-th order if its Kantor algebra is of the form £(B) = @& _, U;.
We shall call a GJTS of the second order for short a Kantor triple system [4] (abbreviated as
KTS). By [17] Proposition 10, a GJTS (B,U) is a KTS if and only if

Sg v =Seylup + LouSzy, wv,z,y€U (2.3)

m:y(u)v

Remark. Many authors [4, 18] define a KTS to be a triple system (B, U) satisfying the identities
(2.2), (2.3) instead of the identity (2.2) together with the fact that its Kantor algebra is 5-graded.
The definitions are equivalent.

A GJTS is called exceptional (classical) if its Kantor algebra is exceptional (classical) Lie
algebra.

For z € U we define a bilinear map B, on U by B,(x,y) = B(x, z,y),z,y € U. We say that
(B,U) satisfies the condition (A) if B, = 0 implies z = 0.
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Let (B,U) be a finite dimensional KTS. We consider the symmetric bilinear form on U [5]

1
vB(T,y) = QTT(QRx,y + 2Ry 2 — Loy — Ly,x) (2.4)

where T'r(f) means the trace of a linear endomorphism f. We shall call the form vp defined by
(2.4) the canonical (trace) form for the KTS (B,U).
A finite dimensional KTS (B, U) is called compact if its canonical form ~yp is positive definite.
Let A be an algebra over F. Let left (right) multiplication L, : A — A, (R, : A — A) be
defined by L, (y) = 2y, (Rz(y) = yx), x,y € A and denote by Homyg(A) the associative algebra
over F of all linear transformations on A. If A is finite dimensional we denote by dimgA the
dimension of A over F. For any extension field K of F we denote AX = K @ A.

Proposition 1 ([11]). Let A be a finite dimensional algebra over an algebraically closed field T
and let © be a subfield of I'. If A is simple over I" then A is simple as algebra considered over .

Remark. A direct proof of Proposition 1 is available in [22].

Let (A, ) be a unital non-associative algebra over F with involution (involutive anti-auto-
morphism) ~. We define V., € Homg(A) and the triple system Ba(z,y, 2) by

Vw,y = LL;,;(@) + Rng - Rny, T,y € A (25&)
BA(JI,?/, Z) = Vx,y(z) = (JJ?)Z + (Zy)x - (Zf)ya T,Y,2 € A (25b)

Ba(z,y,z) is called the triple system obtained from the algebra (A, ) [7] (§2). We shall write
for short By for (Ba, A).

A unital non-associative algebra with involution (A, ) is called a structurable algebra if the
following identity is fulfilled [3]:

[Vzv?ﬂ VU,U] = VVz,y(u),'U - Vu,Vyym(v)v u,v,z,y € A
Let (A,” ) be a structurable algebra. Then, by [3], A =S @ H, where
S:=8(A,)={s€Als=-s} and H:=H(A " ):={he€ Ah=h}

are the spaces of skew-hermitian and hermitian elements of A, respectively and dim S is called
the skew-dimension of (A,™).
To a structurable algebra (A,”) Allison [2] associated a 5-GLA K(A) as follows

K(A) = @f_,K;, where (2.6a)
Ko=8 K =4, K= {V%y S HomF(A) T,y € A} (26b)
K;(l =1,2) is an isomorphic copy of K_; (2.6¢)

By [7] Theorem 2.5, Allison’s 5-GLA K(A) coincides with Kantor’s 5-GLA L£(Bj), where By is
the triple system obtained from the algebra (A, ).

Let J be a finite dimensional separable degree 3 Jordan algebra over F. Let N, T and ¥ be
the norm form, trace form and adjoint map on J respectively [12] (§6.3). Define x : J x J — J
by zxy = (z+y)f —2f —y*. Then the algebra M(J) with multiplication and standard involution
~ defined [3] (§1) by

M(J) = {<§1 x1> 161,62 € Fomy,20 € J} (2.7a)

T2 &2

<f1 961) (771 yl) — ( &m + T(x1,92) §1y1 + mx1 + T2 X y2> (2.7b)
ro &) \y2 m) \mz2+&y2+z1 XY Somz + T (w2, 1) '
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& 11\ (& ™
(:Bz £2> o (1:2 £1> (2.7c)

is called the 2 x 2-matriz algebra determined by Jordan algebra J.

