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Introduction
The Renin-angiotensin (RA) system has been implicated in essential 

hypertension because of the antihypertensive effects of RA system 
inhibitors such as angiotensin-converting enzyme (ACE) inhibitors 
and angiotensin (Ang) II receptor blockers (ARBs). Several lines of 
evidence have demonstrated the presence of a local RA system that is 
independent of the circulating RA system [1,2]. The local RA system 
induces cardiovascular and renal organ damage by cellular proliferation 
and oxidative stress [3]. Thus RA system inhibitors have protective 
effects on cardiovascular organs independent of blood pressure 
reduction by suppression of vascular growth [2], and extracellular 
matrix formation [4]. In addition, ARBs have improvement effects on 
impaired endothelial function by Ang II-mediated oxidative stress in 
hypertension [5,6]. 

Although cardiovascular risk factors such as hypertension, 
dyslipidemia, and diabetes mellitus primarily cause vascular injury, 
including endothelial damage, it is believed that abnormalities in the 
repair of endothelial damage enhance vascular injury. Endothelial 
progenitor cells (EPCs) derived from bone marrow represent up to 
0.01% of cells in the peripheral blood. These cells migrate to areas of 
endothelial damage and repair them, suggesting that EPC dysfunction 
determines the eventual level of vascular injury [7]. It has been 
demonstrated that oxidative stress induces endothelial damage by 
shortening EPC life span and causing EPC dysfunction [8]. We have 
demonstrated that the formation of EPCs is suppressed in salt-loaded 
stroke-prone spontaneously hypertensive rats (SHR-SP) with increases 

in oxidative stress and that treatment with ARBs (losartan, candesartan, 
and valsartan) improved the suppression of EPC formation [8,9]. We 
further investigated basal EPC functions and the effects of losartan on 
EPC function in hypertensive patients, and found that it significantly 
improved impaired EPC function in hypertensive patients [10]. Thus, 
ARBs apparently improved impaired EPC formation in hypertension. 
How and where ARB affects EPCs to improve their formation, however, 
has been unclear.

 It has recently been established that angiotensin-(1–7) (Ang-(1–7)), 
the hepta peptide which is formed from Ang I or Ang II, is an important 
component of the  RA system and that it exerts several biological effects 
to oppose the effects of Ang II including anti-proliferation, vasodilator 
actions and anti-fibrosis effects [11]. Ang-(1–7) can interact directly 
with the AT1 receptor as an AT1 receptor blocker. [12]. Angiotensin-
converting enzyme 2 (ACE2) is a rate-limiting forming enzyme of Ang-
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(1–7) [13], and G protein-coupled receptor Mas is a special functional 
receptor for Ang-(1–7) [14]. Interestingly, Ang-(1–7) has been 
reported to have potent effects to hematopoietic cells in bone marrow 
[15]. Moreover, ACE2/Ang-(1–7)/MasR axis has been reported to exert 
protective effects against damage to organs including the heart [16] and 
kidney [17]. Zhang et al. [17], demonstrated that infusion of Ang-(1–7) 
reduces glomerulosclerosis by counteracting Ang II in experimental 
glomerulonephritis, suggesting that Ang-(1–7) is also relevant for 
modulating renal fibrosis in disease states. These organ protective 
effects of Ang-(1–7) are mediated by MasR. Mas-deficient mice have 
been shown to exhibit an impairment of heart function associated with 
changes in collagen expression toward a profibrotic profile [18].

It has been reported that ARBs increased vascular ACE2 and Ang-
(1–7) to improve vascular remodeling in spontaneously hypertensive 
rats (SHRs) [19]. Thus improvements of suppressed EPC formation and 
the protective effects of ARBs against cardiovascular and renal organ 
damage are possibly mediated by stimulation of the ACE2/Ang-(1–7)/
MasR axis in hypertension. This study was undertaken to investigate 
the effects of olmesartan on impaired EPCs and renal degeneration 
through the (ACE2)/Ang-(1–7)/MasR axis in salt-loaded SHRs.

