

OCT: Transforming Diagnostics Across Medical Specialties

Yuki Nakamura*

Department of Internal Medicine and Cardiology, Keio University School of Medicine, Tokyo, Japan

Introduction

Optical Coherence Tomography (OCT) is a powerful, non-invasive imaging modality that has revolutionized medical diagnostics. This technology provides high-resolution cross-sectional images of tissue microstructure, invaluable for examining various biological systems. Reviews highlight its principles, evolution, and current healthcare uses. It also covers newer imaging methods and suggests where the field is headed, underscoring OCT's remarkable adaptability and utility.[1]

Building on this foundation, OCT angiography is increasingly important in diagnosing neurological conditions. It outlines its usefulness in identifying issues like stroke, multiple sclerosis, and various neurodegenerative diseases, making it a crucial tool. The research also touches on emerging applications, indicating its expanding role in neurology.[2]

Here's the thing: OCT is proving invaluable in cancer detection. It provides high-resolution, non-invasive imaging that aids in early diagnosis and accurately guides biopsies. This article covers its use across different tissue types to catch cancer sooner, offering a less invasive and more precise approach to oncology diagnostics.[3]

Beyond oncology, intravascular OCT is essential for understanding coronary artery disease. It provides detailed insights into plaque morphology, crucial for risk assessment, and helps optimize stent placement. This is a big deal for interventional cardiologists, enabling more precise and effective treatments.[4]

In ophthalmology, this paper examines the real advantages of using intraoperative OCT during retinal surgery. The real-time visualization it offers dramatically improves precision and leads to better outcomes for complex procedures. This helps to cut down on complications, enhancing patient safety and surgical efficacy.[5]

This work explores OCT's usefulness in dermatology, specifically detailing its non-invasive capacity for diagnosing skin conditions, tracking how treatments are progressing, and guiding various procedures. It truly underscores its growing importance in skin health, offering a gentle yet effective method for assessment and intervention.[6]

The expanding reach of OCT now dives into neuroscience. This paper covers everything from obtaining structural images of brain tissue to conducting functional studies. It showcases its potential to help us understand neurological diseases and how the brain actually works at a microstructural level, opening new avenues for research and diagnosis.[7]

What this really means is that functional OCT is a game-changer for diagnostics. This article breaks down how it provides not just structural details but also crucial functional information, like blood flow and oxygen levels. This significantly ex-

pands its diagnostic utility across a bunch of medical areas, moving beyond static images to dynamic physiological insights.[8]

Furthermore, this review discusses the integration of Artificial Intelligence (AI), especially deep learning, with OCT imaging. It shows how AI is making a huge difference in interpreting complex images, accurately spotting diseases, and even predicting how well treatments will work. This is particularly transformative in eye care, where AI-powered analysis can enhance diagnostic accuracy and personalize patient management.[9]

Lastly, this paper looks at OCT's vital role in dentistry. It shows its capability to non-invasively detect early signs of cavities, thoroughly evaluate gum health, and effectively guide procedures for dental restoration. It's clearly setting the stage for much more precise oral diagnostics and personalized dental care, offering a refined approach to maintaining oral health.[10]

Description

Optical Coherence Tomography (OCT) is a powerful, continuously evolving imaging technique providing high-resolution, non-invasive cross-sectional views of biological tissues. It covers its basic principles, evolution, and wide array of current uses across healthcare. Emerging imaging methods and future directions are also explored, underscoring the broad utility and adaptability of OCT as a diagnostic tool.[1]

Delving into specific medical fields, OCT angiography has gained traction in neurology. It is particularly useful for diagnosing conditions like stroke, multiple sclerosis, and neurodegenerative diseases, allowing for earlier detection and improved monitoring.[2]

Beyond neurology, OCT is proving invaluable in cancer detection. Its high-resolution, non-invasive imaging assists significantly in early diagnosis and provides critical guidance during biopsy procedures. This covers how the technology is applied across different tissue types, facilitating earlier detection and improving patient outcomes.[3]

In cardiovascular medicine, intravascular OCT is essential for understanding coronary artery disease. It offers detailed insights into plaque morphology, crucial for risk assessment, and aids in optimizing stent placement. This is a crucial advancement for interventional cardiologists, leading to more effective procedures.[4]

Similarly, in ophthalmology, intraoperative OCT offers distinct advantages during retinal surgery. Real-time visualization profoundly enhances surgical precision, leading to improved patient outcomes for complex procedures and helping to minimize complications.[5]

The utility of OCT extends further into dermatology, where it provides a non-invasive means for diagnosing skin conditions, tracking treatment efficacy, and guiding various procedures. This highlights its increasing importance in skin health.[6]

New applications are emerging in neuroscience, where OCT is now used to obtain structural images of brain tissue and conduct functional studies. This capability is pivotal for advancing our understanding of neurological diseases and the fundamental workings of the brain.[7]