Let R, C, H and O denote the real algebras of real and complex numbers, quaternions and
octonions, respectively. They are called division composition algebras and are defined by their
explicit multiplication tables [23].

Let A be any of the division composition algebras R, C,H, O and let u;, [ = 1,...,dimgA,
where dimgpA € {1,2,4,8}, denote the standard units of A. We define conjugation ~ on a
standard unit u of A by

1=1, w=-u, if u#l (2.8)
and extend conjugation ~ by linearity on A.
Remark. By [23] §3, it is known that ~ is an involution on any composition algebra A above.

Let now AC be any of the complex composition algebras R, CE HC, OF, i.e. the division
composition algebras regarded as algebras over C. We define conjugation ~ and scalar extended
conjugation , called pseudoconjugation, on the complex algebra AC by

dimcAC dimcAC
T = ( Z alul)_ = Z agug, o € C (2.9)
=1 =1
dimcAC dimcAC

= ( Z alul)/\ = Z o ug, o €C (2.10)
=1

=1

i C . . . _
where z = ?;T‘CA ayuy is an arbitrary element of AC, u; are the standard units and 7 is defined

by (2.8) hence @; is the standard complex conjugate of o.
Remark. Then clearly ~ and ” are involutions of the complex algebra AC.

Let A be each one of the division composition algebras R, C, H, O.

Let A € {A, A} denote any of the real or complex composition algebras and let Ms(.A)
denote the set of matrices of order 3 with entries in A. Then, by definition, the conjugation ~
on the algebra A = A and the conjugation ~ and pseudoconjugation " on the algebra A = AC
are induced on M3(A) by ~ and ", respectively, on each entry.

Remark. Clearly ~ and ", respectively, are involutive on M3(A).
Let H3(A) := {x € M3(A)[z" = 2} denote the Jordan algebra of hermitian 3 x 3-matrices
over a composition algebra A € {A, AC} [8] (§6) with the product

1
Ty = i(wy+y$), z,y € H3(A)

where in the right hand side we have usual matrix multiplication and Z! denotes the conjugate
transposed of x € M3(.A). Then, by [9] (p. 218), the trace form and x-operation in formulas
(2.7) are defined on Hs(A) by
1
T(z,y) =Tr(z-y) = §Tr(:cy + yx) (2.11a)
1 1
TXYy=x-Yy— i[Tr(x)y + Tr(y)x] + i[Tr(x)Tr(y) —Tr(z-y)|ls (2.11b)

for all x,y € H3(A), where I3 is the unit matrix of order 3 and T'r(z) denotes the trace of x.
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Lemma 1 ([3]). Let (A,7) := M(H3(A®)) be the 2 x 2-matriz algebra determined by the
Jordan algebra H3(AT) of hermitian 3 x 3-matrices over a complex composition algebra AT €
{RC, CC, H®, OF}, where (7) is the standard involution on A. Then, over C, the algebras (A,™)
are simple structurable of skew-dimension 1.

Proof. The assertion follows directly from [3] (§1 Proposition 1.10). O

Let now A be a K-algebra for any extension field of K of F. We denote by A the algebra
A considered as algebra over F. If A is an algebra over C then we call the algebra Agr the
realification of the complex algebra A. Further, if B4 is the triple system obtained from a
complex algebra (A,” ) then we call the triple system Bj, obtained from algebra (Ag,” ) the
realification of Ba.

Proposition 2 ([22] Proposition 1.4). Let (A, ) be a structurable algebra over C. Then, over
R, the triple system Ba, is a KTS satisfying the condition (A), and Ba, is simple if and only
if (Ar,” ) is simple.