Methods
Experimental design

This study conformed to the Guide for the Care and Use of 
Laboratory Animals published by the US National Institutes of Health 
(NIH Publication No. 85-23, revised 1996). Ten-week-old male 
Wistar-Kyoto/Izm (WKY) rats and SHRs, which are provided by the 
Disease Model Cooperative Research Association (DMCRA, Kyoto, 
Japan), were purchased Japan SLC, Inc. (Hamamatsu, Japan). All rats 
were housed in an animal facility with a 12 h light-dark cycle and were 
given standard chow and water ad libitum. Systolic blood pressure was 
measured by the tail-cuff method at the start of 12 weeks of age and at 
1-week intervals thereafter. At the age 12 weeks, WKY rats and SHRs 
received a high-salt diet (8%NaCl) for 2 weeks. Salt-loaded SHRs were 
randomly divided into 4 groups: rats treated with vehicle (SHR-V, 
n=9), rats treated with hydralazine (120 mg/l, drinking water; SHR-H, 
n=8), rats treated with olmesartan medoxomil (Daiichi Sankyo, 0.5 
mg/kg per day PO; SHR-O, n=8), and rats treated with olmesartan 
medoxomil and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-
OA, n=7) for 2 weeks. 

Measurement of circulating EPCs by FACS

The number of circulating EPCs in peripheral blood was 
determined using a cell surface antigen as previously described [20]. 
Circulating mononuclear cells (MNCs) with double CD34+/Flk1+ 
were quantified as EPCs, which was determined by a fluorescence-
activated cell sorter (FACS; Becton-Dickinson, New York, New York, 
USA) analysis. Peripheral blood was drawn and MNCs were isolated 
by the density-gradient centrifuge method. MNCs were stained with a 
fluorescein isothiocyanate (FITC)-conjugated anti-CD34 monoclonal 
antibody (Becton-Dickinson, San Jose, USA), and phycoerythrin-
conjugated anti-Flk1 (R&D Systems, Minneapolis, Minnesota, USA) 
respectively. After appropriate gating, the number of CD34+/Flk1+ cells 
with low cytoplasmic granularity (low sideward scatter) was quantified 
and expressed as the number of cells per 104 total events.

Renal morphology and glomerulosclerosis injury score (GIS)

After the right kidney sections were stained with hematoxylin and 
eosin (HE) and periodic acid-Schiff (PAS), glomerulosclerosis in renal 

cortex was scored as described previously [21]. GIS was scored in 100 
glomeruli of each section as G0 for normal glomerulus; G1 for mild 
sclerosis (25%); G2 for moderate segmental sclerosis (25% to 50%); G3 
for severe segmental sclerosis (50% to 75%); and G4 for global sclerosis.

Renal interstitial fibrosis 

The right kidney was excised and immersed in neutralized 
formalin for histological examination. The area of fibrotic lesions in 
the interstitium (fibrosis area) of the renal cortex was determined on 
sections stained by Masson’s trichrome method to stain collagen fibers 
(stained blue), using a computer-aided manipulator program.

Western blot analysis

CD34, VEGF, ACE1, ACE2, MasR, NAD(P)H oxidase p22phox, 
p47phox, gp91phox, HIF-1α, CTGF, and TGF-β1 protein expressions 
were measured. The renal cortex was homogenized (25% wt/vol) in 10 
mmol/l HEPES buffer, pH 7.4, containing 320 mmol/l sucrose, 1 mmol/l 
EDTA, 1 mmol/l DTT, 10 µg/ml leupeptin, and 2 µg/ml aprotinin at 
0°C - 4°C with a polytron homogenizer. Protein concentrations were 
determined with bovine serum albumin as a standard protein. Equal 
amounts of protein were loaded in each lane of SDS-PAGE using 13% 
gels. The proteins in the gels were transferred electrophoretically to 
PVDF sheets for 1 h at 2 mA/cm2. The sheets were immunoblotted 
with anti-CD34, anti-VEGF, anti-ACE1, anti-ACE2, anti-MasR, anti-
NAD(P)H oxidase subunits, anti-HIF-1α, anti-CTGF, and anti-TGF-β1 
antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, California, 
USA) in a buffer containing 10 mmol/l Tris-HCl, pH 7.5, 100 mmol/l 
NaCl, 0.1% Tween 20, and 5% skim milk. The proteins transferred 
to the sheets were detected using the ECL immunoblotting detection 
system (Amersham-GE Healthcare Life Sciences, Tokyo, Japan). eNOS 
phosphorylation (P-eNOS) was measured as previously detailed [7].

