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Abstract

Dogs sniff the ground in advance of defecation, irrespective of sex, breed and location. This discussion proposes that 
canines are not casual “sniffers,” but are rather evolutionarily predisposed to search for particular molecules that activate 
gastrointestinal neurobiology and physiology via olfaction. Given that canines possess an extremely discriminating 
olfactory system, it is further proposed that specific scent-stimuli prompt defecation. Such olfactory responses may 
have been imprinted genetically or always instinctive and manifested in behaviour, biology and physiology (including the 
vomeronasal organ). Specifically, the canine sphincter reflex and final peristalsis appear to be scent-mediated through 
synaptic neurobiology, triggered by a specific family of organic aromatic amines. However, as dogs have been making 
the transition from rural-to suburban-to urban settings, their quest for olfactory stimulation has become more challenging 
due to increasingly “sanitized” municipal environments. Indeed, while being welcomed into indoor cohabitation with busy 
and preoccupied human companions, erratic owners’ schedules can compound these dynamics and lead to recurrent 
frustration with the dogs’ apparent searching with respect to a normal excretion routine.

Keywords: Behaviour; Biogenic amines; Canine; Defecation;
Gastrointestinal; Neurobiology; Olfaction; Vomeronasal organ

Abbreviations: HRD: Human Remains Detection; PPT: Parts-
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Introduction
Dog and human bond

The dog/family cohort is a powerful social and political group, 
as reflected in emerging trends. Dog status and social freedom are 
exemplified by the off-leash latitude in New York City public parks 
between 9:00 PM and 9:00 AM. Recently, the New York state legislature 
unanimously ratified a law also allowing dogs privileges in outdoor 
restaurant areas [1]. New Yorkers can now adopt the Parisian custom of 
inviting the city dog into many stores and sidewalk cafés. In fact, such 
liberal dog laws are emerging throughout many parts of the world, and 
services such as Bring Fido®, DogFriendly®, Rover®, and Yelp® provide 
owners with lists and maps of pet-friendly establishments. However, 
the domestic canine is evolutionarily complex, since dogs have acute 
“wilderness” olfactory capabilities, yet they typically live indoors in an 
out-of-context urban environment [2-4]. Dr. Alexandra Horowitz, a 
renowned dog olfaction and cognition expert, notably refers to the “yard 
dog” as if it were an extinct species [5]. Her work transcends traditional 
research-based scientific media, while reaching into the popular press 
with substantial readership and influence in both audiences [3,5-7]. 
In tandem, the growing interest in dog cognition has followed the 
urbanization of the “indoor” canine now integral to more than 60 million 
American households [8]. Despite tens of millions of such mutually 
adoring human and canine families worldwide, bonding failures all 
too often begin in the kennel upon adoption [9-12]. Overstimulated 
by indoor odors, sheltered dogs frequently become anxious, which can 
decrease both the chance of adoption and successful bonding thereafter. 
A lack of staffing or volunteers often results in dogs receiving less 
attention and exposure to the outdoor environment; in turn, many are 
forced to relieve themselves in their cages, eroding housebroken habits. 
Thus, dogs are routinely relinquished back to shelters for behavioural 

problems, and chief amongst these is accidental house soiling [13]. As 
shelters and philanthropic societies are increasingly adopting “no-kill” 
standards, every failure compounds the behavioural impact of further 
crowding, as well as the societal pressures to break the cycle of returns 
in order to maintain donor confidence and vital funding.

 The scent search

Dogs have seemingly enjoyed almost all aspects of their transition 
indoors as companion animals. Two important, but less desirable, 
aspects of this shift nonetheless include overwhelming exposure to 
“sanitized” indoor spaces and being left alone while interminably 
having to hold the canine bowel and bladder in check [14]. While 
relevant publications infrequently mention dog defecation, feces and 
zoonosis, municipalities dutifully regulate dog waste collection with 
widespread public cooperation. Dog owners have cleverly adapted 
their hours and logistics to meet the needs of millions of dogs while 
complying with such requirements. However, dogs are often picky and 
potentially nervous creatures that require meandering and extended 
sniffing in order to achieve normal defecation. As a result, owners 
constrained by human schedules for work, children and life events 
can become quite frustrated with the amount of time associated with 
routine canine relief [15-18]. Many owners also realize that the sniffing 
process often appears to be equally frustrating for their pets. Cajoling 
a dog to stop dawdling may be tempered by considering that the dog 
evolved in the wilderness, habituated to open-air olfactory molecules. 
Intently searching for distinct particles, innumerable outdoor scents 



