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Abstract
The philosophy of Build-In-Reliability (BIR) or Design for Reliability (DFR) emphasizes the value of reliability 

prediction at a product’s conceptual design stage. Due to the lack of reliability data, reliability assessment of a new 
design is not usually performed at this stage. In this paper, we propose a methodology to provide the reliability insight 
of a new design concept. The methodology consists of three major processes: functional analysis, cognitive map and 
Bayesian network modeling. A case study is given to demonstrate our proposed method.
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Introduction
Accurate early reliability prediction becomes a common 

requirement for new product’s development as systems have grown to 
be more complex [1,2]. However, in the design phase of a new product 
there are not physical samples to assess or prove reliability. On the 
other hand, under the philosophical influence of Design For Reliability 
(DFR) or Build-In- Reliability (BIR), significant efforts had been put 
on reliability improvement by product design. For example, the use of 
computer support analysis (i.e., computer simulation) by designers is 
widely spread [3]. Also, as complements to these computer simulation 
tools, qualitative and quantitative information from similar existing 
designs are also important to BIR [4]. In recent years with the aid of 
new computational technologies, several design approaches have been 
proposed with the use of Bayesian reliability. Bayesian methods for 
system reliability analysis have been studied extensively in the work by 
Hamada et al., Wang et al., Pan and Rigdon [5-7]. These publications 
have depicted the possibility of assessing a new product’s reliability 
before a physical sample is viable by taking into consideration of all 
existing information. Such information may include component and 
subsystem data, information from similar existing systems, and expert’s 
opinions. Nowadays, there is also broad literature considering the 
reliability information integration aspects. Johnson et al., Hamada et al. 
and Wilson et al. [8-10] proposed a fully hierarchical Bayesian method 
for reliability assessment of multi-component system. They studied 
the multilevel data scenario with pass/fail, lifetime or degradation data 
[11]. Further extensions to these works include Anderson-Cook et al., 
Graves, Hamada and Reese et al. [12-14] whose focus were on binomial 
data or lifetime data under a known failure structure situation. Johnson 
et al. [15] described a hierarchical Bayesian model for assessing the 
early reliability of a complex system.

However, the previous studies of reliability information integration 
had overlooked the product design process. A product design process 
consists of four main phases: planning and task clarification, conceptual 
design, embodiment design and detailed design [16]. The activities of 
planning and task clarification result in the specification of information 
that contains the requirements and constraints the new product should 
embrace. Conceptual design refers to the analysis and identification 
of design concepts and the construction of functional structures for 
new products that meet the accorded requirements. The embodiment 
design phase occurs when a detailed structure is defined and the 
corresponding physical structures (prototypes) are created for further 
validation. Finally, in the detailed design phase, design improvements 

are implemented, manufacturability is reviewed, and production is 
scheduled. As suggested in the literature, most DFR techniques were 
implemented at the embodiment or detailed design stage, but there are 
few that explicitly addressed it during the conceptual design stage. In the 
work of Huang and Jin [17], they reduced the “gap” between reliability 
requirements and conceptual design by using stress and strength 
interference theory. Also, Derelov [18] provided a qualitative model for 
investigating potential failure modes in the conceptual design phase. 
Stone et al. [19] used the Function-Failure Design Method (FFDM) 
to assess reliability in early design phases. This research was extended 
by Kurtoglu and Tumer [20], where they presented a function-
failure identification and propagation process through hierarchically 
modeling system functions in the conceptual design phase. Similarly, 
Grantham Lough et al., Krus and Grantham Lough [21] combined 
the functional model of a design with the historical knowledge base 
of specific functions, along with their risks, to provide a quantitative 
assessment of function-based failure propagation.

In the conceptual design phase, detailed physical information 
is not produced, as there is no physical part to test; thus, all the 
classic reliability methods cannot be used. Furthermore, traditional 
methodologies operate under the assumption that there is a failure 
structure that can be derived by reliability tools. However, deriving a 
new product’s reliability structure (e.g., reliability block diagram or 
fault tree) is also a challenging task in the conceptual design phase. 
Nevertheless, it is desired to have a reliability insight during this 
phase as it can guide the decision making process for the new product 
development. For example, the early knowledge of product reliability 
may drive its reliability improvement plan, improve the test planning 
process, and ultimately affect the product’s warranty plan and its total 
life-cycle cost. Hence, in order to assess reliability in the conceptual 
design stage, a non-classical approach is needed.
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This research addresses the challenges in reliability assessment 
at a product’s conceptual design stage. Our investigation starts from 
the idea of integrating information from similar proven concepts 
(parents) into a new product’s conceptual design. In order to achieve 
this, a coherent and novel system reliability structure revelation 
process is proposed. First, it calls for the study of product’s functional 
structures via a cognitive map. Then, the cognitive map is converted 
to a quantifiable Bayesian network by using parenting analysis and 
expert opinion elicitation. Finally, once the Bayesian network model 
is completed, the designer or engineer can assess and validate the new 
product’s reliability requirement.

The remainder of this paper is organized as follows. In Section 2, 
the basics of functional analysis, cognitive maps and Bayesian network 
are introduced. Section 3 discusses the proposed methodology, where 
the integration of the parent information and eliciting information 
modeled a reliability structure for a new product in the conceptual 
design phase. For a better understanding of this proposed methodology, 
a case study is exhibited in Section 4. Lastly, in Section 5 a discussion is 
held and future work is proposed.

Background and Framework
Conceptual design

As an early phase in the engineering design process, conceptual 
design can be summarized as the creation of functions and their 
combinations that satisfy an established need. There are different 
approaches to conceptual design, as they can be developed for specific 
products. However, the most common approach is the one defined 
by Pahl et al. [16]. Additionally, Huang and Jin [17] described the 
typical tasks based on different approaches. In a general sense, the steps 
included in the conceptual design phase are stated in Table 1. Also, 
Table 1 shows reliability considerations that should be made in each 
steps.

However, the consideration of reliability in these steps does not 
provide an assessment of product reliability at this point, but merely 
specify the reliability requirements for the new design. Hence, a more 
systematic approach is needed in order to ensure reliability in the 
conceptual design phase.

