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Abstract

Let A be the realification of the matrix algebra determined by Jordan algebra of hermi-
tian matrices of order three over a complex composition algebra. We define an involutive
automorphism on A with a certain action on the triple system obtained from A which give
models of simple compact Kantor triple systems. In addition, we give an explicit formula
for the canonical trace form and the classification for these triples and their corresponding
exceptional real simple Lie algebras. Moreover, we present all realifications of complex ex-
ceptional simple Lie algebras as Kantor algebras for a compact simple Kantor triple system
defined on a structurable algebra of skew-dimension one.
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1 Introduction

Models of Kantor triple systems defined on the 2× 2-matrix algebra determined by the Jordan
algebra J = H3(AC) of hermitian 3× 3-matrices over complex composition algebras AC consid-
ered over the field C of complex numbers appeared in a unified formula given by I. L. Kantor
[17, 18] in connection with exceptional Lie algebras and a classification theorem over C.

The notion of (simple) structurable algebras was given by B. N. Allison [1] who studied
in particular those of skew-dimension one [3]. Moreover, the connection between Kantor triple
systems and structurable algebras was studied by H. Asano and S. Kaneyuki [7] who also defined
and studied [5, 15] compact Kantor triple systems in connection with classical real Lie algebras
and a classification theorem over the field R.

In this paper we continue the work on compact simple Kantor triple systems of [5] and
[20, 21, 22] giving, by a unified formula (Theorem 1), the classification of exceptional compact
simple Kantor triple systems defined on the realification of the 2× 2-matrix algebra determined
by Jordan algebra J = H3(AC) of hermitian 3× 3-matrices over a complex composition algebra
AC corresponding to realifications of complex exceptional simple Lie algebras (Theorem 2). In
addition, we give an explicit formula for the quadratic canonical trace form for these Kantor triple
systems (Corollary 1). Further, we present all realifications of complex exceptional simple Lie
algebras as Kantor algebras for a compact simple Kantor triple system defined on a structurable
algebra of skew-dimension one (Theorem 2, Proposition 5).

The results presented here are a continuation of [20] where models of exceptional compact
simple Kantor triple systems defined on the 2× 2-matrix algebra determined by Jordan algebra
J = H3(A) of hermitian 3 × 3-matrices over a real composition algebra A have been given.
Related results are those of [10] where a construction of exceptional simple 5-graded Lie algebras
U = ⊕2

l=−2Ul and an explicit realization of the subspaces Ul have been given by different methods.
Moreover, the notion of Kantor triple systems and their structure theory have been generalized
by (ε, δ)-Freudenthal-Kantor triple systems [13, 24] such that Kantor triple systems coincide
with (−1, 1)-Freudenthal-Kantor triple systems. A realization of exceptional simple 5-graded
Lie algebras in terms of Freudenthal-Kantor triple systems have been given by N. Kamiya [14].
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The models of compact simple Kantor triple systems considered here start with a structurable
algebra A, its associated Kantor triple system BA(x, y, z) := Vx,y(z), x, y, z ∈ A, and an invo-
lutive automorphism ϕ. Then the new triple product BA(x, ϕ(y), z) is considered, which gives
again a Kantor triple system. Suitable elections of A and ϕ (here ϕ(y) = y∼, where − is the
standard involution and ∼ denotes a certain involution on A) give compact simple models.

The structure of this paper is as follows. Section 2 serves a preliminary purpose; we give
a short overview of the basic definitions and known results on triple systems, graded Lie al-
gebras and structurable algebras. The main results mentioned above, on BA(x, ϕ(y), z), the
corresponding canonical trace form and the corresponding exceptional real simple Lie algebras
are proved in section 3.

2 Triple systems, graded Lie algebras and structurable algebras

Let U be a Lie algebra over a field F of characteristic zero. U is called a graded Lie algebra
(abbreviated as GLA) if it is a Lie algebra of the form U = ⊕∞l=−∞Ul such that [Ul, Uk] ⊆ Ul+k.

A GLA U = ⊕∞l=−∞Ul is called 5-graded if U±n = 0 for any integer n > 2.
Let U be a finite dimensional vector space over the field F and B : U × U × U → U be a

trilinear map. The pair (B,U) is called a triple system over F.
For x, y ∈ U define the linear endomorphisms Lx,y, Rx,y and Sx,y on U by

Lx,y(z) := B(x, y, z), Rx,y(z) := B(z, x, y) (2.1a)
Sx,y(z) := B(x, z, y)−B(y, z, x), z ∈ U (2.1b)

A triple system (B,U) is called a generalized Jordan triple system (abbreviated as GJTS) if
the following identity is valid [7] (§1):

[Lx,y, Lu,v] = LLx,y(u),v − Lu,Ly,x(v), u, v, x, y ∈ U (2.2)

Let (B,U) and (B′, U ′) be two GJTS’s. We say that a linear map F of U into U ′ is a
homomorphism if F satisfies the identity F (B(x, y, z)) = B′(F (x), F (y), F (z)), for all x, y, z ∈ U .
Moreover, if F is bijective, then F is called an isomorphism. In this case the GJTS’s (B,U) and
(B′, U ′) are said to be isomorphic.

