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Abstract

In the present article we continue investigating the algebraic dependence of com-
muting elements in q-deformed Heisenberg algebras. We provide a simple proof that the
0-chain subalgebra is a maximal commutative subalgebra when q is of free type and that
it coincides with the centralizer (commutant) of any one of its elements different from
the scalar multiples of the unity. We review the Burchnall-Chaundy-type construction for
proving algebraic dependence and obtaining corresponding algebraic curves for commut-
ing elements in the q-deformed Heisenberg algebra by computing a certain determinant
with entries depending on two commuting variables and one of the generators. The co-
efficients in front of the powers of the generator in the expansion of the determinant are
polynomials in the two variables defining some algebraic curves and annihilating the two
commuting elements. We show that for the elements from the 0-chain subalgebra exactly
one algebraic curve arises in the expansion of the determinant. Finally, we present several
examples of computation of such algebraic curves and also make some observations on
the properties of these curves.
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1 Introduction

In 1994, one of the authors of the present paper, S. Silvestrov, based on consideration of
the previous literature and a series of trial computations, made the following three-part
conjecture.

• The first part of the conjecture stated that the Burchnall-Chaundy-type result on al-
gebraic dependence of commuting elements can be proved in greater generality, that is,
for much more general classes of noncommutative algebras and rings than the Heisen-
berg algebra and related algebras of differential operators treated by Burchnall and
Chaundy and in subsequent literature [1, 2, 3, 7, 8, 11].
• The second part stated that the Burchnall-Chaundy eliminant construction of annihi-

lating algebraic curves formulated in determinant (resultant) form works after some ap-
propriate modifications for most or possibly all classes of algebras where the Burchnall-
Chaundy-type result on algebraic dependence of commuting elements can be proved.
• Finally, the third part of the conjecture stated that the proof of the vanishing of the

corresponding determinant algebraic curves on the commuting elements can be per-
formed in a purely algebraic way for all classes of algebras or rings where this fact
is true, that is, using only the internal structure and calculations with the elements
in the corresponding algebras or rings and the algebraic combinatorial expansion for-
mulas for the corresponding determinants without any need of passing to operator
representations and use of analytic methods as in the Burchnall-Chaundy-type proofs.
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This third part of the conjecture remains widely open with no general such proofs avail-
able for any classes of algebras and rings, even in the case of the usual Heisenberg algebra
and differential operators, and with only a series of examples calculated for the Heisenberg
algebra, q-Heisenberg algebra, and some more general algebras, all supporting the conjec-
ture. In the first and second parts of the conjecture progress has been made. In [4], the
key Burchnall-Chaundy-type theorem on algebraic dependence of commuting elements in
q-deformed Heisenberg algebras (and thus as a corollary for q-difference operators as opera-
tors representing q-deformed Heisenberg algebras) was obtained. The result and the methods
have been extended to more general algebras and rings generalizing q-deformed Heisenberg
algebras (generalized Weyl structures and graded rings) in [5]. The proof in [4] is totally
different from the Burchnall-Chaundy-type proof. It is an existence argument based only
on the intrinsic properties of the elements and internal structure of q-deformed Heisenberg
algebras, thus supporting the first part of the conjecture. It can be used successfully for
an algorithmic implementation for computing the corresponding algebraic curves for given
commuting elements. However, it does not give any specific information on the structure or
properties of such algebraic curves or any general formulae. It is thus important to have a
way of describing such algebraic curves by some explicit formulae, as, for example, those
obtained using the Burchnall-Chaundy eliminant construction for the q = 1 case, that is,
for the classical Heisenberg algebra. In [10], a step in that direction was taken by offer-
ing a number of examples, all supporting the claim that the eliminant determinant method
should work in the general case. However, no general proof for this was provided. The com-
plete proof following the Burchnall-Chaundy approach in the case of q not a root of unity has
been recently obtained [6], by showing that the determinant eliminant construction, properly
adjusted for the q-deformed Heisenberg algebras, gives annihilating curves for commuting
elements in the q-deformed Heisenberg algebra when q is not a root of unity, thus confirming
the second part of the conjecture for these algebras. That proof was obtained by adapting the
Burchnall-Chaundy eliminant determinant method of the case q = 1 of differential operators
to the q-deformed case, after passing to a specific faithful representation of the q-deformed
Heisenberg algebra on Laurent series and then performing a detailed analysis of the kernels
of arbitrary operators in the image of this representation. While exploring the determinant
eliminant construction of the annihilating curves, we also obtained some further information
on such curves and some other results on dimensions and bases in the eigenspaces of the q-
difference operators in the image of the chosen representation of the q-deformed Heisenberg
algebra. Recently, a further extension of Burchnall-Chaundy eliminant determinant method
to the context of σ-derivations and Ore extension rings has been considered in [9]. In the case
of q being a root of unity the algebraic dependence of commuting elements holds only over
the center of the q-deformed Heisenberg algebra [4], and it is still unknown how to modify
the eliminant determinant construction to yield annihilating curves for this case.

