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Abstract

In this paper we will give an overview of some recent results which display a connection
between commutativity and the ideal structures in algebraic crossed products.
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1 Introduction

In the recent papers [3, 4], we have been studying a correspondence between ideals and com-
mutativity in algebraic crossed products. Given an algebraic crossed product A0oσ

α G, consider
the following two statements:

S1: The coefficient ring A0 is a maximal commutative subring in A0 oσ
α G,

S2: For every non-zero two-sided ideal I in A0 oσ
α G, I ∩ A0 6= {0}.

In this paper we will give an overview of some types of crossed products for which the
statements S1 and S2 are equivalent. We will also give an example of a situation in which these
statements are not equivalent. For a general crossed product we have the following result.

Theorem 1.1 ([3]). Let A = A0oσ
αG be an algebraic crossed product and denote the commutant

of A0 by CA(A0) = {a ∈ A | ab = ba, ∀b ∈ A0}. If the coefficient ring A0 is commutative,
then I ∩ CA(A0) 6= {0} for every non-zero two-sided ideal I in the crossed product A0 oα

σ G.

As an immediate corollary to this theorem we get that, if A0 is assumed to be maximal
commutative in A0 oσ

α G, then I ∩ A0 6= {0} for every non-zero two-sided ideal I in A0 oσ
α G.

Hence, in a general crossed product where the coefficient ring A0 is commutative, S1 always
implies S2. As we will se in Section 2, S2 does not always imply S1.

For the convenience of the reader we shall now recall the definition and the basic properties
of algebraic crossed products. For more details see e.g [2]. Throughout this article all rings
are assumed to be associative rings. Given a unital ring R we let U(R) denote the group of
multiplication invertible elements of R.

Definition 1.1. A G-crossed system is a quadruple {A0, G, σ, α}, consisting of a unital ringA0, a
group G (with unit element e), a map σ : G → Aut(A0) and a σ-cocycle map α : G×G → U(A0)
such that for any x, y, z ∈ G and a ∈ A0 the following conditions hold:

(i) σx(σy(a)) = α(x, y) σxy(a) α(x, y)−1

(ii) α(x, y)α(xy, z) = σx(α(y, z))α(x, yz)
(iii) α(x, e) = α(e, x) = 1A0

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
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Let {us}s∈G be a copy (as a set) of G. Given a G-crossed system {A0, G, σ, α}, we denote by
A0 oσ

α G the free left A0-module having {us}s∈G as its basis and we define a multiplication on
this set by

(a1 ux)(a2 uy) = a1 σx(a2) α(x, y) uxy (1.1)

for all a1, a2 ∈ A0 and x, y ∈ G and extend it bilinearly to all of A0 oσ
α G. Each element of

A0oσ
α G may be expressed as a formal sum

∑
g∈G ag ug where ag ∈ A0 and ag = 0A0 for all but

a finite number of g ∈ G. Explicitly, the addition and multiplication of two arbitrary elements∑
s∈G as us,

∑
t∈G bt ut ∈ A0 oσ

α G is given by
∑

s∈G

as us +
∑

t∈G

bt ut =
∑

g∈G

(ag + bg) ug

(∑

s∈G

as us

)(∑

t∈G

bt ut

)
=

∑

(s,t)∈G×G

(as us)(bt ut) =
∑

(s,t)∈G×G

as σs(bt) α(s, t) ust

=
∑

g∈G




∑

{(s,t)∈G×G|
st=g}

as σs(bt) α(s, t)


ug (1.2)

Proposition 1.1 ([2]). Let {A0, G, σ, α} be a G-crossed system. Then A0oσ
αG is an associative

unital ring (with the multiplication defined in (1.1)).

Definition 1.2. The ring A0 oσ
α G is called the crossed product of the G-crossed system

{A0, G, σ, α}.
The coefficient ring A0 is naturally embedded as a subring into A0 oσ

α G via the canonical
isomorphism ι : A0 ↪→ A0 oσ

α G defined by a 7→ a ue. Instead of ι(A0) we will simply write A0.

Remark 1.1. If k is a field and A is a k-algebra, then so is A0 oσ
α G.

Depending on the nature of the maps σ and α we will give different names to the crossed
product A0 oσ

α G. If the map α is trivial, i.e α(x, y) = 1A0 for every (x, y) ∈ G × G, then we
shall write A0 oσ G and refer to it as a skew group ring. If, on the other hand, σ is trivial, i.e.
σg = idA0 for every g ∈ G, then we shall write A0oα G and refer to it as a twisted group ring. A
crossed product where both of the maps σ and α are trivial is written as A0 oG and is simply
refered to as a group ring.