Statistical Analysis
All of the values are expressed as mean ± SEM. Mean values were 

compared between the 5 groups by ANOVA and the Bonferroni post 
hoc test for multiple comparisons. P < 0.05 was considered statistically 
significant. 

Results 
Effects of olmesartan with MasR antagonist on blood pressure 

Figure 1 shows changes in systolic blood pressure (SBP) in salt-
loaded WKY rats and SHRs treated with olmesartan plus A779 or 
hydralazine for 2 weeks. SBP was significantly higher in (P<0.01) salt-
loaded SHRs (SHR-V) compared to salt-loaded WKY rats. Treatment 
with olmesartan (SHR-O) or hydralazine (SHR-H) prevented the 
increases in SBP in salt-loaded SHRs, resulting in significantly lower 
(P<0.01) SBP levels than were measured in rats that received no drug. 
Rats that received olmesartan or hydralazine for 2 weeks had similar 
levels of SBP. The levels of SBP were significantly higher (P<0.05) in 
SHRs treated with olmesartan plus A779 (SHR-OA) than in rats treated 
with olmesartan alone (SHR-O) (Figure 1).

Effects of olmesartan with MasR antagonist on EPC number 

Figure 2 shows FACS analyses for CD34 and Flk1 positive cells 
(EPC number) in salt-loaded WKY rats and in salt-loaded SHRs 
treated with olmesartan plus A779 or hydralazine for 2 weeks. EPC 
number was significantly lower (P<0.01) in salt-loaded SHRs (SHR-V) 
than in salt-loaded WKY rats. Treatment with olmesartan (SHR-O), 
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but not hydralazine (SHR-H), significantly increased (P<0.01) the EPC 
number in SHRs. The addition of A779 (SHR-OA) blunted this effect. 

Effects of olmesartan with MasR antagonist on renal 
degeneration 

Morphological effects of olmesartan with or without A779 on 
glomerulosclerosis and interstitial fibrosis of renal cortex in salt-loaded 
SHR are shown in Figures 3 and 4, respectively. The renal cortex of 
salt-loaded SHR (SHR-V) showed severe damage to the glomeruli with 

sclerotic changes. GIS was significantly higher (P<0.01) in the kidney of 
salt-loaded SHRs (SHR-V). Treatment with olmesartan (SHR-O), but 
not hydralazine (SHR-H), significantly decreased (P<0.01) GIS, while 
the addition of A779 resulted in a significant reduction (P<0.05) of this 
decrease (SHR-OA) (Figure 3). The renal cortex of salt-loaded SHRs 
showed interstitial fibrosis. Treatment with olmesartan (SHR-O), 
but not hydralazine (SHR-H), significantly (P<0.01) reduced this 
interstitial fibrosis. Again, A779 significantly (P<0.05) reduced this 
improvement (SHR-OA) (Figure 4).

Effects of olmesartan with MasR antagonist on endothelial 
markers 

Expression of CD34 and P-eNOS protein as endothelial markers 
was significantly lower (P<0.05) in renal cortex from SHRs (SHR-V) 
than that from WKY rats. Treatment with olmesartan (SHR-O), but 
not hydralazine (SHR-H), significantly upregulated (P<0.05) the 
decreased expression of CD34 and P-eNOS proteins. The addition 
of A779 significantly reduced (P<0.05) this upregulated expression 
(SHR-OA). In contrast, expression of VEGF protein was significantly 
higher (P<0.05) in renal cortex from salt-loaded SHRs (SHR-V) than 
that from WKY rats. Treatment with olmesartan (SHR-O), but not 
hydralazine (SHR-H), markedly downregulated (P<0.05) the increased 
expression of VEGF protein. A779 significantly increased (P<0.05) this 
downregulated expression of VEGF protein (SHR-OA) (Figure 5).