Let (B,U) be a GJTS and Vk, k = 1, 2, 3, be subspaces of U . We denote by B(V1, V2, V3) the
subspace of U spanned by elements B(x1, x2, x3), xk ∈ Vk, k = 1, 2, 3. A subspace V of U is called
an ideal of (B,U) if the following relations hold B(V,U, U) ⊆ V, B(U, V, U) ⊆ V, B(U,U, V ) ⊆ V .
The GJTS (B,U) is called simple if B is not a zero map and (B,U) has no non-trivial ideal.

Starting from a given GJTS (B,U), I. L. Kantor [17] constructed a certain GLA L(B) =
⊕∞l=−∞Ul such that U−1 = U . The Lie algebra L(B) is called the Kantor algebra for (B,U) [5].
A GJTS (B,U) is called of the n-th order if its Kantor algebra is of the form L(B) = ⊕n

l=−nUl.
We shall call a GJTS of the second order for short a Kantor triple system [4] (abbreviated as
KTS). By [17] Proposition 10, a GJTS (B,U) is a KTS if and only if

SSx,y(u),v = Sx,yLu,v + Lv,uSx,y, u, v, x, y ∈ U (2.3)

Remark. Many authors [4, 18] define a KTS to be a triple system (B,U) satisfying the identities
(2.2), (2.3) instead of the identity (2.2) together with the fact that its Kantor algebra is 5-graded.
The definitions are equivalent.

A GJTS is called exceptional (classical) if its Kantor algebra is exceptional (classical) Lie
algebra.

For z ∈ U we define a bilinear map Bz on U by Bz(x, y) = B(x, z, y), x, y ∈ U . We say that
(B,U) satisfies the condition (A) if Bz = 0 implies z = 0.
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Let (B,U) be a finite dimensional KTS. We consider the symmetric bilinear form on U [5]

γB(x, y) :=
1
2
Tr(2Rx,y + 2Ry,x − Lx,y − Ly,x) (2.4)

where Tr(f) means the trace of a linear endomorphism f . We shall call the form γB defined by
(2.4) the canonical (trace) form for the KTS (B,U).

A finite dimensional KTS (B,U) is called compact if its canonical form γB is positive definite.
Let A be an algebra over F. Let left (right) multiplication Lx : A 7→ A, (Rx : A 7→ A) be

defined by Lx(y) = xy, (Rx(y) = yx), x, y ∈ A and denote by HomF(A) the associative algebra
over F of all linear transformations on A. If A is finite dimensional we denote by dimFA the
dimension of A over F. For any extension field K of F we denote AK = K ⊗F A.

Proposition 1 ([11]). Let A be a finite dimensional algebra over an algebraically closed field Γ
and let Φ be a subfield of Γ. If A is simple over Γ then A is simple as algebra considered over Φ.

Remark. A direct proof of Proposition 1 is available in [22].

Let (A,− ) be a unital non-associative algebra over F with involution (involutive anti-auto-
morphism) −. We define Vx,y ∈ HomF(A) and the triple system BA(x, y, z) by

Vx,y := LLx(y) + RxRy −RyRx, x, y ∈ A (2.5a)

BA(x, y, z) := Vx,y(z) = (xy)z + (zy)x− (zx)y, x, y, z ∈ A (2.5b)

BA(x, y, z) is called the triple system obtained from the algebra (A,− ) [7] (§2). We shall write
for short BA for (BA, A).

A unital non-associative algebra with involution (A,− ) is called a structurable algebra if the
following identity is fulfilled [3]:

[Vx,y, Vu,v] = VVx,y(u),v − Vu,Vy,x(v), u, v, x, y ∈ A

Let (A,− ) be a structurable algebra. Then, by [3], A = S ⊕H, where

S := S(A,− ) := {s ∈ A| s = −s} and H := H(A,− ) := {h ∈ A|h = h}

are the spaces of skew-hermitian and hermitian elements of A, respectively and dimS is called
the skew-dimension of (A,− ).

To a structurable algebra (A,− ) Allison [2] associated a 5-GLA K(A) as follows

K(A) = ⊕2
l=−2Kl, where (2.6a)

K−2 = S, K−1 = A, K0 = {Vx,y ∈ HomF(A) : x, y ∈ A} (2.6b)
Kl(l = 1, 2) is an isomorphic copy of K−l (2.6c)

By [7] Theorem 2.5, Allison’s 5-GLA K(A) coincides with Kantor’s 5-GLA L(BA), where BA is
the triple system obtained from the algebra (A,− ).