Functional analysis

Various definitions of product function can be found in literature 
[16,22-25]. In general, a product function is defined as the relationship 
between input and output to satisfy a need or requirement. Function 
analysis is a systematic process that identifies all functions of a system 
as well as the relationships and interactions between them and their 
elements (sub-functions). Its main ob- jective is to reduce product 

complexity by dividing the principal characteristic of the system into 
manageable functions. A primary (overall) function can be decomposed 
to several sub-functions, and the decomposition can be performed on 
several levels as necessary. For more information of functional analysis, 
please refer to Pahl et al., Otto, Wood and Stone and Wood [16,26,27]. 
In general, these methodologies can be summarized by two steps: (1) 
identify all elements involved and (2) depict their relationships. These 
relationships are usually graphically depicted (i.e., matrices or graphs). 
Therefore, a common end result of functional analysis is known as the 
functional structure. As a consequence, a functional structure provides 
not only the structure be- tween sub-function and its elements but 
also the potential interactions among them. This becomes critical to 
reliability assessment when there is no actual physical system.

Figure 1 shows the transition between functionalities of the 
conceptual design selected to the breakdown of these functions. The 
graphic representation of subfunctions is known as the functional 
structure. Therefore, a system might have several functional structures, 
with each for one of its functionalities. Figure 2 graphically shows the 
assumed functional structures for each system function. Let Si denote 
the functional structure set for system function i, which contains s1i, 
s2i,…, smi subfunctions, then the total system functionality for the new 
product can be represented by

1,2,..., .iS for i n=

                   (1)

An increased use of functional analysis in reliability assessment 
has been seen in the literation. Stone et al., Tumer, Stone, Bryant et 
al., Kurtoglu, Tumer, Grantham Lough et al. and Krus and Grantham 
Lough [28-30] discussed the importance of functional analysis for 
reliability prediction in the conceptual design phase. Their research 
focused on the function to failure design method, which promotes 
early identification of potential failures by linking them to product 
functions. This approach consists of defining the relationship between 
system functions and its failure modes in a matrix form, then historical 
data, expert inputs, as well as standardized design taxonomies, are 
utilized to define those relationships. It is a qualitative approach to the 
recognition of potential functional failures before a concept is selected.

In this research the function to failure approach is used. Furthermore, 
the use of functional analysis is to set a baseline to reveal reliability 
insights in the conceptual design stage. To identify relationships 
between functions, a graphical structure is created through a cognitive 
map [31] to depict the risk for failures in functions, a parenting process 
is chosen to assess failure rates. Moreover, inside the parenting process 
there is a branch called elicitation process [32], where experts’ opinions 
on one or more uncertain quantities are synthesized [33]. Hence, the 
elicitation process is used to gain the desired insight into the reliability 
of new product. This process will be explained in the next section.

Conceptual Design Process Steps Reliability Considerations
1. Abstractly identify essential requirements 
against design criteria

New product’s main function is formulated. Reliability requirements must be set in this step as they will aid in 
identifying which ones are essential functions of the new design.

2. Establish functional structures When creating functional structures there are three considerations that are recommended: (1) Logical consideration (2) 
Physical considerations and (3) Reliability considerations. For reliability the functional structures must take into account 
those reliability requirements defined in the previous step.

3. Search and combine solution principles to 
satisfy the requirements.

Reliability requirements must be present when looking into different solution alternatives/combinations that will fulfill the 
functional structures previously defined. This can be done using conventional methods or bias/unbiased related approaches 
for the searching and systematic (logical) or/and using mathematical models for combining (Pahl et al., 2007).

4. Select suitable candidates for concept 
variants

In order to start evaluating the possible solution they must meet different criteria. The criteria might include: 
manufacturability, safety, maintainability and reliability

5. Evaluate technical and economic feasibility for 
concept variants.

Reliability constraints must carry a high weight into the selection and optimization process.

Table 1: Conceptual design approach with reliability considerations.
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Cognitive maps

Cognitive map (CM) is essentially a graphical representation of the 
knowledge or the perception of a given system. It can be defined as a 
signed digraph where nodes represent concept variables and directed 
arcs are the causal relationships [31]. Tolman [34] first introduced the 
CM concept and it was defined as a visual representation of an influence 
network between concepts. Since then, CMs have been applied in 
several different fields including medical, psychology, software and 
engineering among others. Therefore, nowadays there exist a vast 
collection of definitions and methodologies in the literature [35-37]

To illustrate the process, Figure 3 presents one of their general uses 
of a cognitive map for a given system.

The “+” or “-” sign indicates either positive or negative correlation 
between the conceptual functions, respectively. As observed, this type 
of maps just graphically represents qualitative information for causality 
but does not allow for any kind of quantitative computation.

In order to offer the quantification capability in CM, fuzzy 
cognitive maps (FCM) has been introduced in the literature [38,39]. In 
a FCM a weight is used to depict the strength of causalities, along with 
a numerical value that is assigned to each node, which would express 
its state or level. Then, FCMs are simulated in discrete or continuous 
time while the weights remain constant, but the state/level values 
change. During the simulation, a premeditated threshold function is 
used to update the weighted sum of all values that are inputs to a node. 
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Figure 3: High Level Cognitive Map for new product’s functions/requirements

threshold function is used to update the weighted sum of all values that are inputs to a node.

However, the simulation may not produce an answer to the design problem. Other disadvantages

of FCM include the use of thresholds that need to be pre-defined and, as other fuzzy systems,

this method is incapable of self-learning when a new evidence is collected (Stach et al., 2005).

Nevertheless, CM provides an excellent graphical representation of conceptual relationships among

functions. In this research, cognitive maps are used for graphing the reliability-wise relationships

of functions, thus, allowing a better understanding of the functional behavior that lead to system

failure.

2.4 Bayesian networks

Bayesian networks (BNs), also called belief networks, are used to represent knowledge about an

uncertain domain (Ben-Gal, 2007). To be more specific, a BN represents a set of Bayesian random

variables and their conditional dependencies using a directed acyclic graph (DAG). In the graph,

each node represents a random variable, while the arcs/edges between the nodes represent the prob-

abilistic dependencies among the corresponding random variables. These conditional dependencies

in the graph are often estimated by using known statistical and computational methods.