In the present article we continue investigation of the algebraic dependence of commuting
elements in q-deformed Heisenberg algebras within the context of [4, 6, 10]. In Section 2,
following [4], we recall some preliminaries on q-deformed Heisenberg algebra, including de-
gree function, decomposition into the direct sum of the “chain” subspaces indexed by the
integers and corresponding to this decomposition the upper and lower chain functions. In
Section 3, we consider in more detail the 0-chain subspace (indexed by zero). This sub-
space is a commutative subalgebra in the q-deformed Heisenberg algebra playing a pivotal
role for the structure of this algebra [4]. We provide a simple proof that this subalgebra is
a maximal commutative subalgebra when q is of free type, and that it coincides with the
centralizer (commutant) of any one of its elements different from the scalar multiples of the
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unity. In Section 4, we review the Burchnall-Chaundy-type construction for proving algebraic
dependence and obtaining corresponding algebraic curves for commuting elements in the q-
deformed Heisenberg algebra following [6] but putting it into general context of the elements
of the q-deformed Heisenberg algebra rather then operators of a specific representation. The
construction is based on computing a certain determinant of a matrix with entries depending
on two commuting variables and containing one of the generators of the q-deformed Heisen-
berg algebra. This matrix is constructed from commuting elements. The coefficients in front
of the powers of the generator in the expansion of the determinant are polynomials in the
two variables defining some algebraic curves. The commuting elements satisfy the equations
of these algebraic curves [6]. In Section 5, we show that for the elements from the 0-chain
subalgebra exactly one algebraic curve arises via this construction in the expansion of the
determinant and then present several examples of computations of such algebraic curves and
also make some observations on the properties of these curves based on these examples and
further computer experiments.

2 Preliminaries

Let K be a field of characteristic 0, and q a nonzero element of K. We say that q is of free
type if it is 1 or not a root of unity. If q is a root of unity, we say it is of torsion type. We
define the q-deformed Heisenberg algebra over K as

H(q) = K〈A,B〉/(AB − qBA− I)

The identity element will be denoted by I. For q = 1 we recover the classical Heisenberg
algebra (called also Weyl algebra). One can define degree functions degA and degB with
respect to A andB onH(q) just as on the commutative algebra of polynomials. One computes
these functions by inspection just as one would in a commutative algebra. That the functions
are well defined and does not depend on how the elements are written is proved in [4,
Chapter 4]. We also define the total degree function deg(α) = degA(α) + degB(α). In [4,
Chapter 4] the following theorem is proved.

Theorem 2.1. Let α, β ∈ H(q) for some q 6= 0 and let V ∈ {A,B}. Then

degV (αβ) = degV (α) + degV (β)

We define the sets Rn for all integers n by

Rn =


∑
j≥0

j+n≥0

ajB
j+nAj | aj ∈ K, aj 6= 0 for at most finitely many j


If the element α ∈ H(q) belongs to some Rn, we say that it is homogeneous. We also define
a function

χ :
{
α ∈ H(q) | α is nonzero and homogeneous

}
−→ Z

by defining χ(α) to be the unique integer such that α ∈ Rχ(α). This function is called the
chain function.

All Ri are vector spaces over K. Further H(q) is the direct sum of all the Ri. We can use
this to define a projection operation. Let α be an element of H(q). We can write α =

∑
j αj ,
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where αj ∈ Rj . This decomposition is unique. We then define the projection of α on Rn by
α u Rn = αn. The notation is intended to recall the notation for intersection. At this point
we define two new functions. They are defined for all nonzero elements of H(q).

χ(α) = max
{
n ∈ Z | α uRn 6= 0

}
, χ(α) = min

{
n ∈ Z | α uRn 6= 0

}
These functions are known as the upper and lower chain functions, respectively.