Let J be a finite dimensional separable degree 3 Jordan algebra over F. Let N , T and ] be
the norm form, trace form and adjoint map on J respectively [12] (§6.3). Define × : J × J → J
by x×y = (x+y)]−x]−y]. Then the algebra M(J) with multiplication and standard involution
− defined [3] (§1) by

M(J) :=
{(

ξ1 x1

x2 ξ2

)
| ξ1, ξ2 ∈ F, x1, x2 ∈ J

}
(2.7a)(

ξ1 x1

x2 ξ2

) (
η1 y1

y2 η2

)
:=

(
ξ1η1 + T (x1, y2) ξ1y1 + η2x1 + x2 × y2

η1x2 + ξ2y2 + x1 × y1 ξ2η2 + T (x2, y1)

)
(2.7b)
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ξ1 x1

x2 ξ2

)
:=

(
ξ2 x1

x2 ξ1

)
(2.7c)

is called the 2× 2-matrix algebra determined by Jordan algebra J .
Let R, C, H and O denote the real algebras of real and complex numbers, quaternions and

octonions, respectively. They are called division composition algebras and are defined by their
explicit multiplication tables [23].

Let A be any of the division composition algebras R, C, H, O and let ul, l = 1, . . . ,dimRA,
where dimRA ∈ {1, 2, 4, 8}, denote the standard units of A. We define conjugation − on a
standard unit u of A by

1 = 1, u = −u, if u 6= 1 (2.8)

and extend conjugation − by linearity on A.

Remark. By [23] §3, it is known that − is an involution on any composition algebra A above.

Let now AC be any of the complex composition algebras RC, CC, HC, OC, i.e. the division
composition algebras regarded as algebras over C. We define conjugation − and scalar extended
conjugation ∧, called pseudoconjugation, on the complex algebra AC by

x =
( dimCAC∑

l=1

αlul

)− :=
dimCAC∑

l=1

αlul, αl ∈ C (2.9)

x∧ =
( dimCAC∑

l=1

αlul

)∧ :=
dimCAC∑

l=1

αl ul, αl ∈ C (2.10)

where x =
∑dimCAC

l=1 αlul is an arbitrary element of AC, ul are the standard units and ul is defined
by (2.8) hence αl is the standard complex conjugate of αl.

Remark. Then clearly − and ∧ are involutions of the complex algebra AC.

Let A be each one of the division composition algebras R, C, H, O.
Let A ∈ {A, AC} denote any of the real or complex composition algebras and let M3(A)

denote the set of matrices of order 3 with entries in A. Then, by definition, the conjugation −

on the algebra A = A and the conjugation − and pseudoconjugation ∧ on the algebra A = AC

are induced on M3(A) by − and ∧, respectively, on each entry.

Remark. Clearly − and ∧, respectively, are involutive on M3(A).

Let H3(A) := {x ∈ M3(A)|xT = x} denote the Jordan algebra of hermitian 3 × 3-matrices
over a composition algebra A ∈ {A, AC} [8] (§6) with the product

x · y =
1
2
(xy + yx), x, y ∈ H3(A)

where in the right hand side we have usual matrix multiplication and xT denotes the conjugate
transposed of x ∈ M3(A). Then, by [9] (p. 218), the trace form and ×-operation in formulas
(2.7) are defined on H3(A) by

T (x, y) = Tr(x · y) =
1
2
Tr(xy + yx) (2.11a)

x× y = x · y − 1
2
[Tr(x)y + Tr(y)x] +

1
2
[Tr(x)Tr(y)− Tr(x · y)]I3 (2.11b)

for all x, y ∈ H3(A), where I3 is the unit matrix of order 3 and Tr(x) denotes the trace of x.
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Lemma 1 ([3]). Let (A,− ) := M(H3(AC)) be the 2 × 2-matrix algebra determined by the
Jordan algebra H3(AC) of hermitian 3 × 3-matrices over a complex composition algebra AC ∈
{RC, CC, HC, OC}, where (−) is the standard involution on A. Then, over C, the algebras (A,− )
are simple structurable of skew-dimension 1.

Proof. The assertion follows directly from [3] (§1 Proposition 1.10).

Let now A be a K-algebra for any extension field of K of F. We denote by AF the algebra
A considered as algebra over F. If A is an algebra over C then we call the algebra AR the
realification of the complex algebra A. Further, if BA is the triple system obtained from a
complex algebra (A,− ) then we call the triple system BAR obtained from algebra (AR,− ) the
realification of BA.

Proposition 2 ([22] Proposition 1.4). Let (A,− ) be a structurable algebra over C. Then, over
R, the triple system BAR is a KTS satisfying the condition (A), and BAR is simple if and only
if (AR,− ) is simple.