Citation: Brady TE, Abood SK, Kulberg RT, Dellinger K, Goddard MKM, et al. (2019) Olfactory Mediation of Canine Gastrointestinal Neurobiology. J 
Anim Health Behav Sci 3: 116. doi: 10.4172/2157-7536.1000116

Page 2 of 7

J Anim Health Behav Sci, an open access journal Volume 3 • Issue 1 • 1000116

(nearly absent indoors) often appear to erratically and repeatedly shift 
a dog’s attention. Nevertheless, as an expert in molecular detection 
[19,20], the canine’s frequently unrelenting search may be explained as a 
primal effort to locate specific decay molecules that were once abundant 
and plentiful. Contrary to popular assumptions, this behaviour is not 
associated with “marking” or otherwise seeking prior excrement of 
other dogs in the vicinity. Concrete jungles with sparse vegetation in 
“sanitized” metropolitan environments, coupled with diligent waste 
removal operations that effectively purge aromatic signalling molecules, 
can lead to longer searches that challenge dogs to accomplish defecation 
in a timely fashion [21,22].
Canine olfaction

Both the sensitivity and specificity of canine olfactory 
capabilities have been well-documented [23-28]. As such, canine 
scent detection has been proven in a myriad of applications; 
whereby, service dogs routinely recognize signature chemicals in 
explosives [23,29] and drugs [30]; track forensic evidence [31,32]; 
and assist in some disease diagnostics [25,33-37]. Identifying and 
locating particles at Parts-Per-Trillion [PPT; three orders of 
magnitude more sensitive than current instrumentation; [25,38], 
dogs would thus be capable of detecting a single droplet 
diluted in 20 Olympic-size pools [25]. Renowned feats include 
the work of cadaver dogs, which are capable of Human Remains 
Detection (HRD) long after death, despite burial, submersion in 
water, or attempted concealment [39-41]. Dogs characteristically 
detect volatile compounds produced by organisms and associated 
with molecular death, as evidenced by spontaneously rubbing their 
snouts at the sites of decayed animals, absent any otherwise discernible 
evidence. In the case of HRD, such identification is elicited by a set 
of volatile organic aromatic amines that linger for an indeterminate 
period [42].
Vomeronasal organ

The canine Vomeronasal Organ (VNO) was examined extensively 
[43-46] and determined to be a robust and highly vascularized 
anatomical adaptation of the dog’s olfactory system; however, before 
and since, there has been a paucity of further VNO research. That 
said, the VNO in dogs is developed and prominent, yet it belies simple 
evolutionary explanation [43]. Located in the roof of the canine mouth, 
the VNO has been classified as a secondary olfactory organ capable of 
detecting chemical signals released from conspecifics and food flavors 
[47,48], perhaps best described as sensing a combination of taste 
and smell. The VNO in long-snouted dogs is especially prominent 
and proportional, representing a large olfactory, gustation and 
neurobiological center at the apex of external stimuli. While human 
gustation and taste have been well characterized, the canine experience 
has been somewhat left to speculation. Most dogs typically devour 
mouthfuls of food in a voracious manner, and little time is given to 
mastication or the ostensible savoring of taste sensations [49]. Aromatic 
signals obtained from food are nonetheless amplified by the VNO; yet 
in contrast to food consumption, prolonged bone chewing may provide 
a much greater source of canine gustatory stimulation.

Canine olfaction, neurobiology and gastrointestinal reflexes

The olfaction-synaptic gastric link was notably demonstrated by 
Pavlov as a conditioning response to ringing a bell in association with 
scent stimuli. However, the observed response was simple salivation, 
secondary to smelling/association with food for the dog [50]. More 
recently, many have described distinct, bidirectional signalling between 
the gut and brain [51-57]. This pathway is essential for wellbeing, 
providing on-going feedback with respect to digestive status and the 

recognition of hunger or satiety, as well as imbalances or pathogens 
impeding ingestion that may reach awareness of discomfort. Described 
as the “gut-brain axis,” these pathways are hormonal, immunologic and 
neural (via the central and enteric nervous systems). Humans likewise 
experience these connections, as evidenced by the relationships 
between anxiety, stress, sudden bowel movements, and the ultimate 
awareness of dyspepsia. Whereas, the rectum and the colon serve as 
reservoirs for gastric luminal contents, the link between intestinal 
motility and the central nervous system has also been well established; 
for example, just as the ability to decipher when and where defecation is 
appropriate has proven to be critical for survival and social acceptability 
[58]. Gastrointestinal motility is modulated by a number of colonic 
reflexes [59], and the activity in one part of the gut can affect others. 
For instance, feeding has been previously reported to increase proximal 
duodenal tone in canines; thus, reducing the capacity and prompting 
receptive relaxation of the colon, indicative of a gastrocolonic reflex 
[60].