3 R0 is maximal commutative

We begin by noting that all elements of R0 commute with each other [4]. Furthermore, the
products of two elements α, β ∈ R0 are in R0. So R0 is a commutative subalgebra. We want
to show that it is in fact a maximal commutative subalgebra.

For an element α ∈ H(q) we define Cen(α) = {β ∈ H(q) | [α, β] = 0}.
In [4, Chapter 6] the following theorem is proved (as a part of Theorem 6.10).

Theorem 3.1. Let q be of free type. Let α, β be two commuting elements in H(q). Then the
following is true:

• If χ(α) = 0, then χ(β) = 0 or α uR0 = cI for some c ∈ K.
• If χ(α) = 0, then χ(β) = 0 or α uR0 = cI for some c ∈ K.

We now describe the centralizer of an element in R0.

Theorem 3.2. Let q be of free type and α ∈ R0 ⊂ H(q). Assume further that α 6= cI for all
c ∈ K. Then Cen(α) = R0.

Proof. As we noted above R0 ⊆ Cen(α). It remains to show the other inclusion. Let β be
an arbitrary nonzero element of Cen(α). By Theorem 3.1 we must have χ(β) = 0, since
αuR0 6= cI. Similarly we must have that χ(β) = 0. So in the direct sum decomposition only
elements in R0 occurs. Thus β ∈ R0.

Corollary 3.3. R0 is maximal commutative.

Proof. Let β be an element that commutes with everything in R0. Then in particular it
must commute with BA. But Cen(BA) = R0 by the preceding theorem. Thus β ∈ R0.

4 Annihilating polynomials

As mentioned in the introduction any two commuting elements in H(q) must be algebraically
dependent when q is of free type. More formally, we have the following.

Theorem 4.1. Let q ∈ K be of free type. If α, β ∈ H(q) commute, then there exists a
nonzero P ∈ K[x, y] such that P (α, β) = 0.

We now describe an explicit construction of this polynomial. We let s and t be variables
that take values in the base field K. We write the commuting elements α, β as

α =
n∑
i=0

pi(B)Ai, β =
m∑
i=0

ri(B)Ai

where the pi and ri are polynomials. We will form an n + m determinant that will give us
the annihilating polynomial.
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Consider the expressions obtained by reordering all A to the right of B in

Ak(α− sI) =
n+k∑
i=0

θi,kA
i, k = 0, 1, . . . ,m− 1

Ak(β − tI) =
m+k∑
i=0

ωi,kA
i, k = 0, 1, . . . , n− 1

where θi,k and ωi,k are functions of B, s, t arising after reordering. The coefficients of the
powers of A will be the elements in the determinant that we compute. θi,k will be placed as
the element in row k+1 and column i. ωi,k will be placed in row k+m+1 and column i. The
determinant will thus be a polynomial in s, t and B. This polynomial, which we will call the
eliminant of α and β, can be written as

∑
i δi(s, t)B

i. Every such δi will satisfy δi(α, β) = 0
and at least one of them will not be identically zero.

A more precise formulation with additional information about the construction can be
found in the following.

Theorem 4.2. Let

α =
m∑
j=0

pj(B)Aj , β =
n∑
j=0

rj(B)Aj

be two commuting elements, the pj and rj being polynomials, and denote their eliminant by
∆α,β(B, s, t). Then ∆α,β 6= 0. Furthermore ∆α,β has degree n seen as polynomial in s. If
rn(B) =

∑
i aiB

i (ai ∈ K), then ∆α,β has leading coefficient (−1)n
∏m−1
k=0 (

∑
i aiq

kiBi), once
again seen as a polynomial in s. Symmetrically, ∆α,β will have degree m seen as a polynomial
in t. The coefficient of tm will be (−1)m

∏n−1
k=0(

∑
i biq

kiBi) if pm(B) =
∑

i biB
i.

Let g = nmaxj deg(pj) +mmaxj deg(rj). We can write

∆α,β(B, s, t) =
g∑
i=0

δi(s, t)Bi

Then at least one δi(s, t) 6= 0 and δi(α, β) = 0 for all i.

5 The eliminant when the elements belong to R0

In the general case the theorem does not rule out that one can get several nonzero δi in the
expansion of the eliminant, ∆α,β. This does not, however, occur when α and β belong to R0.