3 On compact realifications of exceptional simple Kantor triple
systems

We show first a property of the trace form on the Jordan algebra (H3(AC),− ,∧ ).
Let εlm denote in M3(R) the square matrix with entry 1 where the l -th row and the m-th

column meet, all other entries being 0, and denote

e1 = ε11, e2 = ε22, e3 = ε33 (3.1a)
f1 = ε12 + ε21, f2 = ε13 + ε31, f3 = ε23 + ε32 (3.1b)
g1 = ε12 − ε21, g2 = ε13 − ε31, g3 = ε23 − ε32 (3.1c)

Let AC denote any of the complex composition algebras RC, CC, HC, OC. From now on an
arbitrary element of the Jordan algebra H3(AC) is of the form

x =

 x11 x12 x13

x12 x22 x23

x13 x23 x33

 , xll ∈ C, xlm ∈ AC, 1 ≤ l < m ≤ 3 (3.2)

Lemma 2. Let x be an arbitrary element in H3(AC) of the form (3.2) and let the trace form
T (x, y), x, y ∈ H3(AC) be defined by (2.11). Let − and ∧ be the conjugation and pseudo-
conjugation defined on H3(AC) by (2.9) and (2.10), respectively. Then

T (x, x∧) =
∑

1≤l,m≤3

||xlm||2

where ||xlm|| denotes the norm of xlm, 1 ≤ l,m ≤ 3.

Proof. Let x = (xlm) be an arbitrary element in H3(AC) of the form (3.2), where xlm ∈
AC, 1 ≤ l,m ≤ 3. Let xlm = clm ⊗R alm, clm ∈ C, alm ∈ A. We write for short ⊗R = ⊗. Then
xlm = clm ⊗ alm, by (2.9), and x∧lm = clm ⊗ alm, by (2.10), where − is defined by (2.8) so clm is
the standard complex conjugate of clm. Hence, xlm

∧ = clm ⊗ alm and by (3.2) we have

x =

 c11 c12 ⊗ a12 c13 ⊗ a13

c12 ⊗ a12 c22 c23 ⊗ a23

c13 ⊗ a13 c23 ⊗ a23 c33

 (3.3)
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and

x∧ =

 c11 c12 ⊗ a12 c13 ⊗ a13

c12 ⊗ a12 c22 c23 ⊗ a23

c13 ⊗ a13 c23 ⊗ a23 c33

 (3.4)

Then, by (2.11), (3.3) and (3.4), straightforward calculations give

T (x, x∧) =
∑

1≤l≤3

||cll||2 + 2
∑

1≤l<m≤3

||clm||2||alm||2 =
∑

1≤l,m≤3

||xlm||2

where ||xlm|| denotes the norm of xlm, 1 ≤ l,m ≤ 3.

3.1 The exceptional simple Lie algebras F C
4 R, EC

6 R, EC
7 R and EC

8 R

We define now models of compact simple Kantor triple systems.
Let AC denote any of the complex composition algebras RC, CC, HC, OC.
LetM(H3(AC)) be the 2×2-matrix algebra determined by the Jordan algebra H3(AC) defined

by (2.7) with standard involution −. Let us define a second involution ∼ on M(H3(AC)) by(
ξ1 x1

x2 ξ2

)∼
:=

(
ξ1 x2

∧

x1
∧ ξ2

)
(3.5)

where xi
∧ denotes the pseudo-conjugate of xi conjugate, xi ∈ H3(AC) and ξi is the standard con-

jugate of ξi ∈ C, i = 1, 2. Hence the following involutive automorphism is defined onM(H3(AC))(
ξ1 x1

x2 ξ2

) ∼

=
(

ξ2 x2
∧

x1
∧ ξ1

)
(3.6)

Let M(H3(AC))R be the realification of the algebra M(H3(AC)) and let (φ,M(H3(AC))R)
denote the triple system defined by formula

φ(x, y, z) = (xy∼)z + (zy∼)x− (zx)y∼, x, y, z ∈M(H3(AC))R (3.7)

We prove now the main results in the Theorems 1, 2 and Corollary 1.

Proposition 3. The triple systems (φ,M(H3(AC))R) defined by (3.5), (3.7) are KTS’s satis-
fying the condition (A).

Proof. From Lemma 1 and Propositions 1, 2 follows that the triple systems BM(H3(AC))R(x, y, z),
x, y, z ∈M(H3(AC))R are (simple) KTS’s satisfying the condition (A). Further, we remark that
φ(x, y, z) = BM(H3(AC))R(x, y∼, z), by (3.7) and (2.5). Then the assertions follow from [6] Lemma
1.5 since the map ϕ(y) = y∼ is an involutive automorphism on the algebra M(H3(AC))R).