Effects of olmesartan with MasR antagonist on ACE1, ACE2 
and MasR 

Expressions of ACE1 protein was significantly higher (P<0.05) in 
renal cortex from SHRs (SHR-V) than that from WKY rats. Treatment 
with olmesartan (SHR-O), but not hydralazine (SHR-H), significantly 
suppressed (P<0.05) the increased expression of ACE1 protein. A779 
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Figure 1: Changes in systolic blood pressure in salt-loaded Wistar-Kyoto 
(WKY) rats and spontaneously hypertensive rats (SHRs) treated with olmesar-
tan plus Mas receptor antagonist A779 or hydralazine. WKY rats and SHRs re-
ceived a high-salt diet (8%NaCl) for 2 weeks. Salt-loaded SHRs were randomly 
divided into 4 groups: rats treated with vehicle (SHR-V, n=9), rats treated with 
hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats treated with olmes-
artan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with olmesartan 
and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) for 2 weeks. 
Systolic blood pressure was measured by the tail-cuff method. Data are ex-
pressed as mean ± SEM. †P < 0.01 vs SHR-V, ‡P<0.05 vs SHR-O.
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Figure 2:  FACS analyses for CD34 and Flk1 positive cells in salt-loaded Wi-
star-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) treated 
with olmesartan plus Mas receptor antagonist A779 or hydralazine. Salt-loaded 
SHRs were randomly divided into 4 groups: rats treated with vehicle (SHR-V, 
n=9), rats treated with hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats 
treated with olmesartan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated 
with olmesartan and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-
OA, n=7) for 2 weeks. Circulating mononuclear cells with CD34+/Flk1+ were 
quantified as EPCs. Data are expressed as mean ± SEM. †P<0.01 vs SHR-V, 
‡P<0.01 vs SHR-H, §P<0.01 vs SHR-O.
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Figure 3: Morphology of glomeruli in kidney from salt-loaded Wistar-Kyoto 
(WKY) rats and spontaneously hypertensive rats (SHRs) treated with olmesar-
tan plus Mas receptor antagonist A779 or hydralazine. WKY rats and SHRs re-
ceived a high-salt diet (8%NaCl) for 2 weeks. Salt-loaded SHRs were randomly 
divided into 4 groups: rats treated with vehicle (SHR-V, n=9), rats treated with 
hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats treated with olmes-
artan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with olmesartan 
and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) for 2 weeks. 
After the right kidney sections were stained with hematoxylin and eosin and pe-
riodic acid-Schiff. Glomerulosclerosis in renal cortex was scored as glomerular 
injury score (GIS). Data are expressed as mean ± SEM. †P<0.05, ††P<0.01 vs 
SHR-V, ‡P<0.05, ‡‡P<0.01 vs SHR-H, §P<0.05 vs SHR-O.
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significantly increased (P<0.05) this suppressed expression of ACE1 
protein (SHR-OA). However, expression of ACE2 and MasR proteins 
was significantly lower (P<0.05) in the renal cortex of salt-loaded SHRs 
(SHR-V) than that in that of WKY rats. Treatment with olmesartan 
(SHR-O), but not hydralazine (SHR-H) significantly upregulated 
(P<0.05) the increased expression of ACE2 and MasR proteins. A779 
significantly decreased (P<0.05) the upregulated expression of ACE2 
and MasR protein that followed treatment with olmesartan (SHR-OA) 
(Figure 6).