3 On compact realifications of exceptional simple Kantor triple
systems

We show first a property of the trace form on the Jordan algebra (Hz(AT),~ ).
Let €, denote in M3(R) the square matrix with entry 1 where the [-th row and the m-th
column meet, all other entries being 0, and denote

er = €11, €2 = €22, €3 = €33 (3.1a)
fi=e€e2+en, fo=e3+en, [f3=e€n+e€p (3.1b)
g1 = €12 — €21, Qg2 = €13 — €31, (g3 = €23 — €32 (3-1(3)

Let AC denote any of the complex composition algebras R®, C¢ H® OF. From now on an
arbitrary element of the Jordan algebra H3(AC) is of the form

r11 T12 T13
T = T12 T2y T23 , xp €C, xyy, € AC, 1<l<m<3 (32)
T13 T23 33

Lemma 2. Let = be an arbitrary element in H3(AC) of the form (3.2) and let the trace form
T(x,y),z,y € H3(A®) be defined by (2.11). Let ~— and " be the conjugation and pseudo-
conjugation defined on H3(AC) by (2.9) and (2.10), respectively. Then

T(:I:?T/\) = Z ||mlm||2

1<l,m<3
where ||xyy,|| denotes the norm of xyy,, 1 <I,m < 3.

Proof. Let = (x,,) be an arbitrary element in H3(AC) of the form (3.2), where x,, €
AC 1 <1,m < 3. Let 2 = ¢im @R Gim, Cim € C, apm € A. We write for short ®g = ®. Then
Tlm = Clm @ Qim, by (2.9), and x)) = €, @ @y, by (2.10), where ~ is defined by (2.8) so ¢, is
the standard complex conjugate of ¢;,,,. Hence, Tj," = € @ ag, and by (3.2) we have

C11 c12 ® a2 €13 ® ais
T= 1 c2®ai €22 C23 @ Q23 (3.3)
C13 @ a13 €23 ® a23 C33
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and
11 Cl2 ®aiz €13 @ a3
—A [ _ _
TW =1 ci2®a12 €22 C23 @ ao3 (3.4)
C13 ® a1z C23 ® ags C33

Then, by (2.11), (3.3) and (3.4), straightforward calculations give
T(x,7")= Y lleall?+2 D llamlPllaml®= Y llzml

1<I<3 1<l<m<3 1<l,m<3

where ||z},|| denotes the norm of xy,,, 1 <I,m < 3. O

3.1 The exceptional simple Lie algebras Ff, E¢y, Ef, and ES,

We define now models of compact simple Kantor triple systems.

Let A® denote any of the complex composition algebras RC, C¢, HC, OF.

Let M(H3(A%)) be the 2 x 2-matrix algebra determined by the Jordan algebra H3(A) defined
by (2.7) with standard involution ~. Let us define a second involution ~ on M (H3(A®)) by

(51 $1>N _ <§1 962/\> (3.5)
&) \T1" & '

where Z;” denotes the pseudo-conjugate of x; conjugate, z; € H. 3(,&@) and §&; is the standard con-
jugate of & € C,i = 1,2. Hence the following involutive automorphism is defined on M (Hz(A%))

&1 1 " _ & "
(552 52) <951/\ fl) (36)

Let M(H3(A®))g be the realification of the algebra M(Hz(A®)) and let (¢, M(H3(A®))g)
denote the triple system defined by formula

¢(Z’,y, 2) - (myw)z + (ZyN)x - (Zf)yNa r,Y,% € M(H?)(A(C))R (37)
We prove now the main results in the Theorems 1, 2 and Corollary 1.

Proposition 3. The triple systems (¢, M(H3(A®))r) defined by (3.5), (3.7) are KTS’s satis-
fying the condition (A).

Proof. From Lemma 1 and Propositions 1, 2 follows that the triple systems B (g, (ac)), (%, ¥, 2),
z,y,2 € M(H3(A®))g are (simple) KTS’s satisfying the condition (A). Further, we remark that
(2, Y, 2) = Bpguy(a))p (2,77 2), by (3.7) and (2.5). Then the assertions follow from [6] Lemma
1.5 since the map ¢(y) = 7™ is an involutive automorphism on the algebra M(Hz(A®))g). O

Theorem 1. The KTS’s (¢, M(H3(A®))R) defined by (3.5), (3.7) on the realification of the
2 X 2-matrix algebra determined by Jordan algebra Hg(AC) of hermitian 3 X 3-matrices over
A® € {R® C% HC, 0%} are compact and simple.