Theorem 1. The KTS’s (φ,M(H3(AC))R) defined by (3.5), (3.7) on the realification of the
2 × 2-matrix algebra determined by Jordan algebra H3(AC) of hermitian 3 × 3-matrices over
AC ∈ {RC, CC, HC, OC} are compact and simple.

Proof. We prove first compactness. We must show that the canonical (trace) form γφ defined by
(2.4) for the KTS’s (φ,M(H3(AC))R) is positive definite. Since the canonical form is symmetric
let us consider the corresponding quadratic form which, by (2.4), is equal to

γφ(x, x) = Tr(f(x, x)), where f(x, x) = 2Rx,x − Lx,x, x ∈M(H3(AC))R (3.8)
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We remark first that

f(x, x) = 2Rx,x − Lx,x = 2(Rx,x − Lx,x) + Lx,x = 2g(x, x) + Lx,x

where g(x, x) := Rx,x − Lx,x. Hence, by (3.8), we have

γφ(x, x) = Tr(f(x, x)) = 2Tr(g(x, x)) + Tr(Lx,x) (3.9)

such that, by (3.7) and (2.1),

Lx,x(z) = (xx∼)z + (zx∼)x− (zx)x∼ (3.10)

g(x, x)(z) = (zx− xz)x∼ = (zx− zx)x∼ (3.11)

where in the last equality we have used that − is an involution on M(H3(AC))R.
We calculate Tr(g(x, x)) first. For this, we remark that for

x :=
(

ξ1 x1

x2 ξ2

)
, y :=

(
η1 y1

y2 η2

)
, z :=

(
ν1 z1

z2 ν2

)
, s0 :=

(
1 O3

O3 − 1

)
(3.12)

x, y, z, s0 ∈ M(H3(AC))R, where O3 denotes the zero matrix of order 3, the identity y − y =
(η1 − η2)s0 follows from (2.7). Hence

zx− zx = (ν1ξ2 − ν2ξ1 + T (z1, x2)− T (z2, x1))s0

by (2.7), and then the identity

g(x, x)(z) = (ν1ξ2 − ν2ξ1 + T (z1, x2)− T (z2, x1))s0x
∼

follows from (3.11). Then, by (2.7), (3.5) and (3.12), we have

g(x, x)(z) = (ν1ξ2 − ν2ξ1 + T (z1, x2)− T (z2, x1))
(

ξ2 x2
∧

−x1
∧ − ξ1

)
(3.13)

Recall that for any linear map f : U → F, U a vector space over the field F, yields Tr(f(·)v) =
f(v) and let fx : M(H3(AC)) → C be the linear map

fx :
(

ν1 z1

z2 ν2

)
7→ ν1ξ2 − ν2ξ1 + T (z1, x2)− T (z2, x1)

Then by (3.13) follows g(x, x) = fx(·)v with v =
( ξ2 x2

∧

−x1
∧ −ξ1

)
, so

Tr(g(x, x)) = 2(||ξ1||2 + ||ξ2||2 + T (x1, x1
∧) + T (x2, x2

∧)) (3.14)

for all x =
(
ξ1 x1

x2 ξ2

)
∈ M(H3(AC))R, where the factor 2 in (3.14) follows from the fact that the

trace is calculated over the realification M(H3(AC))R.
We calculate now Tr(Lx,x). For this, we remark that by (3.10) and the fact that − and ∼ are

involutive on M(H3(AC))R follows

Lx,x = Lxx∼ + hx − hx∼ , where hx(z) := (zx∼)x, ∀x, z ∈M(H3(AC))R (3.15)

Further, we calculate Tr(Lxx∼). By (2.7), (3.5) and (3.12) we have

xx∼ =
(

ξ1 x1

x2 ξ2

)(
ξ1 x2

∧

x1
∧ ξ2

)
=

(
||ξ1||2 + T (x1, x1

∧) ξ1x2
∧ + ξ2x1 + x1

∧ × x2

ξ1x2 + ξ2x1
∧ + x1 × x2

∧ ||ξ2||2 + T (x2, x2
∧)

)
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Let us denote the units of M(H3(AC))R by

µ1 =
(

1 O3

O3 0

)
, µi1 =

(
i O3

O3 0

)
, µ2 =

(
0 O3

O3 1

)
, µi2 =

(
0 O3

O3 i

)
(3.16a)

µel3 =
(

0 el

O3 0

)
, µiel3 =

(
0 iel

O3 0

)
, µel4 =

(
0 O3

el 0

)
, µiel4 =

(
0 O3

iel 0

)
(3.16b)

µfl3 =
(

0 fl

O3 0

)
, µifl3 =

(
0 ifl

O3 0

)
, µfl4 =

(
0 O3

fl 0

)
, µifl4 =

(
0 O3

ifl 0

)
(3.16c)

µungl3 =
(

0 ungl

O3 0

)
, µiungl3 =

(
0 iungl

O3 0

)
(3.16d)

µungl4 =
(

0 O3

ungl 0

)
, µiungl4 =

(
0 O3

iungl 0

)
(3.16e)

where el, iel, fl, ifl, ung l, iung l (l = 1, 2, 3, n = 2, . . . ,dimCAC) is the basis of H3(AC)R such that
el, fl, gl are defined by (3.1), i denotes the complex unit and un 6= 1 are the standard units.