Effects of olmesartan with MasR antagonist on NAD(P)H 
oxidase components 
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with olmesartan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with 
olmesartan and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) 
for 2 weeks. CD34, VEGF protein expressions and eNOS phosphorylation 
were measured by Western blot analysis. The ratio of the abundance of each 
protein to actin was evaluated by densitometric analysis. Data are expressed 
as mean ± SEM. †P<0.05 vs SHR-V, ‡P<0.05 vs SHR-H, §P<0.05 vs SHR-O.
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Figure 6: Expression of ACE1, ACE2 and MasR in kidney from Wistar-Kyoto 
(WKY) rats and spontaneously hypertensive rats (SHRs) treated with olmesar-
tan plus MasR antagonist A779 or hydralazine. WKY rats and SHRs received 
high-salt diet (8% NaCl) for 2 weeks. Salt-loaded SHRs were randomly divided 
into 4 groups: rats treated with vehicle (SHR-V, n=9), rats treated with hydrala-
zine (120 mg/l, drinking water; SHR-H, n=8), rats treated with olmesartan (0.5 
mg/kg per day PO; SHR-O, n=8), and rats treated with olmesartan and MasR 
antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) for 2 weeks. ACE1, 
ACE2 and MasR protein expressions were measured by Western blot analysis. 
The ratio of the abundance of each protein to actin was evaluated by densi-
tometric analysis. Data are expressed as mean ± SEM. †P<0.05 vs SHR-V, 
‡P<0.05 vs SHR-H, §P<0.05 vs SHR-O.
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Figure 4: Morphology of interstitium of kidney from salt-loaded Wistar-Kyoto 
(WKY) rats and spontaneously hypertensive rats (SHRs) treated with olmesar-
tan plus Mas receptor antagonist A779 or hydralazine. WKY rats and SHRs re-
ceived high-salt diet (8%NaCl) for 2 weeks. Salt-loaded SHRs were randomly 
divided into 4 groups: rats treated with vehicle (SHR-V, n=9), rats treated with 
hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats treated with olmes-
artan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with olmesar-
tan and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) for 2 
weeks. After the right kidney sections were stained with hematoxylin and eosin 
and Masson’s trichrome method. The area of fibrotic lesions in the interstitium 
(fibrosis area) of the renal cortex was determined in sections stained by Mas-
son’s trichrome method to stain collagen fibers (stained blue), using a comput-
er-aided manipulator program. Data are expressed as mean ± SEM. †P<0.05, 
††P<0.01 vs SHR-V, ‡P<0.05, ‡‡P<0.01 vs SHR-H, §P<0.05 vs SHR-O.

and gp91phox proteins was significantly higher (P<0.05) in renal cortex 
from salt-loaded SHRs (SHR-V) than that from salt-loaded WKY rats. 
Treatment with olmesartan (SHR-O), but not hydralazine (SHR-H), 
significantly downregulated (P<0.05) the increased expression of 
p22phox, p47phox and gp91phox proteins. A779 significantly increased 
(P<0.05) this downregulated expression (SHR-OA) (Figure 7).

Effects of olmesartan with MasR antagonist on HIF-1α, 
CTGF and TGF-β1 

Expression of HIF-1α, CTGF and TGF-β1 proteins was significantly 
(P<0.05) higher in renal cortex from SHRs than that from WKY rats. 
Treatment with olmesartan (SHR-V), but not hydralazine (SHR-H), 
significantly reduced (P<0.05) the increased expression of HIF-1α, 
CTGF and TGF-β1. A779 significantly increased (P<0.05) this effect 
(SHR-OA) (Figure 8).

Discussion
In the present experiments, EPC formation was suppressed in 

salt-loaded SHRs compared to WKY rats. Olmesartan treatment 
increased EPC number in SHRs, while the effect was blunted with 
MasR antagonist A779, indicating that olmesartan stimulates the EPC 
formation through the ACE2/Ang-(1–7)/MasR axis. At present, all 
major RA system components have been reported in bone marrow cells 
such as stromal cells, hematopoietic stem cells and mesenchymal stem 
cells [21]. It is hypothesized that olmesartan stimulated EPC formation 
by affecting the local RA system in bone marrow. Ang II has been 
reported to induce apoptosis and senescence of EPCs through AT1 
receptor signaling [22], whereas Ang-(1–7) stimulates the proliferation 
of CD34 positive EPCs [23]. ARBs have been reported to increase Ang-
(1–7) through the inhibition of the AT1 receptor that suppresses ACE2-
forming Ang-(1–7) [24]. Imanishi et al. [25] observed that the number 
of SHR-derived EPCs from bone marrow was smaller than the number 
derived from WKY rats. A possible explanation for the suppression of 
EPC formation is that the Ang II/AT1 receptor axis is enhanced in the 
bone marrow of SHRs the, while the Ang-(1–7)/MasR axis is impaired.