The use of BNs in reliability has proved to have significant advantages over traditional ap-

proaches (Langseth & Portinale, 2007). One of these advantages over Reliability Block Diagrams

(RBD) and Fault Tree Analysis (FTA), resides in the use of the probabilistic relationships. For

example, given the deterministic nature of the gates for a FTA it is difficult to incorporate the

uncertainty seen in the conceptual phase of the design. Conditional probabilities in a BN allows
8

Figure 3: High level cognitive map for new product’s functions/requirements.
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However, the simulation may not produce an answer to the design 
problem. Other disadvantages of FCM include the use of thresholds 
that need to be pre-defined and, as other fuzzy systems, this method 
is incapable of self-learning when a new evidence is collected [40]. 
Nevertheless, CM provides an excellent graphical representation of 
conceptual relationships among functions. In this research, cognitive 
maps are used for graphing the reliability-wise relationships of 
functions, thus, allowing a better understanding of the functional 
behavior that lead to system failure.

Bayesian networks

Bayesian networks (BNs), also called belief networks, are used to 
represent knowledge about an uncertain domain [41]. To be more 
specific, a BN represents a set of Bayesian random variables and their 
conditional dependencies using a directed acyclic graph (DAG). In the 
graph, each node represents a random variable, while the arcs/edges 
between the nodes represent the probabilistic dependencies among 
the corresponding random variables. These conditional dependencies 
in the graph are often estimated by using known statistical and 
computational methods.

The use of BNs in reliability has proved to have significant 
advantages over traditional approaches [42]. One of these advantages 
over Reliability Block Diagrams (RBD) and Fault Tree Analysis (FTA), 
resides in the use of the probabilistic relationships. For example, 
given the deterministic nature of the gates for a FTA it is difficult to 
incorporate the uncertainty seen in the conceptual phase of the design. 
Conditional probabilities in a BN allows to capture this uncertainty 
between functional relationships. Furthermore, BN also provides 
the opportunity of combining different sources of information (i.e., 
expert’s input) to present an overall assessment of a system.

In a mathematical sense BN is defined as a compact representation 
of a multivariate statistical distribution function. Then, its graphical 
model encodes the set of conditional independence statements. This 
grants the possibility of calculating the joint probability function as:

1( ,..., ) ( ( )) ,
n

n i if x x f x pre x=∏                    (2)

Where pre(xi) represents the predecessor nodes of variable xi, 

hence f(xi|pre(xi)) is defined as the conditional probability function for 
variable node xi given its predecessors.

Furthermore, BNs have two different sets of information. The 
qualitative part of the model is represented by the DAG structure, 
which, for this study, is defined by the CM and functional analysis. 
Secondly, the quantitative aspect is provided by the parameters of 
the model. These parameters are needed for conditional probability 
functions, where the probabilistic dependencies between a node and 
its predecessor node are specified. The values of these parameters 
can be determined by using the knowledge from parent products or 
from expert opinions. Figure 4a presents a basic BN structure, which 
includes the probabilities that would form the joint distribution of all 
nodes. Figure 4b shows how the probability tables can be represented 
in a matrix form.

Inferences in BNs are made by queries and they can be classified by 
(1) the causal inference, which can be seen graphically as a top-down 
approach (from failure cause to failure mode), and (2) the evidential 
inference, which is a bottom-up approach (from the observation of a 
variable to infer the state of a different variable). In the product design 
framework, queries are made based on what designers need to evaluate. 
There are simply queries such as the posterior marginal distribution 
that might be used to assess the reliability of a concept. Moreover, there 
also exist conditional queries that help designers to make decisions or to 
provide the information of features of a design. Additionally, sensitivity 
analysis can be implemented to investigate if the design specfifications 
that meet the proposed requirements. The algorithms for solving these 
queries can be exact inference algorithms, such as enumeration, belief 
propagation (polytrees), variable elimination or Clustering/Joint tree 
algorithms, or approximate inference algorithms, such as stochastic 
simulation / sampling methods, Markov chain Monte Carlo methods, 
genetic algorithms, neural networks, simulated annealing or mean field 
theory. For more information please refer to Bishop et al. [43].

The goal for this research is to gain reliability insights from 
conceptual designs. BNs can provide these insights because it models 
the causal relationships between functions in a system. Using BNs to 
represent the system reliability/failure structure can capture the explicit 
and implicit interactions between individual design functions, and thus 
various inference procedures can be performed to further decipher the 
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Figure 4: Bayesian Network representations a) BN with conditional probability function b) BN
with conditional probability table with binary variables

networks, simulated annealing or mean field theory. For more information please refer to Bishop

et al. (2006).

The goal for this research is to gain reliability insights from conceptual designs. BNs can provide

these insights because it models the causal relationships between functions in a system. Using BNs

to represent the system reliability/failure structure can capture the explicit and implicit interactions

between individual design functions, and thus various inference procedures can be performed to

further decipher the conceptual system. The methodology proposed to achieve this goal is described

in the next section.

3 Methodology

In order to assess a new product’s reliability, it is necessary to take into consideration many product-

specific factors such as product definition, design purpose, the level of change from previous designs,

etc. In other words, the analysis methods and the tools to be used should be determined on the

case-by-case basis. However, our proposed methodology presents a general approach to gaining

10

Figure 4:  Bayesian Network representations a) BN with conditional probability function b) BN with conditional probability table with binary variables.
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conceptual system. The methodology proposed to achieve this goal is 
described in the next section.

Methodology
In order to assess a new product’s reliability, it is necessary to take 

into consideration many product- specific factors such as product 
definition, design purpose, the level of change from previous designs, 
etc. In other words, the analysis methods and the tools to be used should 
be determined on the case-by-case basis. However, our proposed 
methodology presents a general approach to gaining reliability insights 
regardless of these factors. The general framework is depicted on Figure 
5. It shows the progression from one phase to another and the tools to 
link them.

Concept and functions

The methodology starts in the conceptual design phase, when 
a concept has been selected. Since there are not physical design 
representations at this time, the requirements are translated to 
functionalities of the new product. Therefore, either new functions or 
already established ones are identified and/or defined as the outcome 
of this phase.

Function to failure structures

Once the system functions are defined a functional analysis needs to 
be conducted. The first step consists in the identification of the primary 
or main function(s) and all the sub-functions involved. Secondly, the 
relationships between them need to be depicted. It is recommended to 
use a graphical representation when performing both steps to define 
the functional structures.