Proof. We prove first compactness. We must show that the canonical (trace) form 4 defined by
(2.4) for the KTS’s (¢, M(H3(A®))R) is positive definite. Since the canonical form is symmetric
let us consider the corresponding quadratic form which, by (2.4), is equal to

vo(z,x) = Tr(f(z,z)), where f(z,2)=2Rys — Lya, o€ M(H3(A%))g (3.8)
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We remark first that
f(z,2) =2Ryp — Loo = 2(Rap — Log) + Lo = 29(2,2) + Lag
where g(z,z) :== Ry 4 — Ly . Hence, by (3.8), we have
vo(,x) = Tr(f(z,x)) = 2Tr(9(x,x)) + Tr(La,q) (3.9)
such that, by (3.7) and (2.1),
Lyo(2) = (z27)z + (227)x — (2T)T~ (3.10)

g(z,x)(2) = (2T — 22)T~ = (2T — 22)T"~ (3.11)

where in the last equality we have used that ~ is an involution on M (H3(A®))g.
We calculate Tr(g(z,x)) first. For this, we remark that for

&1 961) <771 yl) <V1 Zl) <1 O3>
T = , Y= , 2= , 8o = 3.12
<$2 ) Y Y2 12 29 Vo 0 O3 —1 (3:12)

z,y, 2,50 € M(H3(A®))r, where O3 denotes the zero matrix of order 3, the identity y — 7 =
(m — m2)so follows from (2.7). Hence

2T — 2% = (& — &1 + T(21,22) — T(22,21))s0
by (2.7), and then the identity

g(x,2)(2) = (& — &y + T(21,x2) — T(22, 1)) 50T~
follows from (3.11). Then, by (2.7), (3.5) and (3.12), we have
_ & m
g(x,2)(2) = (11&2 — v2&1 + T(21,22) — T'(22,71)) g (3.13)

Recall that for any linear map f : U — F, U a vector space over the field F, yields Tr(f(-)v) =
f(v) and let f, : M(H3(A®)) — C be the linear map

fo: (”1 zl) — & — va€1 + T(z1, ) — T(29,21)

22 V2

Then by (3.13) follows g(z,z) = fz(-)v with v = ( & JTAA), SO

-z —&
Tr(g(x, x)) = 2(|&]* + ||&l® + T (21, 71") + T(x2,72")) (3.14)

for all x = @12 g) € M(H3(A®))g, where the factor 2 in (3.14) follows from the fact that the

trace is calculated over the realification M (H3(A®))g.
We calculate now T'r(L, ;). For this, we remark that by (3.10) and the fact that ~ and ~ are
involutive on M (H3(A®))r follows

Ly = Lgg~ + hy — hz~, where hy(z) = (227)z, Vz,z€ M(Hg(AC))R (3.15)
Further, we calculate Tr(Lg,~). By (2.7), (3.5) and (3.12) we have

L (& 1)\ (& T &Ll + T (21, 71") G + &1 + 71" X 29

= (962 52) (961/\ §2> B ( Grg+ TN+ 11 x T &2 + T(a2, 73") >
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Let us denote the units of M(H3(A®))g by

(1 03 (i 0y (0 03 (0 0y (3.160)

H1 = 03 0 ; Hi1 = 03 0 ; H2 = 03 1 ; Hi2 = 03 i -10a
0 ¢ 0 e 0 O3 0 O3

ey — ) ie]3 — ; ej4 — ) iej4 — . .16b

H 13 (03 O) H i3 (Og O) H 14 ( €] 0 > . 14 <’L€l 0 ) (3 6 )

0 fi 0 ifs 0 Os 0 Os3
lu’fl3 - 03 O ) /’LifZS = 03 0 ) /’Lfl4 = fl O ’ /’Lifl4 - Zfl O (3160)

0 upgl 0 dung
Hungis = <03 B ) Hivngiz = <03 0 ) (3.16d)
0 O3 0 O3
= ungig = 3.16
funas (ungl 0>’ s <z’ungl 0) (3:16¢)

where e, ieg, fi,if1, Ung1, itng; (1 =1,2,3,n =2,...,dimcA®) is the basis of H3(A®)g such that
el, fi, g1 are defined by (3.1), ¢ denotes the complex unit and u,, # 1 are the standard units.