Linking olfaction to neurobiology and gastrointestinal 
processes

The human brain perceives and interprets odors differently from all 
other senses; such as, pleasant cooking aromas that stimulate hunger 
and familiar scents that awaken memories by association. Conversely, 
many volatile aromatic amines at high concentrations can induce 
human retching. Clearly, the olfactory transmission and information 
exchange in the brain stem appears to be linked to the physiology of the 
autonomic and somatic nervous systems [61]. While further dynamics 
of these links remain the subject of scientific debate, the scent-brain-
stomach relationship is arguably self-evident. In turn, the somatic 
nervous system regulates body movement through control of skeletal 
muscles and orients the organism to its environment through the 
reception of external stimuli,  such as vision, hearing, taste and smell 
[62]. The myenteric plexus is the major nerve to the gastrointestinal 
tract that communicates with the central nervous system in response to 
an array of digestive conditions; these include colon distention, which 
would alert the brain when the bowel needs relief. In turn, fibers in 
the somatic nerve (pudendal) of the pelvic floor and anus respond to 
specific triggers to initiate the final-phase defecation reflex. Given the 
array of inputs to the somatic nervous system, an olfactory stimulant is 
consistent with this neurobiological process and could likewise initiate 
the defecation reflex in a similar fashion. In the canine, the olfactory 
response appears remarkable in both final peristalsis (voluntarily 
releasing the bowel) and in prompting the defecation reflex. Sniffing 
the ground occurs universally and consistently appears to activate 
the somatic nervous system; it is thus biologically and conceptually 
plausible that an olfactory stimulus is linked to the somatic defecation 
reflex. Notably, dogs also typically appear to lose interest in olfactory 
stimulation immediately following excretion.

Evolutionary milieu

As a context for these observations, canine evidence suggests that 
the species has developed over the last 35 million years with consistently 
carnivorous characteristics [63]. Such traits have included eating spoiled 
meat throughout its evolution without becoming a carrion-dependent 
species, as decay (and consequent volatile emissions producing 
characteristic olfactory stimulants) would have occurred on the cellular 
level immediately following expiration of the hunted or scavenged 
organisms were evolving at the same time [42]. These distinctive 
“decay” molecules have been associated with a family of volatile 
aromatic amines that have been manifested in varying concentrations 
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and combinations over time [64]. As such, organic particles generated 
by the decomposition of animal carcasses, dense forestry, and plants, 
unique to parasitic acceleration, all produce pungent aromas. Specific 
olfactory receptors have evolved for these molecules, which are 
recognized in milliseconds by the synaptic pathway of the canine 
brain. The brain/gut neurobiological signals are likewise instantaneous, 
but peristalsis requires time for sphincter relaxation and bowel relief. 
Other species, especially carrion-eating creatures (e.g. condors, 
hyenas, jackals, leopards, lions, raccoons, seagulls, wolves, etc.) that 
hunt to feed, have also demonstrated exceptional sensitivity to these 
aromatic amines emitted from decayed flesh, including arthropods and 
gastropods, albeit the latter in undersea environments [65-68]. In fact, 
the apparent attraction appears to be shared among all predators and 
scavengers with chemosensory capabilities to associate these particles 
with sustenance. Crustaceans, in particular, have provided a model for 
demonstrating carrion-scavenging specificity in the laboratory and 
field. Nocturnal-foraging crustaceans chemotactically locate potential 
food sources, consistently entering traps with bait containing/releasing 
these amines. Crabs, lobsters and crayfish (in the wild, captive and in 
aquaculture) readily consume calcium-based matrices infused with 
these volatile amines in the absence of flesh or other organic matter 
[69]. With respect to dogs, they are drawn to pungent odors, including 
human sweat, tires, and urine [70,71]. As noted, from hunting to eating 
to gnawing bones, volatile biogenic amines have played a central role in 
the canine experience: These molecules have also been evolutionarily 
ubiquitous when dogs have been seeking to achieve bowel relief 
for millennia. However, urban planning and waste management 
have gradually diminished the sources of aromatic amines from the 
environment where tens of millions of dogs share human dwellings and 
the “outdoor” spaces needed for routine elimination in municipalities, 
worldwide. Obviously, dogs vary, and some breeds more efficiently and 
reliably detect such molecules, indicating a range of canine responses to 
stimulating particles (parts per billion vs. trillion; [38]). However, the 
inexorable presence of such organic compounds, combined with the 
resolute determination of dogs “sniffing” as a precursor to bowel relief, 
suggest that these are in fact the biogenic amines that provide olfactory 
stimulation for final canine peristalsis.