In order to have a reliability structure (or failure structure) in the 
early design process it is important to identify failure modes even when 
physical components have just been conceptualized. In this instance, 
using the function to failure approach [44] creates the possibility to 
define a failure when a function is not executed as expected.

However, given the uncertainty in conceptual design, assessing the 
failure probability for all the functions can be challenging. On the other 
hand, those functions can be identified and related to different existing 
products or parents. Moreover, additional functional information can 
be obtained by other sources. For example, simulation, expert opinions, 
early experimentation, literature, etc. Then, parent information might 

be defined as the existing available information coming from current 
design/products that have similar functions or sub-functions of the 
new design/product.

Functional structures to cognitive map

Following the methodology depicted by Augustine et al. [31] it was 
possible to obtain a cognitive map model from functional structures. 
The procedure incorporates in a stepwise manner, all structural, 
functional, and causal aspects of the system. Cognitive Maps Fragments 
(CMF) are formed for the each one of the system functions identified. 
After the CMFs are finalized, they can be automatically aggregated 
into the final cognitive map (CM) structure by using the simple union 
operation expressed in Equation 3:

1 1

( ) ( ),
i i

m m
m m

CM N A
= =

=
  

                (3)

Where, Nm represent the set of i nodes and Am the j arcs from the 
CMFs.

The construction of the cognitive map should be taken with expert 
inputs. In the creation of the cognitive map redundant sub-functions 
(i.e., sub-functions that are shared by more than one system function) 
are depicted as such and it also reduces the complexity of the graph. 
Then, the relationships between each one of the functions were 
explicitly stated given the arcs in the map. Moreover, when creating 
the CMFs there is the possibility to capture additional functions to 
depict interactions between failure modes that were not capture by the 
functional analysis.

Cognitive map to Bayesian network

A general functional structure has been already defined by the 
Cognitive Map (CM); however, the qualitative relationships between 
functions in CM will not provide an objective form to gain the desired 
reliability insight. A more objective approach to integrate information, 
and moreover, to continuously integrating further information updates, 
is to use a Bayesian network (BN). BN is a tool that aggregates the 
impacts of changes on components/sub-functions to the system/main 
function level and allocates the total risk to different sub-functions (i.e., 
identify sub-functions with high failure risk).

A few publications have discussed the similarities and differences 
between CM and BN. Nadkarni, Shenoy, Nadkarni and Shenoy [45,46] 
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3.1 Concept and functions

The methodology starts in the conceptual design phase, when a concept has been selected. Since

there are not physical design representations at this time, the requirements are translated to func-

tionalities of the new product. Therefore, either new functions or already established ones are

identified and/or defined as the outcome of this phase.

3.2 Function to failure structures

Once the system functions are defined a functional analysis needs to be conducted. The first step

consists in the identification of the primary or main function(s) and all the sub-functions involved.

Secondly, the relationships between them need to be depicted. It is recommended to use a graphical

representation when performing both steps to define the functional structures.

In order to have a reliability structure (or failure structure) in the early design process it is

important to identify failure modes even when physical components have just been conceptualized.

In this instance, using the function to failure approach (Stone et al., 2005) creates the possibility

to define a failure when a function is not executed as expected.

11

Figure 5: Methodology framework to gain reliability insight on the Design phase for a new product.
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pointed out the main differences (or biases) between CM and BM as 
follows:

•	 Conditional	 Independence.	 In	 CM,	 arcs	 between	 variables	
depict dependence; however the absence of an arc does not imply 
independence. On the other hand, the lack of an arc among variables in 
a BN it does implies conditional independence among them.

•	 Cause-Effect	 relations.	This	bias	 refers	 to	 the	perception	of	
the effect coming from causes or if the relationship is depicted from 
effects to causes. It is important to establish a deductive relationship 
(causes to effects) which is the proper way to have a CM converted into 
a BN. Furthermore, it is recommended to be cautious with adductive 
relationships (causes from effects).

•	 Direct	 vs.	 Indirect	 relationship.	 Differentiation	 between	
direct and indirect cause-effect arcs permits the incorporation of 
conditional independencies in CM. Thus, this facilitates the translation 
to a BN.

•	 Circular	relations.	They	exits	in	CM	as	subjective	judgments	
are made and also they might represent time changing relations between 
variables. However, they violate the acyclic graph- ical structure for 
BN. Hence, it is required to eliminate circular relations to make CM 
compatible with BN.

Moreover, in their research they presented a 4-step procedure to 
construct Bayesian Cognitive Maps (BCM). These steps are (1) Expert 
elicitation, (2) Derivation of CM, (3) Modification to CM to create 
BCM, and (4) Derivation of the parameters of BCM. Step (1) and 
(2) are defined by a structured interview with domain experts and by 
coding their answers into a cause-effect map. Step (3) is focused on 
making the CM compatible with the BCM by considering the four 
biases presented above along with expert elicitation. This step is critical 
to the successful implementation of BCM. Nadkarni and Shenoy [46] 
provided the following checklist for constructing a valid BN:

•	 It	 is	 important	 to	 ensure	 that	 the	 lack	 of	 links	 between	
concepts in a causal map implies conditional independence and the 
presence of links between concepts implies dependence.

•	 Reason	 the	 underlying	 cause-effect	 relations	 between	
concepts. Causal statements involving abductive reasoning could be 
misrepresented in a causal map by an arc from effect to cause, then 
such misrepresentations should be corrected.

•	 Distinguish	between	direct	and	indirect	relationships.	A	link	
between two concepts in a causal map may imply a relation that can 
be either direct or indirect; while in BN, only direct relations (between 
parent nodes and child nodes) should be depicted.

•	 Eliminate	any	circular	relations.

Finally, in Step (4) a BN quantification process is implemented in 
two steps identifying the state space of nodes and deriving conditional 
probabilities. Unfortunately, Nadkarni and Shenoy [45,46] did not 
provide the details of how to perform parameterization of BN. Once 
these parameters are given, probability propagation (i.e., Bayesian 
belief propagation) algorithms might be used to make inferences. An 
example of this process is presented in Aktas et al. [47] where they 
use this approach to improve the efficiency of resource allocation in a 
health care facility.