Let ¢, (Lyz~ (1)) denote the coefficient of a generic unit u of M(H3(A%))g in Lyz~(1). Then,
by (3.16), straightforward calculations give

Cn (Laa~ (11)) = Cuay (L~ (1)) = Cpug (L~ (13)) = €1 |2+ T (1, 717

Cpn (Laa~ (112)) = Cuio (L~ (1i2)) = € (L~ (1a)) = |€2][* 4+ T (02, 727
for all p1s € {fterys tierys Hofips Hifips Mungry> Piungyy T = 3,4. Then, by (3.17),

Tr(Lyg~) = 2(1 + dime Hy(A9)[[[&1|* + [|2]]* + T(21, 71") + T2, 72")] (3.18)

for all z = (§ ¢1) € M(H3(A"))g.
We show now that T'r(h;) = Tr(hz~), for all z € M(H3(A®))r, where h, is defined by (3.15).
We remark first that h,(z) := (z2™)x = (2¢(2))z, 2,2 € M(H3(A®))R, where ¢ : z +— T~ is
an involutive automorphism on M(Hs(A))r. Then

ha~ = he) : 2 = (2T)p(x) = (20(27))p(2) = o((p(2)27)x) = p(ha(p(2)))

for all 2 € M(H3(A®))g. Therefore hz~ = @hyp = phyp~ ', so h, and hg~ are similar and
hence they have the same trace.
Finally, by (3.18), (3.15), (3.14), (3.9) and the last line follows

Yo(@, ) = 2(3 + dime Ha(A%))[||61]]” + [|&2]* + T(21,71") + T (22, 72")] (3.19)

for all z = (212 g) € M(H;3(A®))g. Then, by (3.19) and Lemma 2, v4(x, x) is positive definite
for all z € M(H3(A®))g.

We prove now simplicity.

Since the KTS’s ¢(x,y, z) = Bk ac))e (2,77 2), z,y,z € M(H3(A®))g, are compact then
they are simple if and only if the corresponding Kantor algebras £(¢(x,y, z)) are simple, by [5]
Theorem 3.7. Moreover, since B, (ac)), (:Y,2), T,Y, 2 € M(H3(A®))g, are KTS’s satisfying
the condition (A) then the algebras L(¢(z,y, 2)) and L(Ba(p,(acy) (T, y,2)) are isomorphic as
GLA’s, by [6] Proposition 1.6. But the Kantor algebras L(B (s, (ac)),(7,Y,2)) are simple if
and only if the structurable algebras (A,”) = M(H3(A®))g are simple, by [2] Corollary 6 and
[7] Theorem 25. Then the simplicity assertion follows from Lemma 1. O

(3.17)

Corollary 1. Let (¢, M(H3(A®))R) be the compact KTS’s defined by (3.5), (3.7), where A €
{RC, CC H® OC}. Then the canonical quadratic form has the form

Yo(@, @) = 6(2 + dime A)[|[&1]* + ||é2ll + T (21, 7") + T2z, 72")]
for all x = (312 g) € M(H3(A%))g, where the trace form T is defined by (2.11).
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Proof. The assertion follows from (3.19) since clearly dimc(H3(A%)) = 3(1 + dimcA®). O
Remark. By similarity to [22] §2, define triple systems (¢, M(H3(A®))g) by
¢ (,y,2) = 2(y™2) + 2(y"x) = ¥ (T2), 2,y, 2 € M(H3(A"))r

where ~ is the involution on M(H3(A®))g defined by formula (3.5). Then the triple systems
(¢, M(H3(A®))Rr) are simple compact KTS’s, since it can be easily proved that (¢, M(H3z(A®))r)
and (¢/, M(H3(A®))r) are isomorphic under the map z +— 7.

We give the classification theorem. Let Lie algebras be denoted as in [16].

Let AT denote any of the complex composition algebras R®, C®, HC, OF. Let M(H3(A®)) be
the 2 x 2-matrix algebra determined by the Jordan algebra H3(AT) defined by (2.7) with the
involutions ~ and ™~ defined by (3.5).

Theorem 2. All compact realifications of exceptional simple KTS’s defined on the 2 x 2-
matriz algebra determined by the Jordan algebra Hz(AC) are the KTS’s (¢, M(H3(A®))R),
AT € {R® C% HC, Q%Y}, defined by (3.7) and the corresponding Kantor algebras are the following
realifications of complex simple Lie algebras L(¢, M(H3(R®))g) = Ffg, L(¢, M(H3(CE))g) =
E§y, L(&, M(H5(H))p) = Efg, L(6, M(H3(0%))r) = Eg.