Aromatic amines and bone gnawing

A strong association between aromatic amines and canine digestion 
plausibly evolved with bone gnawing; whereby, prey bones have 
provided marrow and calcium nutrients and no doubt fostered dental 
health while releasing aromatic amines sufficient to not only attract 
canines in the first instance, but also to characteristically bury, locate 
and later retrieve them. Chewing is inherently linked to gastrointestinal 
stimulation and ultimately neurobiological signalling for bowel relief. 
Neurotransmitters, in particular, also require calcium ions, possibly in 
abundance, to reach the brain/gut pathways that credibly imprinted 
these instinctive reflexes. As a predator, the canine jaw and teeth clearly 
adapted to gnawing with powerful mastication muscles that can produce 
over 1,600 newtons of force [72]. As gnawing gradually micronizes 
bones into particulates mixed with saliva, it provides a requisite bath for 
the canine VNO. While hunger is the primary motivation of hunting 
and scavenging animals, domestic dogs generally do not hunt to feed, 
and their consumption of meat is a distinct behaviour from bone 
chewing [73]. Indeed, mastication of bones (and other dense materials) 
has been a generally acknowledged canine trait consistent with the 
VNO function.

Recto-Anal Inhibitory Reflex (RAIR) vs. Olfactory stimulation

The retention and subsequent release of gut contents following 

universal “sniffing” in advance of defecation yields compelling evidence 
of linkage to the canine olfactory bulb. The defecation reflex triggers two 
main sphincters around the anal canal: the internal sphincter (which 
cannot be controlled voluntarily) and the external sphincter (a skeletal 
muscle which can be controlled) [74,75]. The reflex also controls when 
the internal sphincter relaxes and the external sphincter contracts [76]. 
However, the apparent ability to “sniff ” for extended periods of time 
and seemingly ignore a myriad of scents while “searching” suggests a 
Recto-Anal Inhibitory Reflex (RAIR), in response to rectal distention, 
in the absence of specific olfactory stimulation. RAIR allows the animal 
to delay defecation by moving the stool backward slightly and reducing 
the urge to defecate [77]. Upon stimulation, the canine can then 
activate voluntary muscles to initiate movement of the stool forward 
and outside of the body. Such behaviour associating the canine’s “sniff 
search” prior to relief [78], further suggests that particular aromatic 
amines induce these reflexes and facilitate elimination. Notably, dogs 
have been used as pudendal nerve test models in the search of human 
methods for neurobiological repair due to disease and injury [79,80]. 
Such controlled experiments have shown that this neuro-pathway, when 
disturbed, readily malfunctions in dogs [81,82]. The myenteric plexus 
(or signalling) of the colon and the pudendal nerve systems are separate 
neurobiological pathways, requiring bidirectional synaptic signalling. 
It may follow that the olfactory-stimulating prerequisites also require 
both systems to respond independently, (e.g. final peristalsis and anus/
sphincter reflex from the nerve bundle) for canine defecation.