In this research, the proposed methodology already covers steps (1) 
and (2) by going from the functional analysis in conceptual design to 

the CM. Step (3) was the generalization of graphically converting a CM 
to a BN. For step (4) parenting processes would be used.

Parenting process provides an objective data analysis process for 
transferring CM to BN. The general guidelines are provided in Mejia 
Sanchez and Pan [48]. This approach would be especially helpful in 
generating Conditional Probabilities Tables (CPTs) for BNs. There 
are two main approaches to obtaining the parameters values – expert 
elicitation and synthesis of failure information from parent products. 
Following the guidelines for eliciting probabilities [33] and parenting 
process, the expert would be asked to provide an assessment of the 
marginal conditional probability inside the CPT. On the other hand, 
if there are existing products (parents) performing similar functions 
under the same conditions, their failure information can be translated 
or used directly into the CPT.

Consider a single function and two direct causes (other functions) 
that govern the successful execution of this function. Then, given 
two states to each cause and the CPT as shown in Table 2, there are 
four parameters, p1,p2,p3,p4, that need to be specified. Although it is 
uncommon in practice, we start our discussion with this naive scenario 
a complete historical dataset (log file) of the states of the function 
and its direct causes is available. This is possible if this function and 
its associated causes are continuously monitored by sensors and the 
log data from existing products that perform the same function can be 
obtained.

Using all observed instances of function states and cause states, it 
is straightforward to obtain the estimation of the conditional failure 
probability given a combination of cause states. For the previous 
example,

( 1, 1 2 )
( 1 1 , 2 ) ,

( 1 , 2 )
k i ik

i i i
k i ik

I F C C
p P F C C

I C C
=

= = = ∑
∑                 (4)

Where the denominator is the total number of instances of the 
specific combination of C1 and C2 and the numerator is the number of 
instances of function failure at this combination.

However, even this simple formula could become troublesome in 
practice when there are many states for each cause node. In such case, 
the number of combinations grows large, thus the log file could be 
highly fragmented. Additionally, there might be no observation for a 
particular combination. Therefore, it is better to combine Equation (4) 
with the expert’s opinion on how many function failure may happen 
for a given parent nodes combination. This is equivalent to assign a 
prior distribution to the function failure probability. Assume a Beta 
prior distribution, beta(ai, bi), for pi, then the posterior estimation of 
pi is given by:

( 1, 1 2 )
,

( 1 , 2 ) ( )
k i i ik

i
k i i i ik

I F C C a
p

I C C a b
= +

=
+ +

∑
∑

                   (5)

Where ai + bi is the equivalent sample size in the prior and ai is the 
equivalent number of failures in prior samples.

Therefore, in the expert opinion elicitation process, two questions 
would be asked: In your experience, how frequent this type of 

C1 C2 P (F= 1|C1, C2) P (F= 0|C1, C2)
0 0 p1 1−p1
0 1 p2 1−p2
1 0 p3 1−p3
1 1 p4 1−p4

Table 2: Conditional probability table for a single function and two direct causes.
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combination of C1 and C2 may happen? And, in your experience, 
what is the chance of function failure given this type of combination 
of C1 and C2? The prior parameters, ai and bi, can be derived from 
the answers of these questions. By combining expert assessments and 
historical data, a robust conditional failure probability table can be 
obtained.

It is also common that the complete log files of parent products 
are not available; instead, one may have a record of failure frequency 
and failure causes of parent products. Yontay et al. [48] described a 
mathematical approach to obtain conditional probabilities from this 
type of failure records.

Aside from parenting and expert elicitation, meta-analysis is 
another possible approach to estimate probabilities when information 
is scarce. Meta-analysis refers to methods that focus on contrasting and 
combining results from different studies, in the hope of identifying 
patterns among study results, sources of disagreement among those 
results or other interesting relationships that may come to light in 

the context of multiple studies. This approach is usually more time-
consuming than other approaches.

Bayesian network inference and evaluation

The quantitative part of the BN is constructed after obtaining the 
conditional probability values. Therefore, it can be used now to make 
inferences about the functions in the model. The scope of this research 
is to have a graphical insight into the reliability of a new product in its 
conceptual design phase by obtaining a BN. The subsequent steps of 
how to use BN depend on each specific case, e.g., concept evaluation, 
assessment of unobservable parameters or conduct a sensitivity 
analysis. If concept evaluation is needed, researchers could use the 
joint probability distribution from the different concepts and proceed 
with a decision making process. Marginal conditional distribution 
and conditional dependencies can be used to estimate variables or 
parameters that were not observed. This can be achieved through 
the joint distribution of BN, i.e., probabilistic inference [49]. Lastly, 
evidential inference (or evidence propagation) refers to the ability to 
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Figure 6: Functional analysis for the new CRD where a) presents the system functions and sub-
functions, and b) the system’s functional structures
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Figure 6: Functional analysis for the new CRD where a) presents the system functions and subfunctions, b) the system’s functional structures.
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obtain marginal probabilities of parameters of interest, conditional on 
arbitrary configurations of other parameters based on the observed 
evidence [50].

There are several commercial software available for the inference 
and analysis of BN, such as Hugin (www.hugin.com) and Netica (www.
norsys.com). There are also some development tools, such as MSBNx 
(research.microsoft.com/msbnx) and SamIam (reasoning.cs.ucla.edu/
samiam), that automate the process of inference based on existing 
algorithms [51]. These tools allow users to enter the BN structure 
graphically, input the observable details, and then do inference of 
either type (i.e., top-down or bottom-up).

A Case Study
In order to better demonstrate and validate the proposed 

methodology, a case study is introduced in this section to explore and 
clarify the concepts presented in the methodology section. This case 
study was derived from a real engineering design process in a major 
heavy equipment manufacturing company in U.S. Note that to avoid 
disclosing sensitive information, the values presented in this case 
study were masked and certain variables were removed. The parameter 
values given in the graphical model were elicited from domain experts 
by following the guidelines provided in Cooke [33], Mejia Sanchez and 
Pan [32].

A contaminant reduction device (CRD)

An automotive industry was developing a contaminant reduction 
device (CRD) to launch in the upcoming years. Since the Environmental 
Protection Agency (EPA) had restricted the emission levels on the years 
ahead, a new CRD was needed to comply with the new regulations. 
Additionally, a corporate reliability target at the end of product 
warranty was set to comply with a specific percentage of sales based on 
the marketing research. To comply with the regulation and to achieve 
the reliability targets, the design team proposed several improvements 
on their CRDs currently in production. Hence, the requirements for 
the new CRD were laid out and the design engineering team described 
the level of change needed in order to meet them.