Proof. By [15] (Theorem 3.14 and §4.1), in order to classify all compact simple KTS’s we have to
find one such model for each 5-grading of each real simple Lie algebra. Moreover, by [16] (Theo-
rem 3.3, Table I), all 5-gradings 6912:72K ; of realifications of complex exceptional simple Lie alge-
bras are such that (dim¢ K_1,dim¢ K_2) €{(20,5), (20,1), (16,8), (32, 10), (32,1), (35, 7), (56, 1),
(64,14),(14,1),(8,7), (4, 1) }.

Let now (¢, M(H3(A®))r) be the simple compact KTS’s defined by (3.7). By the proof
of Theorem 1, the Kantor algebras £(¢) and L(B (g, (ac)),) are isomorphic as GLA’s, hence
isomorphic to Allison’s 5-GLA IC(M(H3(A%))R), by [7] Theorem 2.5. Then the assertions follow
from (2.6) and [16] (Table I) since it can be easily seen that the only possible (M (H3(A®))r) =
@®?__,K; are those for which (dim¢ K_1, dime K_2) € {(14,1), (20, 1), (32,1), (56,1)}. O

3.2 The exceptional simple Lie algebras G5, and G,

We give now a close related structure to the one of the previous chapter which leads to models
of compact KTS’s such that the corresponding Kantor algebra is the real exceptional simple
Lie algebra G(ZCR and moreover the real split Go. The approach is closer related to the models
of compact KTS’s defined in [20] and the presentation of [14], by defining the KTS’s on a
structurable algebra of skew-dimension one (over R or C), i.e. KTS’s defined on a 2 X 2-matrix
algebra, than the presentation of (complex) KTS’s defined on symmetric tensors of [18].

From now on let F € {R,R® = C} and let M(F) be the algebra with multiplication and
standard involution ~ defined by formula (2.7) [19] (§4). The algebra M(F) is called (in the
terminology of [2] (§8) the 2 x 2-matrix algebra constructed from an admissible non-degenerate
cubic form N (with basepoint 1 and scalar 1), for short here, the 2 x 2-matriz algebra determined
by F (where N(z) = 23,2 € F).

Remark. As a direct consequence of the embedding F — H3(F), x +— xI3, where I3 is the unit
matrix of order 3, follows N(z) = 3, Tr(z) = 3z, hence

T(x,y) =3zy and zxy=uwzy, forall z,yeF (3.20)

by the formulas (2.11).
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Lemma 3 ([3]). Let (A,”) := M(F) be the 2x2-matriz algebra determined by F € {R, C}, where
(7) is the standard involution on A. Then, over R(C), the algebra (A,”) is simple structurable
of skew-dimension 1, if F = R(C).

Proof. The assertions follow from [2] (§7, Theorem 11) and [3] (§1, Proposition 1.10). O

We define now models of compact simple Kantor triple systems.
Let (A,7) = M(F) be the 2 x 2-matrix algebra determined by F € {R,C}, where ~ is the
standard involution on A. We define a second involution ~ on M(F) by

& ow\"T & ;T
(552 §2> - (fﬁl 52) (3.21)

where &;,7; is the standard conjugate of &, z; € F,i=1,2.

Remark. Clearly, ~ is the identity map in the right hand side of formula (3.21) if F = R.
Moreover, the definition (3.21) is consistent with (3.5), if F = C, as well as with the definition
(2.16) of [20] (§2.2), it F = R.

Then the following involutive automorphism is defined on M(F)

T )
e ~(E%) 62
where &;,T; are the standard conjugates of &, x; € F,i = 1,2.
Remark. As above, ~ is the identity map in the right hand side of formula (3.22) if F = R.
Let M(C)r denote the realification of the algebra M(C). Then we have

Proposition 4. The triple systems (¢, M(C)r) and (¢, M(R)) defined by (3.7), (3.21) are
KTS’s satisfying the condition (A).