Theorem 5.1. Let α =
∑n

k=0 pkB
kAk and β =

∑m
l=0 rkB

lAl. Then, with the same notation
as before, there will be only one nonzero δi when the eliminant is computed and this i will
equal nm.

Proof. We begin by noting that An(α− sI) will be of the form
∑n+k

i=n aiB
i−kAi, where the

ai belong to K.
We use this result to describe the structure of the eliminant. Denote the element in row

u and column v by eu,v. Then we will have eu,v = φi,j(s, t)Bv−u if u ≤ m (that is in the
first m rows) and eu,v = φi,jB

v−u+m otherwise (in the last n rows), where the φi,j(s, t) are
polynomials over K. Many of them will of course be zero, in particular those where B would
otherwise occur with a negative exponent.
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We know, from ordinary linear algebra, that

∆α,β(B, s, t) =
∑
σ

sign(σ)
m+n∏
g=1

eg,σ(g)

where σ denotes a permutation. But looking at an arbitrary term of the sum we find that it
can be written as

sign(σ)
g=m∏
g=1

(
φg,σ(g)(s, t)B

σ(g)−g) ∗ m+n∏
g=m+1

φg,σ(g)(s, t)B
σ(g)−g+m

= Φ(s, t) ∗B
∑m+n

g=1

(
σ(g)
)
−

∑n+m
g=1 (g)+mn

for a polynomial Φ(s, t). But the two sums in the exponent cancel, since they have the same
terms in different order, and we conclude that we get the exponent mn. Since we picked an
arbitrary term, we are done.

5.1 Examples

We will include some examples here to give a feeling for the construction of the eliminant
and our result. Let α = BA and β = B2A2. Then

∆α,β(B, s, t) =

∣∣∣∣∣∣∣
−s B 0
0 1− s qB

−t 0 B2

∣∣∣∣∣∣∣
On computing the determinant we find that the annihilating polynomial is s2 − s − tq.

This is only a slight modification of the classical case when q = 1. (We note that it makes
no difference whether we set q = 1 at the beginning of the calculation or the end.)

For our next example let α be as before and let β = B3A3. Then we find that

∆α,β(B, s, t) =

∣∣∣∣∣∣∣∣∣
−s B 0 0
0 1− s qB 0
0 0 1 + q − s q2B

−t 0 0 B3

∣∣∣∣∣∣∣∣∣
We get the annihilating polynomial

s3 − (2 + q)s2 + (1 + q)s− q3t

Once again no essential simplification occurs if we let q approach 1.
Now set β = B2A2 and α = B3A3. The determinant becomes

∆α,β(B, s, t) =

∣∣∣∣∣∣∣∣∣∣∣

−s 0 0 B3 0
0 −s 0

(
1 + q + q2

)
B2 q3B3

−t 0 B2 0 0
0 −t (1 + q)B q2B2 0
0 0 1 + q − t q

(
1 + 2q + q2

)
B q4B2

∣∣∣∣∣∣∣∣∣∣∣
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and we get the annihilating polynomial

q3s2 +
(
q + 2q2

)
st+ (1 + q)t2 − t3

In the classical case this polynomial becomes

s2 + 3st+ 2t2 − t3

As a final example we can take α = B2A2 and β = B4A4. The eliminant is

∆α,β(B, s, t)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s 0 B2 0 0 0
0 −s (1 + q)B q2B2 0 0
0 0 1+q−s q

(
1+2q+q2

)
B q4B2 0

0 0 0 1+2q+2q2 +q3−s q2
(
1+2q+2q2 +q3

)
B q6B2

−t 0 0 0 B4 0
0 −t 0 0

(
1 + q + q2 + q3

)
B3 q4B4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We then get the annihilating polynomial

q8t2 − 2q6ts− 3q5ts− 2q4ts2 − 2q4ts− q3ts+ q4s2 − q3s3 + 3q3s2

− 2q2s3 + 4q2s2 − 3qs3 + 3qs2 + s2 + s4 − 2s3

The limit when q goes towards 1 is

t2 − 8ts− 2s2t+ 12s2 − 8s3 + s4

This is a simpler expression but only because the coefficients are simpler. No coefficient
has become zero.

This illustrates that the complexity of the resulting polynomial grows pretty fast.
Computer experiments indicate that Theorem 5.1 can be generalized substantially. We

would be also interested to know whether the annihilating polynomials always have genus 0,
a conjecture we have been unable to find any counterexamples to.
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