A CRD is a device used to convert exhaust emissions, usually toxic, 
into less-toxic substances. The main objective of CRD is to stimulate 

a chemical reaction through the exhaust flow and additives in which 
contaminants are reduced. The design development of the new CRD 
was in the conceptual design phase; hence, to maximize resources and 
minimize further costs, the reliability team was tasked to assess the 
product’s reliability at this early stage. Since data for the new model was 
scarce, the reliability team implemented the methodology described 
in this paper to create a graphical model to depict and integrate all 
information available. Moreover, using the company’s reliability 
database experts were able to pull the information of parent products 
to make a better assessment on the new concept.

A concept was already selected based on the predetermined 
requirements, customer expectations and targets. Therefore, it was 
relatively easy to list the different functions that the new CRD was going 
to perform. Once system functions were identified, then a graphical 
structure was needed. The team performed a functional analysis where 
the basic functional structure was defined. Figure 6 shows the results 
of this exercise. Function analysis, as described in Section 2, can be 
performed using different approaches. The selected approach would 
depend on the level of expertise of the team and information and 
resources available. In the end, all results would yield in a main function 
and the relationship with its subfunctions represented graphically.

Following the rules established on Augustine et al. [32] for function 
taxonomy, a follow- up exercise was conducted to name the functions 
that were going to be used in the next step of reliability assessment. 
This exercise, was conducted to validate the functional structures by 
experts’ consensus using parents’ functional structures. For example, 
“[G] flow OF exhaust gas” was considered the main function of the 
system and it is expressed by its main subfunctions that form the failure 
functional structure in Figure 6a. The final list of the subfunctions, 
derived from the functional structures shown in Figure 6b, are given 
below. For example, “injection OF fluids” shows (5) and (2), therefore 
this subfunction comes from the functional structure number 5 and 2.

Next, the list of functions from the functional structures needed to 
be represented in a graphical display. A CM was used to organize the 
different functional structures and to establish the causal relationships 
between all conceptual functionalities including subfunctions that 
might be repeated on different functional structures. Figure 7 presents 
the final CM obtained either by combining the individual CMFs 

[S] Saturation OF filters (1); [C] Amount of contaminants (2) (1); [B] Backpressure AT outlet (3); [H] High temperature OF elements (2) (4) (3); [F] 
Injection OF fluids (5) (2); [R] Residence time OF catalysis (4) (2); [T ] Heat and mass transfer OF elements (2) (4).

Figure 7: Cognitive Map given functional structures for the system functions of new product.
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as discussed in Augustine et al. [32], dictating for highly complex 
structures, or as in this case establishing the relationships directly in 
a final map.

Following the proposed methodology, the obtained CM needs 
to be converted into a BN. An extensive session was held to receive 
feedback from experts within the design team. Then, the conversion of 
the CM into a BN was executed following the recommendations made 
by Nadkarni and Shenoy  mentioned in Section 3. Here, similarly to the 
functional analysis, the resultant BN would depend on the information 
and resources available as well as the experience of the team performing 
the task. However, it is important to remark that the current BN 
presents a mere window into the reliability insight of the product under 
design. Later when more product reliability data become available, 
using the Bayesian information updating mechanism this network can 
be easily updated.

Figure 8 represents the qualitative part of the BN. The next step is 
to obtain the conditional probabilities for each node. As this study is 
set in the early design stage, the design team decided to choose only 
binary states of each node function failure or nonfunctional (1) and 
functioning properly or functional (0). One of the reasons for using 
binary variables is that it aids the simplification of a complex problem, 
which is particularly valuable in the early design stage. Nevertheless, 
the power of BN resides in its properties, whether it is managing nodes 
with multiple states and/or performing analysis with continuous nodes. 
However, the number of conditional probabilities to be elicited could 
quickly grow to unmanageable if there are many states of many nodes 

needed to be specified. The scalability problem of this BN approach in 
early product design will be investigated in our future study.

Once the BN variables are defined, a parenting session was held to 
properly assess the required conditional probabilities. In this session, 
the company’s reliability databases, the part-returns systems, as well as 
initial performance testing on available technologies were used by the 
team of experts in order to assess different function failure probabilities. 
Finally, experts’ opinions were elicited to obtain the CPTs. The details 
of each function parenting process are described below:

•	 Node	 [Flow	OF	 exhaust	 gas	 (G)].	As	main	 function	 it	 did	
not required to change on is general functionality. Hence, CPT was 
obtained directly from current (parent products) function’s failure 
information.

•	 Node	 [High	 Temperature	 OF	 element	 (H)].	 Previous	
catalytic element had the latest tech- nology available and there is no 
plan to change if it meets the proposed requirements. In consequence, 
in a functional level its CPT would be also obtained by using the current 
function failure information.

•	 Node	 [Injection	OF	 fluid	 (F)].	 After	 an	 elicitation	 process	
for this particular function, it was determined that the metering 
devices would need to improve in order to meet new standards. In 
this elicitation session the CPT was computed by comparing different 
application where F function had performed in similar conditions.

•	 Node	 [Residence	 time	 OF	 catalysis	 (R)].	The	 time	 for	 the	
chemical process to take place has great variability. Hence, an elicitation 

Figure 8: Bayesian network given functional structures from cognitive map.
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process was required to have a better understanding of the function. 
A CPT was provided based on parent information, analytical studies 
performed and expert input. The resultant CPT is shown in Figure 9.

•	 Node	 [Heat/Mass	 Transfer	 OF	 elements	 (T)].	 The	 CPT	
for this function was obtained by a similar process of the enhanced 
parenting process from Mejia Sanchez and Pan [33]. The translation is 
simple when H, F and R are seen as the failure causes for each state (0 
or 1) and in consequence state of T represents the failure mode.

•	 Node	[Amount	OF	contaminants	(C)].	As	new	standards	are	
imposed regarding the amount of allowable quantity of contaminants 
out of the system; new measure devices are needed to verify that this 
function is performing adequately. In order to obtain more objective 
estimates, different sensor groups were elicited and a consensus was 
reach on its CPT depicted in Figure 9.