In the present experiments, olmesartan significantly improved 
glomerulosclerosis in salt-loaded SHRs, while this effect was inhibited 
with MasR antagonist A779. It has been established that Ang-(1–7) 
regulates renal function [26,27]. Ang-(1–7) has been reported to 
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H oxidase and generation of superoxide in the heart, kidney and blood 
vessels were blunted by infusion of recombinant human ACE2, in 
association with a lowering of plasma Ang II and elevation of Ang-
(1–7) levels in WKY rats. In SHRs, infusion of recombinant human 
ACE2 suppressed the hypertension and NAD(P)H oxidase activation 
and the increased superoxide generation in the heart, kidney and blood 
vessels, indicating that ACE2 is a negative regulator for blood pressure 
and NAD(P)H oxidase activation in hypertension [29]. Olmesartan 
treatment suppressed the enhanced expression of NAD(P)H oxidase 
components that was inhibited with MasR antagonist A779. These 
findings indicate that olmesartan inhibits intrarenal Ang II-enhanced 
NAD(P)H oxidase to improve renal degeneration through the ACE2/
Ang-(1–7)/MasR axis.

We further investigated mechanisms underlying the olmesartan-
induced improvement of renal degeneration by the activation of the 
ACE2/Ang-(1–7)/MasR axis. Expression of CD34 and P-eNOS proteins 
was lower in kidney from SHR. CD34 and P-eNOS are markers for 
endothelial functions [30].  P-eNOS was reported to be impaired in 
kidney from diabetic rats [31]. Olmesartan treatment upregulated the 
decreased expression of these proteins, which was blunted with A779. 
These findings indicate impaired glomerular endothelial function in 
kidney from salt-loaded SHRs. Olmesartan treatment increased the 
suppressed endothelialized factors through the activation of the ACE2/
Ang-(1–7)/MasR axis. Contrarily, expression of VEGF and HIF-1α 
as ischemia response factors was significantly higher in kidney from 
SHRs than that from WKY rats. Olmesartan treatment significantly 
downregulated the increases expression of VEGF and HIF-1α which 
was inhibited with MasR antagonist A779. VEGF and HIF-1α are 
molecules that induce endothelialization in response to ischemia. 
These proteins might be upregulated against ischemia of the kidney in 
salt-loaded SHRs.

The enhanced intrarenal RA system is associated with renal damage, 
such as interstitial fibrosis and tubular degeneration, through activation 
of TGF-β1 [32]. The activated TGF-β1 directly stimulates synthesis of 
extra cellular matrix components, reduces collagenase production, 
and induces profibrogenic factor CTGF [33]. In the kidney, TGF-β 
induces epithelial-mesenchymal transformation in nephrotubules with 
an accumulation of myofibroblasts and subsequent tubular atrophy, 
key determinants of renal fibrosis in chronic renal injury [34]. Thus, 
renal degeneration in kidney from hypertensive rats is induced by the 
intrarenal Ang II with stimulation of TGF-β1, which can be suppressed 
by ARBs [35]. In the present experiments, kidney from salt-loaded 
SHRs showed interstitial fibrosis, tubular atrophy, necrosis and cast 
formation. Treatment with olmesartan significantly improved this 
degeneration where expression of CTGF and TGF-β1 was higher than 
in WKY rats. Olmesartan downregulated the increases expression of 
these proteins that were inhibited by MasR antagonist A779, indicating 
that olmesartan improves renal degeneration by suppressing renal Ang 
II induced CTGF and TGF-β1 through the activation of the ACE2/
Ang-(1–7)/MasR axis.