Let cµ(Lxx∼(µ)) denote the coefficient of a generic unit µ of M(H3(AC))R in Lxx∼(µ). Then,
by (3.16), straightforward calculations give

cµ1(Lxx∼(µ1))=cµi1(Lxx∼(µi1))=cµ3(Lxx∼(µ3))= ||ξ1||2+ T (x1, x1
∧)

cµ2(Lxx∼(µ2))=cµi2(Lxx∼(µi2))=cµ4(Lxx∼(µ4))= ||ξ2||2+ T (x2, x2
∧)

(3.17)

for all µt ∈ {µel t, µiel t, µfl t, µifl t, µungl t, µiungl t}, t = 3, 4. Then, by (3.17),

Tr(Lxx∼) = 2(1 + dimCH3(AC))[||ξ1||2 + ||ξ2||2 + T (x1, x1
∧) + T (x2, x2

∧)] (3.18)

for all x =
(
ξ1 x1

x2 ξ2

)
∈M(H3(AC))R.

We show now that Tr(hx) = Tr(hx∼), for all x ∈M(H3(AC))R, where hx is defined by (3.15).
We remark first that hx(z) := (zx∼)x = (zϕ(x))x, x, z ∈ M(H3(AC))R, where ϕ : x 7→ x∼ is

an involutive automorphism on M(H3(A))R. Then

hx∼ = hϕ(x) : z 7→ (zx)ϕ(x) = (zϕ(x∼))ϕ(x) = ϕ((ϕ(z)x∼)x) = ϕ(hx(ϕ(z)))

for all x ∈ M(H3(AC))R. Therefore hx∼ = ϕhxϕ = ϕhxϕ−1, so hx and hx∼ are similar and
hence they have the same trace.

Finally, by (3.18), (3.15), (3.14), (3.9) and the last line follows

γφ(x, x) = 2(3 + dimCH3(AC))[||ξ1||2 + ||ξ2||2 + T (x1, x1
∧) + T (x2, x2

∧)] (3.19)

for all x =
(
ξ1 x1

x2 ξ2

)
∈ M(H3(AC))R. Then, by (3.19) and Lemma 2, γφ(x, x) is positive definite

for all x ∈M(H3(AC))R.
We prove now simplicity.
Since the KTS’s φ(x, y, z) = BM(H3(AC))R(x, y∼, z), x, y, z ∈M(H3(AC))R, are compact then

they are simple if and only if the corresponding Kantor algebras L(φ(x, y, z)) are simple, by [5]
Theorem 3.7. Moreover, since BM(H3(AC))R(x, y, z), x, y, z ∈M(H3(AC))R, are KTS’s satisfying
the condition (A) then the algebras L(φ(x, y, z)) and L(BM(H3(AC))R(x, y, z)) are isomorphic as
GLA’s, by [6] Proposition 1.6. But the Kantor algebras L(BM(H3(AC))R(x, y, z)) are simple if
and only if the structurable algebras (A,− ) = M(H3(AC))R are simple, by [2] Corollary 6 and
[7] Theorem 25. Then the simplicity assertion follows from Lemma 1.

Corollary 1. Let (φ,M(H3(AC))R) be the compact KTS’s defined by (3.5), (3.7), where AC ∈
{RC, CC, HC, OC}. Then the canonical quadratic form has the form

γφ(x, x) = 6(2 + dimC AC)[||ξ1||2 + ||ξ2||2 + T (x1, x1
∧) + T (x2, x2

∧)]

for all x =
(
ξ1 x1

x2 ξ2

)
∈M(H3(AC))R, where the trace form T is defined by (2.11).
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Proof. The assertion follows from (3.19) since clearly dimC(H3(AC)) = 3(1 + dimCAC).

Remark. By similarity to [22] §2, define triple systems (φ′,M(H3(AC))R) by

φ′(x, y, z) = x(y∼z) + z(y∼x)− y∼(xz), x, y, z ∈M(H3(AC))R

where ∼ is the involution on M(H3(AC))R defined by formula (3.5). Then the triple systems
(φ′,M(H3(AC))R) are simple compact KTS’s, since it can be easily proved that (φ,M(H3(AC))R)
and (φ′,M(H3(AC))R) are isomorphic under the map x 7→ x.