Finally, in dentistry, OCT plays a growing role by enabling non-invasive detection of early signs of cavities, thorough assessment of gum health, and precise guidance for dental restoration procedures. This signifies a clear shift towards more precise oral diagnostics.[10]

A significant development is functional OCT, a transformative advancement in medical diagnostics. This technique provides not just structural details but also vital dynamic functional information, such as blood flow and oxygenation levels. This considerably broadens its diagnostic utility across numerous medical specialities.[8]

Furthermore, the integration of Artificial Intelligence (AI), particularly deep learning, with OCT imaging systems is fundamentally revolutionizing data interpretation. AI is making a substantial difference in analyzing complex images, accurately spotting disease markers, and even predicting treatment efficacy. This is particularly transformative in eye care, enhancing diagnostic accuracy and improving clinical workflows.[9]

Conclusion

Optical Coherence Tomography (OCT) is a versatile, non-invasive imaging technology widely used across healthcare. It provides high-resolution insights into tissue microstructure, with ongoing advancements in its principles and applications. OCT angiography is increasingly vital for diagnosing neurological conditions like stroke and multiple sclerosis, offering early detection capabilities. It also plays an invaluable role in cancer detection, providing precise imaging for early diagnosis and guiding biopsies across various tissue types.

In cardiology, intravascular OCT is essential for assessing coronary artery disease, delivering detailed insights into plaque morphology and optimizing stent placement. For ophthalmology, intraoperative OCT enhances retinal surgery by offering real-time visualization, dramatically improving precision and leading to better patient outcomes. Its utility extends to dermatology for diagnosing skin conditions, tracking treatment responses, and guiding procedures.

The technology is also expanding into neuroscience, enabling structural brain tissue imaging and functional studies. Functional OCT is a significant advancement, providing both structural and crucial functional data like blood flow and oxygen levels. The integration of Artificial Intelligence (AI) with OCT, particularly deep learning, is transforming image interpretation, disease spotting, and treatment prediction, especially in eye care. Furthermore, OCT's role in dentistry includes non-invasive cavity detection, gum health evaluation, and guiding restorative proce-

dures, setting the stage for more precise oral diagnostics.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Siqi Liu, Zhe Zhang, Wengang Wang. "Optical Coherence Tomography: A comprehensive review of advances and clinical applications." *BioMed Eng Online* 22 (2023):119.
2. Marcin Zaborowski, Jakub Piszczeck, Martyna Czerwonka. "Optical coherence tomography angiography: A review of current and future applications in neurology." *Clin Neurol Neurosurg* 235 (2023):107981.
3. Yanbo Wang, Xiaoyu Zhao, Qian Gao. "Optical coherence tomography for cancer diagnosis." *Cancer Res* 82 (2022):2699-2705.
4. Atsushi Tanaka, Naoki Maejima, Tadashi Usui. "Intravascular Optical Coherence Tomography for Coronary Artery Disease Assessment: A Review." *J Clin Med* 10 (2021):5474.
5. Karan H Patel, Aditi Jha, Bhakti Patel. "Intraoperative optical coherence tomography-guided retinal surgery: a review." *Int Ophthalmol* 43 (2023):2581-2591.
6. Yanyan Li, Ke Liang, Hong Li. "Optical coherence tomography in dermatology: a review of current applications and future directions." *Lasers Med Sci* 37 (2022):1079-1089.
7. Chao Chen, Maobin Li, Gang Ma. "Optical Coherence Tomography and Its Applications in Neuroscience." *Front Neurosci* 15 (2021):691280.
8. Jialin Qi, Tianshu Li, Min Zhang. "Functional Optical Coherence Tomography: Principles, Advances, and Clinical Applications." *Sensors (Basel)* 23 (2023):5241.
9. Dong Ho Kim, Minhwan Kim, Minjae Lee. "Artificial intelligence in optical coherence tomography: a review of current applications and future perspectives." *BMC Med Imaging* 23 (2023):108.
10. Tao Chen, Xinyu Song, Jianbing Wu. "Optical Coherence Tomography in Dentistry: A Review of Current Applications and Future Perspectives." *Sensors (Basel)* 21 (2020):50.

How to cite this article: Nakamura, Yuki. "OCT: Transforming Diagnostics Across Medical Specialties." *J_oInterv_oGen_oCardiol* 09 (2025):301.

***Address for Correspondence:** Yuki, Nakamura, Department of Internal Medicine and Cardiology, Keio University School of Medicine, Tokyo, Japan, E-mail: y.nakamura@keio.jp

Copyright: © 2025 Nakamura Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jan-2025, Manuscript No. jigc-25-172243; **Editor assigned:** 03-Jan-2025, PreQC No. P-172243; **Reviewed:** 17-Jan-2025, QC No. Q-172243; **Revised:** 22-Jan-2025, Manuscript No. R-172243; **Published:** 29-Jan-2025, DOI: 10.37421/2684-4591.2025.8.301