2 Group rings, skew group rings and twisted group rings

If one wants to talk about maximal commutativity of A0, it does not really make sense unless
we assume that A0 is commutative itself, so from now on we will only consider crossed products
where A0 is commutative. Note that if the group G is trivial, i.e. G = {e}, then S1 and S2 are
always true. In the further discussion we will therefore assume that G 6= {e}. We will continue
the further investigation by breaking it down into special cases of crossed products.

Example 2.1 (group rings). Let A0 be a unital ring and G any (non-trivial) group and denote
the group ring by A0oG. Note that this corresponds to the crossed product with trivial σ and α
maps. We may define the so called augmentation map ε : A0oG → A0,

∑
s∈G as us 7→

∑
s∈G as,

and it is straightforward to check that it is in fact a ring morphism. The kernel of this map,
ker(ε) is a two-sided ideal in A0oG and it is not hard to see that ker(ε)∩A0 = {0}. This gives
us an example of a non-zero two-sided ideal which has zero intersection with the coefficient ring



218 J. Öinert and S. D. Silvestrov

A0, i.e. S2 is false. However, for each s ∈ G, us commutes with every element in A0 and hence
S1 is never true for a group ring (when G 6= {e}). In other words, in a group ring the two
statements S1 and S2 are always equivalent.

For skew group rings we have the following theorems.

Theorem 2.1 ([4]). If A0oσ G is a skew group ring where the coefficient ring A0 is an integral
domain and the group G is abelian, then the two assertions S1 and S2 are equivalent.

Theorem 2.2 ([4]). If A0oσG is a skew group ring where the coefficient ring A0 is commutative
and G is a torsion-free abelian group, then the two assertions S1 and S2 are equivalent.

Remark 2.1. Note that in the previous theorems, the action σ can be trivial, but in that case
the situation is already described by Example 2.1.

Example 2.2 (the algebra associated to a dynamical system). In [5, 6, 7] the authors studies
crossed product algebras associated to dynamical systems. Suppose that we are given a non-
empty set X and a bijection σ : X → X. Then (X, σ) is a discrete dynamical system where the
action of n ∈ Z on x ∈ X is given by n 7→ σ◦(n)(x). By CX we denote the algebra of functions
X → C under the usual pointwise operations of addition and multiplication. If we are given
a subalgebra A ⊆ CX such that it is invariant under σ and σ−1, i.e. such that if h ∈ A then
h ◦ σ ∈ A and h ◦ σ−1 ∈ A, then σ induces an automorphism σ̃ : A → A defined by σ̃(f) = f ◦ σ
by which Z acts on A via iterations. We may now define the skew group algebra Aoσ̃ Z.

In the current situation the coefficient algebra A is commutative and the group (Z,+) is
clearly torsion-free and abelian, hence Theorem 2.2 is applicable. We may conclude that The-
orem 2.2 is a generalization of certain parts of Corollary 4.5 in [6] and Theorem 4.5, Theorem
4.6, Corollary 4.7, Theorem 6.2 in [7].

In a twisted group ring A0 oα G, just like for group rings mentioned above, the action σ is
trivial and hence for each s ∈ G the element us commutes with every element in A0. In other
words, A0 is never maximal commutative in a twisted group ring (when G 6= {e}).

Example 2.3 (the field of complex numbers). Let A0 = R, G = (Z2,+) and define the cocycle
α : Z2 × Z2 → R \ {0} by α(0, 0) = 1, α(0, 1) = 1, α(1, 0) = 1 and α(1, 1) = −1. It is easy to
see that R oα Z2

∼= C. Clearly this twisted group ring is a field and hence simple. Therefore,
C is the only non-zero ideal and clearly C ∩R 6= {0}. However, as has already been mentioned,
the coefficient ring R is not maximal commutative in C. Example 2.3 shows that in a twisted
group ring, S1 may be false even though S2 is true.

3 General crossed products

A crossed product A0oσ
α G, where neither of the maps σ and α are trivial and hence not treated

in the previous section, will be refered to as a general crossed product. For this type of crossed
products we are not able to say as much as we would want to.

Theorem 3.1. If A0oσ
α G is a crossed product where A0 is an integral domain, G is an abelian

torsion-free group and α is such that α(s, t) = 1A0 whenever σs = idA0 or σt = idA0, then the
two assertions S1 and S2 are equivalent.