Proof. For the case (¢, M(C)gr) the proof is identical to the proof of Proposition 3, by replacing
in the proof of Proposition 3 the algebra M (H3(A®))g with M(C)g and Lemma 1 with Lemma 3,
respectively. Further, for the case (¢, M(R)) the proof is identical to the proof of [20] Proposition
2.4, by replacing in the proof of [20] Proposition 2.4 the algebra M(H3(A)) with M(R) and [20]
Lemma 1.2 with Lemma 3, respectively. O

We give now the analog of Theorem 1 and [20] Theorem 2.1.
Theorem 3. The KTS’s (¢, M(C)r) and (¢, M(R)) defined by (3.7),(3.21) are compact, simple.

Proof. We prove first compactness. We must show that the canonical (trace) form ~4 defined
by (2.4) for the KTS’s (¢, M(C)g) and (¢, M(R)), respectively, is positive definite. Since the
canonical form is symmetric we consider the corresponding quadratic form (3.8). Then, by (3.19)
and (3.20),

Yo(z,x) = 2(3 + dimcC)(||&]* + [|€]* + 3[[a1]|* + 3[[a2|[*) (3.23)

for all x = (51 1) € M(C)g, where ||c|| denotes the norm of ¢ € C. Then, by (3.23), v4(z,z) =

z2 &2

8([|1€1]1? + ||| + 3||z1]|> + 3||z2||*) hence v4(z,z) is positive definite for all € M(C)g.
Analogously, by [20] (2.29) and (3.20),

Yo(z, ) = (3 4+ dimgR) (&2 + €2 + 327 4 323) (3.24)
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for all z = (?2 g) € M(R). Then, by (3.24), v (2, ) = 4(£} + &3 + 323 + 323) hence v, (z, z) is
positive definite for all z € M(R).

We prove now simplicity.

For the case (¢, M(C)r) the proof is identical to the proof of the simplicity assertion of
Theorem 1, by replacing in the proof of Theorem 1 the algebra M(Hz(A®))g with M(C)g and
Lemma 1 with Lemma 3, respectively. Further, for the case (¢, M(R)) the proof is identical to
the proof of the simplicity assertion of [20] Theorem 2.1, by replacing in the proof of [20] Theorem

2.1 the algebra M(Hz(A)) with M(R) and [20] Lemma 1.2 with Lemma 3, respectively. O
Remark. By similarity to [22] §2, define triple systems (¢, M(H3(A%))g) by
¢(z,y,2) = 2(y~2) + 2(y~2) -7~ (T2),2,y,2 € M(C)r

where ~ is the involution on M(C)g defined by (3.21). Then the triple systems (¢', M(C)g)
are simple compact KTS’s, since it can be easily checked that (¢, M(C)g) and (¢', M(C)g) are
isomorphic under the map x +— .

Analogously, the triple systems (¢', M(R)) are simple compact KTS’s.

Proposition 5. Let (¢, M(C)r) and (¢, M(R)) be the KTS’s defined by (3.7), (3.21). Then
the corresponding Kantor algebras are the exceptional simple Lie algebras L(¢p, M(C)r) = GgR
and L(¢, M(R)) = Ga.

Proof. The proof is based on dimensional reasons. Consider first the simple compact KTS
(¢, M(C)r). By [6] Proposition 1.6, the Kantor algebras £(¢) and L(B(c),) are isomorphic
as GLA’s, hence isomorphic to Allison’s 5-GLA K(M(C)g), by [7] Theorem 2.5. Then the
assertion follow from (2.6) and [16] (Table I) since it can be easily seen that the only possible
K(M(C)g) = @2 _,K; with (dimg K_1, dime K_o) = (4,1) is GSp.

Analogously, consider the simple compact KTS (¢, M(R)). By [6] Proposition 1.6, the Kantor
algebras L(¢) and L(Br)) are isomorphic as GLA’s, hence isomorphic to Allison’s 5-GLA
K(M(R)), by [7] Theorem 2.5. Then the assertion follow from (2.6) and [16] (Table I) since it can
be easily seen that the only possible K(M(R)) = @7__,K; with (dimg K_1,dimg K_2) = (4,1)
is GQ. O

Remark. The identity £(Br)) = G2 follows also from [2] (§8, p. 1871).
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