•	 Node	 [Backpressure	 AT	 outlet	 (B)].	 One	 of	 the	 biggest	
requirements was to overhaul the enclosing components. It was 
required to change in size and form. Therefore, this function was one 
of the main concerns. After several sessions of elicitation, experts 
were able to evaluate the CPT given that the characteristic of this 
functionality were seen in a different application.

•	 Node	[Saturation	OF	Filters	(S)].	Functionality	of	the	filtering	
devices did not suffer major changes as they would be required to 
operate under the same conditions. Hence, direct parenting provided 
the CPT for this function.

For better understanding of the team, all information was compiled 

in Figure 9. It is important to remind the reader that most values 
presented here are masked or altered given confidentially agreements. 
Moreover, as noted in the description of the process, each elicitation (or 
parenting analysis) is unique, therefore the integration of information 
for each node has its own procedure.

The CPTs complete the quantitative part of the BNs. Consequently, 
this BN model can provide insights to the reliability of this new design, 
depending on the queries made to the BN. For the new CRD, the design 
team was looking at the three different scenarios to be discussed in the 
next three sections.

Sensitivity analysis

The main need to have a reliability insight is to verify that the 
functions for the chosen CRD concept would meet the requirements 
established from the different environmental regulations and customer 
expectations.

On the CRD’s BN, all functions’ CPTs in Figure 8 were able to 
be elicited or parented. Hence, at this point both teams (design and 
reliability) were interested to see if the current concept was capable to 
meet specific requirements to measure emission compliance standards 
by 90%, and more importantly, which function parameters needed to 
be improved in order to meet the specification.

Figure 10 shows the CRD’s BN displayed by SamIam. The 
parameters were estimated based on the CPTs from Figure 9. It was 
observed that the “amount OF contaminants” (C) function was only 
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functional about 82% of the time; or P (C=0)=0.82. A sensitivity 
analysis was proposed for the event shown in in Equation 6.

P (C=1) ≤ 0.1                     (6)

The sensitivity analysis was conducted by using the Shenoy-
Shafer algorithm as it is one of the main methods for probability 
propagation in a joint tree [51]. The sensitivity analysis section of the 
software is depicted in Figure 11 and it presents the event constraint 
established in Equation 6. After running the analysis, it resulted in 
two different recommendations. First, Figure 11a is the multiple 
parameter suggestion for C’s CPT where the recommended changes 
are highlighted in red. The second alternative is shown in Figure 11b 
where, in a similar manner, presents the highlighted recommendations 
for T’s CPT.

The reliability team presented the results to the design team and 
suggested to study both options and their the Log-odds or ∆lo [52] 
provided by the software. Log-odds represents the difference of the 
natural logarithm of the odds after applying a change in the parameters. 
The definition of ∆lo is stated on below:

∆lo(P (Functioni=X|Prei))=| ln(O′(Functioni=X|Prei)) − 
ln(O(Functioni=X|Prei)|                  (7)

Where X is a binary variable (0 or 1) and O(Functioni=X|Prei) 
represents the odds for function i equal to X given its predecessors. 
O(Functioni=X|Prei denotes the odds of that event after having applied 
the suggested change. Hence, the greater the value of ∆lo, the greater 
the required change. In consequence, after comparing ∆lo(C) ≈ 2.31 
versus ∆lo(T) ≈ 5.31, it was decided to evaluate the feasibility of the 
recommendations for C’s CPT or option in Figure 11a. The final decision 

can be validated when studying the highlighted recommendations on 
the CPTs. For example, Figure 11b is recommending that P (T=0|H=1, 
R=1)=0.007 needed to change to P (T=0|H=1, R=1) ≈ 0.658 even 
further for P (T=0|H=1, R=0)=0.166 to P (T=0|H=1, R=0) ≈ 0.981 
The difference between the original and the suggested values for both 
probabilities is considerable high that makes the suggestion infeasible 
with the current technology.

In any case, the teams were able to obtain an insight into the 
reliability of the system and, in particular, its relationship with the 
function (C). Furthermore, the sensitivity analysis provided a more 
objective decision making process. The experts involved in this study 
were able to determine that a more robust approach is needed in the 
way C is affected by its predecessor nodes (F and T). After further 
analysis on the marginal conditional probabilities it was found that the 
major marginal difference was on P (C=0|T=1, F=0)=0.138 since the 
highlighted suggestion was marked to be P (C=0|T=1, F=0) ≈ 0.617. In 
other words, C needed to be functional even when T was nonfunctional 
and F functional around 62% of the time. However, given the change 
suggestion of multiple parameters, the approach that needed to take 
place was more about how to improve the functionality of the three 
functions. In a simple way, it was interpreted as the necessity to increase 
the conditional independence of T and F given C. This analysis helped 
designers to have a strong recommendation on robust components for 
those functions with the aim to meet the established requirements.

Extended sensitivity analysis

The design team acknowledged what needed to be improved based 
on the sensitivity analysis. They studied different design features to 
improve C (Amount OF contaminants) given F (Injection OF fluids) 

Figure 10: Bayesian Network from example on SamIam with monitors displayed.
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and the only feasible solution without impacting functionality of C 
(Amount OF contaminants) given T (Heat and mass transfer OF 
elements) was a new technology for sensor coating. The new coating 
improved C given the reaction it has when in contact with fluids injected 
while exhaust gas density and heat were not affected. Unfortunately, 
after an initial assessment of this new design feature, it was discovered 
that the suggested probabilities for C’s CPT were not obtainable. The 
teams reunited and were provided an initial evaluation of the new 
coated sensor by the experts that leaded to the CPT in Figure 12.

The reliability team proposed to do a new sensitivity analysis with 

!"

#"

Figure 11: Sensitivity analysis in SamIam resulting in a) Recommendations for C’s CPT and b) Recommendations for T’s CPT.

In any case, the teams were able to obtain an insight into the reliability of the system and, in

particular, its relationship with the function (C). Furthermore, the sensitivity analysis provided a

more objective decision making process. The experts involved in this study were able to determine

that a more robust approach is needed in the way C is affected by its predecessor nodes (F and T ).