Proof. It is clear from Theorem 1.1 that S1 =⇒ S2. Suppose that A0 is not maximal com-
mutative. Since A0 is an integral domain, this means that there exists some s ∈ G \ {e} such
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that σs = idA0 . For arbitrary g, h ∈ G we may use condition (ii) in Definition 1.1 and the
assumptions we made on α to arrive at

α(s, g)︸ ︷︷ ︸
=1A0

α(sg, h) = σs(α(g, h))︸ ︷︷ ︸
=α(g,h)

α(s, gh)︸ ︷︷ ︸
=1A0

and since G is abelian we get α(gs, h) = α(sg, h) = α(g, h). Let I be the two-sided ideal generated
by 1A0 +us, which is an element that commutes with all of A0. The ideal I is obviously non-zero
and furthermore, it is spanned by elements of the form ag ug (1A0 +us) ah uh where g, h ∈ G and
ag, ah ∈ A0. We may now rewrite this expression.

ag ug (1A0 + us) ah uh = ag ug ah (1A0 + us) uh

= ag ug ah uh + ag ug ah us uh

= ag σg(ah)ug uh + ag σg(ah) ug us uh

= ag σg(ah)α(g, h)ugh + ag σg(ah) α(g, s)︸ ︷︷ ︸
1A0

ugs uh

= ag σg(ah)α(g, h)︸ ︷︷ ︸
:=b

ugh + ag σg(ah) α(gs, h)︸ ︷︷ ︸
=α(g,h)

ugsh

= b ugh + b ugsh

Since G is abelian, it is clear that any element of I may be written in the form
∑

t∈G

(ct ut + ct uts) (3.1)

for some ct ∈ A0, where t only runs over a finite subset of G. By assumtion s 6= e and hence
t 6= ts for every t ∈ G. In particular this means that every contribution from ce to the e-graded
part of the element in (3.1) comes with an equal contribution to the s-graded part. Similarly cs:s
contribution to the s-graded part equals its contribution to the cs2-graded part. Furthermore,
G is assumed to be torsion-free, i.e. sn 6= e for every n ∈ Z \ {0}, and hence the element in (3.1)
can never be a non-zero element of degree e, which means I ∩ A0 = {0}. By contra positivity
we conclude that S2 =⇒ S1 and this finishes the proof.

Remark 3.1. Note that, a twisted group ring can never fit into the conditions of Theorem 3.1,
because if σ is trivial, then the conditions force α to be trivial as well.

Finite groups are clearly not torsion-free, but Example 3.1 gives an example of a situation
where S1 and S2 are in fact equivalent for a general crossed product graded by a finite group.
This raises the question whether or not Theorem 3.1 can be generalized to general crossed
products graded by more general groups.

Example 3.1 (central simple algebras). Let A be a finite-dimensional central simple algebra
over a field F . By Wedderburn’s theorem A ∼= Mi(D) where D is a division algebra over F and i
is some integer. If K is a maximal separable subfield of D then [K : F ] = n where [D : F ] = n2.
We shall assume that K is normal over F and that [A : F ] = [K : F ]2 (see [1] for motivation).
Let Gal(K/F ) be the Galois group of K over F . For k ∈ K and σs ∈ Gal(K/F ) we shall write
σs(k) for the image of k under σs. By the Noether-Skolem theorem there is an invertible element
us ∈ A such that σs(k) = usku−1

s for every k ∈ K. One can show that the us’s are linearly
independent over K. However, the linear span over K of the us’s has dimension n2 over F ,
hence must be all of A. In short A = {∑s∈G ks us | ks ∈ K}. If σs, σt ∈ Gal(K/F ) and k ∈ K,
then usutku−1

t u−1
s = usσt(k)u−1

s = σst(k) = ustku−1
st . This says that u−1

st (usut) ∈ CA(K) = K,
in other words usut = f(s, t)ust where f(s, t) 6= 0 is in K. Since A is an associative algebra one
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may verify that f : Gal(K/F )×Gal(K/F ) → K \ {0} is in fact a cocycle. By Theorem 4.4.1 in
[1], if K is a normal extension of F with Galois group Gal(K/F ) and f is a cocycle (factor set),
then the crossed product K oσ

f Gal(K/F ) is a central simple algebra over F and hence in this
situation both S1 and S2 are in fact true.
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