We give the classification theorem. Let Lie algebras be denoted as in [16].
Let AC denote any of the complex composition algebras RC, CC, HC, OC. Let M(H3(AC)) be

the 2 × 2-matrix algebra determined by the Jordan algebra H3(AC) defined by (2.7) with the
involutions − and ∼ defined by (3.5).

Theorem 2. All compact realifications of exceptional simple KTS’s defined on the 2 × 2-
matrix algebra determined by the Jordan algebra H3(AC) are the KTS’s (φ,M(H3(AC))R),
AC ∈ {RC, CC, HC, OC}, defined by (3.7) and the corresponding Kantor algebras are the following
realifications of complex simple Lie algebras L(φ,M(H3(RC))R) = F C

4 R, L(φ,M(H3(CC))R) =
EC

6 R,L(φ,M(H3(HC))R)= EC
7 R, L(φ,M(H3(OC))R)= EC

8 R.

Proof. By [15] (Theorem 3.14 and §4.1), in order to classify all compact simple KTS’s we have to
find one such model for each 5-grading of each real simple Lie algebra. Moreover, by [16] (Theo-
rem 3.3, Table I), all 5-gradings ⊕2

l=−2Kl of realifications of complex exceptional simple Lie alge-
bras are such that (dimC K−1,dimC K−2)∈{(20, 5), (20, 1), (16, 8), (32, 10), (32, 1), (35, 7), (56, 1),
(64, 14), (14, 1), (8, 7), (4, 1)}.

Let now (φ,M(H3(AC))R) be the simple compact KTS’s defined by (3.7). By the proof
of Theorem 1, the Kantor algebras L(φ) and L(BM(H3(AC))R) are isomorphic as GLA’s, hence
isomorphic to Allison’s 5-GLA K(M(H3(AC))R), by [7] Theorem 2.5. Then the assertions follow
from (2.6) and [16] (Table I) since it can be easily seen that the only possible K(M(H3(AC))R) =
⊕2

l=−2Kl are those for which (dimC K−1,dimC K−2) ∈ {(14, 1), (20, 1), (32, 1), (56, 1)}.

3.2 The exceptional simple Lie algebras GC
2 R and G2

We give now a close related structure to the one of the previous chapter which leads to models
of compact KTS’s such that the corresponding Kantor algebra is the real exceptional simple
Lie algebra GC

2 R and moreover the real split G2. The approach is closer related to the models
of compact KTS’s defined in [20] and the presentation of [14], by defining the KTS’s on a
structurable algebra of skew-dimension one (over R or C), i.e. KTS’s defined on a 2× 2-matrix
algebra, than the presentation of (complex) KTS’s defined on symmetric tensors of [18].

From now on let F ∈ {R, RC = C} and let M(F) be the algebra with multiplication and
standard involution − defined by formula (2.7) [19] (§4). The algebra M(F) is called (in the
terminology of [2] (§8) the 2× 2-matrix algebra constructed from an admissible non-degenerate
cubic form N (with basepoint 1 and scalar 1), for short here, the 2×2-matrix algebra determined
by F (where N(x) = x3, x ∈ F).

Remark. As a direct consequence of the embedding F → H3(F), x 7→ xI3, where I3 is the unit
matrix of order 3, follows N(x) = x3, T r(x) = 3x, hence

T (x, y) = 3xy and x× y = xy, for all x, y ∈ F (3.20)

by the formulas (2.11).
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Lemma 3 ([3]). Let (A,− ) := M(F) be the 2×2-matrix algebra determined by F ∈ {R, C}, where
(−) is the standard involution on A. Then, over R(C), the algebra (A,− ) is simple structurable
of skew-dimension 1, if F = R(C).

Proof. The assertions follow from [2] (§7, Theorem 11) and [3] (§1, Proposition 1.10).

We define now models of compact simple Kantor triple systems.
Let (A,− ) = M(F) be the 2 × 2-matrix algebra determined by F ∈ {R, C}, where − is the

standard involution on A. We define a second involution ∼ on M(F) by(
ξ1 x1

x2 ξ2

)∼
:=

(
ξ1 ; x2

x1 ξ2

)
(3.21)

where ξi, xi is the standard conjugate of ξi, xi ∈ F, i = 1, 2.

Remark. Clearly, − is the identity map in the right hand side of formula (3.21) if F = R.
Moreover, the definition (3.21) is consistent with (3.5), if F = C, as well as with the definition
(2.16) of [20] (§2.2), if F = R.

Then the following involutive automorphism is defined on M(F)(
ξ1 x1

x2 ξ2

) ∼

=
(

ξ2 x2

x1 ξ1

)
(3.22)

where ξi, xi are the standard conjugates of ξi, xi ∈ F, i = 1, 2.

Remark. As above, − is the identity map in the right hand side of formula (3.22) if F = R.