Testing the Hypothesis: Field Trials Using Synthetic 
Aromatic Amines

To examine this linkage, specific botanical and organic amines 
theorized to be sought by the “sniffing” canine in advance of defecation 
were identified and evaluated. The formulation was refined using an 
array of naturally occurring molecules. By placing a drop on the back 
of the hand, allowing to air dry, and washing vigorously with soap and 
water in the laboratory, the family dog’s response without prompting 
upon returning home helped isolate key ingredients. Upon selection, 
an optimized (most consistent response) combination of aromatic 
biogenic amines was then placed on the dog’s front paw following a 
routine digestion period (e.g. “time-to-let-the-dog-out” or “time-to-
walk-the-dog”) in a series of tests. As a note, the solution is odorless to 
humans but typically yields considerable canine sniffing and tracking. 
Such controlled aromatic amine exposure generally accelerated canine 
bowel relief following application just prior to giving access to “outdoor” 
locations. That is, further proof-of-concept trials engaged a sampling of 
volunteers and their dogs to see if the solution could expedite canine 
defecation in real world circumstances. Field test materials and tracking 
sheets were provided to participants with a simple protocol so as not 
to distract their dogs; all of which were responsive to the material – 
across a broad range of sizes and ages. Most achieved an improvement 
in the timeliness of the defecation reflex over seven daily applications 
(once, but occasionally twice, a day). In some instances, no discernible 
differences were noted by owners; however, the testing occurred during 
the winter months when some acknowledged they could not always 
observe the dogs due to darkness. In more controlled testing with daily 
use over a longer period (>80 tests) with a Labrador, the defecation times 
decreased to less than 2 minutes, from paw application to elimination; 
with a mean of 1:47 (± 36 seconds) (Figure 1). Average Defecation Times 
(TD) without treatment were typically greater than 5 minutes (Figure 1). 
The three fastest observed TD were 42, 52, and 53 seconds (average=49.0 
seconds), and the three slowest observations (TD) were 175, 181, and 
186 seconds (average=180.7 seconds) (Figure 1). Overall, spanning 88 
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tests, the stimulant solution reduced the TD by 64% when compared 
to average untreated times (Figure 1). Comparable observations were 
made in a second set of controlled evaluations with smaller breeds, 
including a Yorkshire Terrier (4 years of age); Miniature Doberman (9 
years); Jack Russel Terrier (1.5 years); and a Beagle (6 years), (Figure 
2). Additional trials with a sampling of larger breeds yielded similar 
findings with a Golden Retriever (8 years of age); Weimaraner Pit Bull 
Mix (4 years); Rottweiler Australian Shepherd Mix (5.5 years); Labrador 
(4 years); and a Rhodesian Ridgeback (8 months). The field evaluator 
with a Labrador (4 years of age) reported typically needing to “walk the 
entire perimeter of the yard prior to elimination” requiring between 
10 to 15 minutes prior to the testing. During the trial, the Labrador 
improved to an average time from drop administration to defecation 
of 4 minutes and 57 seconds (Figure 3). The research team and the 
volunteer dog owners found generally improved response times, i.e., 
consistent (T0) vs. (TD). Field evaluators perceived 75% of the daily tests 
to result in faster defecation times; while 21% were viewed as similar or 
unchanged; and 4% were perceived as slower (Figure 4). Notably, the 
slower responses were observed at the beginning of the trials, primarily 
occurring on days 1 and 2. In every test, the experiment was concluded 
when the animal defecated; and in nearly 90% of the evaluations, the 
dogs defecated and urinated. The trials were performed for at least seven 
days at the owners’ (and presumably the dogs’) preferred times of day. 
While some tests improved over time, the age, breed, sex, and location 
(i.e., rural, urban, city, backyard, or on leash) did not appear to affect 
the results of the evaluation. While one cannot ignore a conditioning 
aspect of the drop placement and the dogs’ responses to their owners, 
the perceived confidence in overall defecation reflexes improved with 
daily use.

Next Steps: Real World Kennel Testing
The behavioural and environmental objective of developing this 

scent stimulant was to examine the potential for controlled exposure to 
“sniff-search” target molecules to accelerate routine canine defecation 
while improving dog waste management (e.g. owner management 
of when and where). A broader humane and societal goal would be 
to reduce the number of adoption failures and shelter returns due to 
indoor soiling. In effect, faster and more consistent “dog walking” to 
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Figure 3: Field trials with five breeds weighing greater than 50-lbs (Golden 
Retriever, Weimaraner Pit Bull Mix, Rottweiler Australian Shepherd Mix, Black 
Labrador, and Rhodesian Ridgeback); A) The average untreated elimination time 
(red) for each dog was established by the field evaluator. Each trial consisted 
of seven unique tests. One drop of stimulant solution was applied to the dog’s 
front paw at T0, and the evaluator measured the time. Upon defecation, the time 
was recorded as TD. Gray bars represent the average TD across the seven-day 
trial; B) Indicates the animal information, average untreated/treated elimination 
times, and percent change in TD vs. untreated tests. (2019).
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leverage limited shelter resources could facilitate the adjustment from 
“kennel life” to conditions in a new family environment [83]. That is, 
establishing pre-adoption and subsequent routines for more rapid and 
predictable dog defecation using the solution could play a critical role 
in prevention of indoor soiling accidents, decreasing the likelihood 
of adoption returns to the shelter. Over time, this technology could 
potentially prevent innumerable dogs from being relinquished or 
euthanized due to such incidents[46,84,85].

Discussion and Conclusion
Gastrointestinal health and defecation consistency are critical 

factors inextricably linked to the human:animal bond. This work to 
relate olfaction to canine gastrointestinal neurobiology is ongoing - and 
further studies are needed to examine the breadth of olfactory effects 
on canine behaviour, psychology and even disease states, including 
potential corollaries to pheromones and other volatile amines driving 
canine behaviour and socialization.
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