After further analysis on the marginal conditional probabilities it was found that the major

marginal difference was on P (C = 0|T = 1, F = 0) = 0.138 since the highlighted suggestion was

marked to be P (C = 0|T = 1, F = 0) ≈ 0.617. In other words, C needed to be functional even

when T was nonfunctional and F functional around 62% of the time. However, given the change

suggestion of multiple parameters, the approach that needed to take place was more about how to

improve the functionality of the three functions. In a simple way, it was interpreted as the necessity

to increase the conditional independence of T and F given C. This analysis helped designers to

have a strong recommendation on robust components for those functions with the aim to meet the

established requirements.

4.3 Extended sensitivity analysis

The design team acknowledged what needed to be improved based on the sensitivity analysis. They

studied different design features to improve C (Amount OF contaminants) given F (Injection OF

fluids) and the only feasible solution without impacting functionality of C (Amount OF contami-

nants) given T (Heat and mass transfer OF elements) was a new technology for sensor coating. The

new coating improved C given the reaction it has when in contact with fluids injected while exhaust

gas density and heat were not affected. Unfortunately, after an initial assessment of this new design

feature, it was discovered that the suggested probabilities for C’s CPT were not obtainable. The

teams reunited and were provided an initial evaluation of the new coated sensor by the experts

that leaded to the CPT in Figure 12.
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Amount OF 
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Figure 12: Chart for the conditional probability table for C after new design feature

27

Figure 12: Chart for the conditional probability table for C after new design feature.

Figure 13: Second sensitivity analysis in SamIam resulting from the new design feature: sensor coating.

the new C’s CPT from Figure 12. The intent of this extended sensitivity 
analysis was to evaluate the feasibility of the requirement in Equation 6 
for other functions different of C.

The network was updated and confirmed that P (C=1) ≈ 0.114 as 
shown in Figure 13 which violates Equation 6. Then, also in Figure 13, 
the extended sensitivity analysis was run.

This analysis was able to provide single parameter suggestion as 
well as multiple parameter suggestions. The teams focused on the single 
parameter tab to evaluate the feasibility of changing a specific marginal 
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Figure 14: Bayesian network functional impact analysis of a) P (B=0)=1 and b) P (B=1)=1.

conditional probability. This tab provided different opportunities for 
improvement. After reviewing all possible changes, it was decided 
to proceed with the one that involved less change or min{∆lo}. 
Consequently, P (G=1)=0.074 was suggested to be change to P (G=1) 
≈ 0.058. However, function G (Flow OF exhaust gas) was not under 
control of the design team, this function is controlled by the customer 
since they ensure the functionality of the “flow OF exhaust gas”. 
Therefore, the CRD’s program management team reached a warranty 
agreement with the customer and updated the technical profile to 
establish that failure rate for G needed to be P (G=1) <=0.0585 in order 
for the system to meet the requirement of P (C=0) >=0.9.

Evidence impact analysis

Finally, one of the major changes that were planned for the new 

CRD was regarding function B (Backpressure AT outlet). Designers 
needed to justify that improvements proposed to the functionality of 
B were towards having a more robust product. After consulting the 
reliability team it was proposed an evidence impact analysis to evaluate 
the system’s effect on different sates of a function. Figure 14 presents 
the impact on the network for the two states of B.

From this analysis, it can be appreciated graphically the different 
effects the states of B have on the other nodes of the network. The 
objective of the evidential impact analysis is to determine the positive 
or negative effect when evidence of a variable is available. In this case, 
the design team obtained the specific knowledge on the behavior of 
the system when B=1 (nonfunctional) (Figure 14b). Without the 
graphical representation of the system, it would be difficult to justify 
an improvement on B since the positive (or negative) impact for B=0 
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was uncertain. On the other hand, with the BN as seen in Figure 14a, 
the improvements on the functionality of all the other nodes were quite 
significant. Hence, the evidence impact analysis provided the business 
case to improving B as it would deliver a more robust CRD.

Discussion
The proposed methodology can be summarized in three major steps 

in the conceptual design phase. The first step is functional analysis, in 
which the function to failure process will be defined. Once determined 
the functionalities, the next step is to identify and establish the 
relationships between functions. This task is performed by constructing 
a cognitive map, which formalizes those relationships in the form of a 
functional structure. Finally, by adding a quantitative aspect, cognitive 
map is transformed to a Bayesian network, with which designers have 
the ability to evaluate different reliability scenarios, measure functional 
impact of changes, or verify that product requirements are met. 
Thus, obtaining an insight into the reliability of a new product in its 
conceptual phase has been made possible by this methodology.

One of the main advantages of the proposed methodology is 
the graphical representation of the functional and failure structures 
through the CM and BN. It exposes the interactions be- tween 
functions and facilitates the decision making process when dealing 
with a complex concept. Furthermore, having a reliability insight of 
a system in its conceptual design phase has its own advantages. For 
example, the necessities of some design requirements can be cross-
validated and any early design changes would be much less expensive 
than later changes.

The case study illustrates how the proposed methodology can 
serve as a general guideline for obtaining reliability insights at the 
conceptual design stage. It shows the utilization of BN through three 
different scenarios. In the first one, an investigation was performed 
to analyze how to meet the design requirement and which function 
needed to be improved. After the first scenario analysis, the infeasibility 
to meet product requirement was found, so an extended analysis was 
executed. The end result from the second scenario analysis conveyed 
the involvement of a different aspect of the reliability other than the 
design. It required the signed warranty agreement between customers 
and suppliers, which had been previously overlooked. Finally, in the 
third scenario the impact of changes was evaluated and the resource 
spending towards a more robust product was justified.

Although these scenarios only utilized the sensitivity analysis 
capacity of BN, the scope can be extended more broadly with different 
characterizations of BN. Subsequently, there are several directions to 
extend this study. As aforementioned, nodes with multiple states or 
continuous nodes can be introduced in the BN model and different 
approaches to BN quantification need to be considered for these nodes 
(e.g., quantum inference and genetic algorithms). Consequently, 
it would be worthwhile to evaluate the pros and cons of different 
computational tools for BN construction. Also, a functional repository 
could be created to expedite the design process. Finally, formulating 
some general guidelines for performing the robustness analysis and 
the simultaneous requirement analysis using BN will greatly benefit 
practitioners and help the acceptance of this methodology in the design 
community.
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