Let M(C)R denote the realification of the algebra M(C). Then we have

Proposition 4. The triple systems (φ,M(C)R) and (φ,M(R)) defined by (3.7), (3.21) are
KTS’s satisfying the condition (A).

Proof. For the case (φ,M(C)R) the proof is identical to the proof of Proposition 3, by replacing
in the proof of Proposition 3 the algebraM(H3(AC))R withM(C)R and Lemma 1 with Lemma 3,
respectively. Further, for the case (φ,M(R)) the proof is identical to the proof of [20] Proposition
2.4, by replacing in the proof of [20] Proposition 2.4 the algebra M(H3(A)) with M(R) and [20]
Lemma 1.2 with Lemma 3, respectively.

We give now the analog of Theorem 1 and [20] Theorem 2.1.

Theorem 3. The KTS’s (φ,M(C)R) and (φ,M(R)) defined by (3.7),(3.21) are compact, simple.

Proof. We prove first compactness. We must show that the canonical (trace) form γφ defined
by (2.4) for the KTS’s (φ,M(C)R) and (φ,M(R)), respectively, is positive definite. Since the
canonical form is symmetric we consider the corresponding quadratic form (3.8). Then, by (3.19)
and (3.20),

γφ(x, x) = 2(3 + dimCC)(||ξ1||2 + ||ξ2||2 + 3||x1||2 + 3||x2||2) (3.23)

for all x =
(
ξ1 x1

x2 ξ2

)
∈M(C)R, where ||c|| denotes the norm of c ∈ C. Then, by (3.23), γφ(x, x) =

8(||ξ1||2 + ||ξ2||2 + 3||x1||2 + 3||x2||2) hence γφ(x, x) is positive definite for all x ∈ M(C)R.
Analogously, by [20] (2.29) and (3.20),

γφ(x, x) = (3 + dimRR)(ξ2
1 + ξ2

2 + 3x2
1 + 3x2

2) (3.24)
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for all x =
(
ξ1 x1

x2 ξ2

)
∈M(R). Then, by (3.24), γφ(x, x) = 4(ξ2

1 + ξ2
2 + 3x2

1 + 3x2
2) hence γφ(x, x) is

positive definite for all x ∈M(R).
We prove now simplicity.
For the case (φ,M(C)R) the proof is identical to the proof of the simplicity assertion of

Theorem 1, by replacing in the proof of Theorem 1 the algebra M(H3(AC))R with M(C)R and
Lemma 1 with Lemma 3, respectively. Further, for the case (φ,M(R)) the proof is identical to
the proof of the simplicity assertion of [20] Theorem 2.1, by replacing in the proof of [20] Theorem
2.1 the algebra M(H3(A)) with M(R) and [20] Lemma 1.2 with Lemma 3, respectively.

Remark. By similarity to [22] §2, define triple systems (φ′,M(H3(AC))R) by

φ′(x, y, z) = x(y∼z) + z(y∼x)− y∼(xz), x, y, z ∈M(C)R

where ∼ is the involution on M(C)R defined by (3.21). Then the triple systems (φ′,M(C)R)
are simple compact KTS’s, since it can be easily checked that (φ,M(C)R) and (φ′,M(C)R) are
isomorphic under the map x 7→ x.

Analogously, the triple systems (φ′,M(R)) are simple compact KTS’s.

Proposition 5. Let (φ,M(C)R) and (φ,M(R)) be the KTS’s defined by (3.7), (3.21). Then
the corresponding Kantor algebras are the exceptional simple Lie algebras L(φ,M(C)R) = GC

2 R
and L(φ,M(R)) = G2.

Proof. The proof is based on dimensional reasons. Consider first the simple compact KTS
(φ,M(C)R). By [6] Proposition 1.6, the Kantor algebras L(φ) and L(BM(C)R) are isomorphic
as GLA’s, hence isomorphic to Allison’s 5-GLA K(M(C)R), by [7] Theorem 2.5. Then the
assertion follow from (2.6) and [16] (Table I) since it can be easily seen that the only possible
K(M(C)R) = ⊕2

l=−2Kl with (dimC K−1,dimC K−2) = (4, 1) is GC
2 R.

Analogously, consider the simple compact KTS (φ,M(R)). By [6] Proposition 1.6, the Kantor
algebras L(φ) and L(BM(R)) are isomorphic as GLA’s, hence isomorphic to Allison’s 5-GLA
K(M(R)), by [7] Theorem 2.5. Then the assertion follow from (2.6) and [16] (Table I) since it can
be easily seen that the only possible K(M(R)) = ⊕2

l=−2Kl with (dimR K−1,dimR K−2) = (4, 1)
is G2.

Remark. The identity L(BM(R)) = G2 follows also from [2] (§8, p. 1871).
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