In conclusion, salt-loaded SHRs showed suppressed EPC formation 
and renal degeneration with decreases in expression of CD34 and 
P-eNOS and increases in expression of NAD(P)H oxidases, HIF-1α, 
VEGF, CTGF and TGF-β1. Olmesartan treatment improved impaired 
EPC formation and renal degeneration through the ACE2/Ang-(1–7)/
MasR axis in salt-loaded SHRs, suggesting that the ACE2/Ang-(1–7)/
MasR axis represents a potential target for hypertension.

present in proximal tubules and exists in urine at higher concentrations 
than Ang II [26]. Chappell et al. [27] demonstrated co-localization of 
ACE2 and Ang-(1–7) in renal tubules, indicating the direct conversion 
of Ang II to Ang-(1–7) in the kidney. Moreover, ACE inhibitors and 
ARBs stimulate the intrarenal formation of Ang-(1–7) converted 
from Ang II by ACE2 [28]. In the present experiments, expression of 
ACE1 protein was upregulated, whereas expression of ACE2 and MasR 
proteins was downregulated in kidney from SHRs in comparison to 
WKY rats, indicating enhanced ACE1/Ang II/AT1 receptor axis and 
impaired ACE2/Ang-(1–7)/MasR axis in the kidney from salt-loaded 
SHRs. Olmesartan treatment upregulated the decreased expression of 
ACE2 and MasR proteins. A779 significantly reduced the upregulated 
expression of these proteins by olmesartan. Agata et al. [16], also 
demonstrated that ARB increases endogenous Ang-(1–7) through the 
overexpression of ACE2. It is possible that olmesartan upregulated the 
impaired ACE2/Ang-(1–7)/MasR axis that counteracted the enhanced 
Ang II/AT1 receptor axis, by which the renal degeneration was 
improved in the salt-loaded SHRs. 

In the present experiments, expression of NAD(P)H oxidase 
components was enhanced in kidney from salt-loaded SHRs. Recently 
Lo et al. [29], demonstrated that Ang II-induced activation of NAD(P)
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Figure 7: Expression of NAD(P)H oxidases in kidney from salt-loaded Wis-
tar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) treated 
with olmesartan plus MasR antagonist A779 or hydralazine. WKY rats and 
SHRs received high-salt diet (8% NaCl) for 2 weeks. Salt-loaded SHRs were 
randomly divided into 4 groups: rats treated with vehicle (SHR-V, n=9), rats 
treated with hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats treated 
with olmesartan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with 
olmesartan and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, n=7) 
for 2 weeks. Expression levels of p22phox, p47phox and gp91phox proteins 
ewere measured by Western blot analysis. The ratio of the abundance of each 
protein to actin was evaluated by densitometric analysis. Data are expressed 
as mean ± SEM. †P<0.05 vs SHR-V, ‡P<0.05 vs SHR-H, §P<0.05 vs SHR-O.
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Figure 8: Expression of HIF-1α, CTGF and TGF-β1 in kidney from salt-loaded 
Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) treated 
with olmesartan plus MasR antagonist A779 or hydralazine. WKY rats and 
SHRs received high-salt diet (8% NaCl) for 2 weeks. Salt-loaded SHRs were 
randomly divided into 4 groups: rats treated with vehicle (SHR-V, n=9), rats 
treated with hydralazine (120 mg/l, drinking water; SHR-H, n=8), rats treated 
with olmesartan (0.5 mg/kg per day PO; SHR-O, n=8), and rats treated with 
olmesartan and MasR antagonist A779 (0.5 mg/kg per day PO; SHR-OA, 
n=7) for 2 weeks. HIF-1α, CTGF and TGF-β1 protein expressions were mea-
sured by Western blot analysis. The ratio of the abundance of each protein 
to of actin was evaluated by densitometric analysis. Data are expressed as 
mean ± SEM. †P<0.05 vs SHR-V, ‡P<0.05 vs SHR-H, §P<0.05 vs SHR-O.
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