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Introduction
Obesity is an epidemic problem in the world. Since obesity is 

associated with an increased risk for heart disease, stroke, type 2 
diabetes, several comorbidities, and early death, it places an enormous 
burden on health-care services. As per World Health Organization 
(WHO) estimation, 1.5 billion adults aged 20 years and older were 
overweight in 2008; over 200 million men and 300 million women — 
approximately 10% of adults were obese. The National Heart, Lung, 
and Blood Institute and the WHO define overweight as a BMI equal 
to or greater than 25 kg/m2 and obese as a BMI equal to or greater 
than 30 kg/m2 [1,2]. As of 2009, the estimated figures of the Centers for 
Disease Control reveal that a staggering 49 U.S. states have a prevalence 
of obesity of 20% or greater and 9 states have a prevalence of over 30%. 
Although obesity accounts for an estimated 400,000 deaths each year 
[3], it is also a leading preventable cause of death.

The decline in life expectancy due to obesity has been extensively 
studied [4,5]; it is largely attributable to the many health consequences 
of obesity, such as cardiovascular disease, type 2 diabetes, sleep apnea, 
and cancer [6]. Obese adults have been shown to be 5 times more likely 
to have high blood pressure (BP) and 40 times more likely to have type 
2 diabetes (DM) than the normal weight persons [7-10]. 

As well as the above co-morbidities, obesity is also associated with 
poor neurocognitive outcome. There is accumulating evidence that an 
elevated BMI is linked to higher risk of Alzheimer's disease (AD) due to 
increased structural brain changes, including white matter alteration, 

and excess age-related brain atrophy [11-16]. Various cross-sectional 
studies find that excess weight is also associated with reduced cognitive 
function [17-22]. Consistent with these findings, longitudinal data 
from the Framingham Heart Study have also shown that obesity is 
indeed associated with accelerated cognitive decline in aging [23, 24]. 
Recently, the Whitehall II Cohort Study documented that long-term 
obesity in adulthood is associated with lower cognition in late midlife. 
In analyses adjusted for age, sex, and education, being obese at 2 or 
3 occasions in lifespan was associated with lower Mini-Mental State 
Examination scores and scores of memory and executive function [25].

The gut microbial ecology and the physiological impacts of 
gut microbial communities in human/animal hosts have become 
the focus of intense research in recent years. There is bidirectional 
communication between the host and gut-resident microbiota, referred 
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to as inter-kingdom signaling [26-28]. This mediates the symbiotic and 
pathogenic relationships between the gut bacteria and mammalian 
hosts. Commensal microbiota interacts with the intestinal mucosa and 
influences the amplitude of the immune response and thus activity 
of the immune system. In contrast, host gut can influence microbes, 
which in turn modulate disease susceptibility. Indeed, dysregulated 
host-microbial interactions can result in intestinal inflammation and 
cause physiological dyshomeostasis in the host. 

We now appreciate that the etiology of many human diseases 
involves both genetic and environmental factors. Indeed, the incidence of 
several human diseases, including obesity, diabetes and atherosclerosis, 
has strong environmental contribution. The reciprocal nature of the 
regulation of the immune system and gut microbiota is at the core - 
in terms of dysfunctions involved in the pathogenesis of obesity and 
obesity-related disorders [29-34]. This paper deals with alterations in 
gut microbiota – i.e. dysbiosis, gut inflammation, enhanced generation 
of lipopolysaccharide (LPS), increased intestinal permeability, 
metabolic endotoxemia, and development of obesity, causing 
metabolic dyshomeostasis and cognitive dysfunction/AD. Further, it 
has implications for understanding gut-brain axis dysfunction owing 
to gut micobiota-obesity-related dysregulated pathophysiological 
mechanisms, and for utilizing pragmatic therapeutic strategies for 
attenuating this disease condition and ameliorating cognitive decline.

Obesity
Results from a significant amount of literature have advanced 

our understanding of obesity. For example, studies in humans 
have put forth the mechanisms through which we now appreciate 
the relationship between gut microbiota and obesity [35]. With 
steady rise in the prevalence of obesity worldwide and its associated 
diseases, it is essential that we gain understanding of the mechanisms 
that dysregulate body’s energy homeostasis and the pathology that 
promotes cognitive dysfunction in humans [36]. There is significant 
literature emphasizing that the hippocampus plays a pivotal role in 
obesity-associated cognitive dysfunction. 

Adipose tissue is not only a storage depot of fat but is also the largest 
endocrine organ in the human/animal body that secrets hormones, 
cytokines, and growth factors [37-39]. To date, more than 50 different 
molecular entities have been discovered released from the adipose 
tissue; these are generally referred to as ‘adipokines’. The wide range of 
molecular entities includes leptin, adiponectin, TNF-α, IL-1β, IL-6, IL-
10, monocyte chemotactic protein-1, macrophage migration inhibitory 
factor, NGF, vascular endothelial growth factor, plasminogen activator 
inhibitor 1, and haptoglobin. In addition to the above mentioned, the 
list further includes transforming growth factor-β (TGFβ), chemokines 
(IL-8), monocyte chemotactic protein-1 (MCP-1), and macrophage 
migration inhibitory factor β (MIFβ), acute phase proteins (AI-1), 
haptoglobin, serum amyloid A (SAA), and angiogenic factors 
(VEGF) [37].

A link between obesity and AD has been emphasized [36,40]. 
Metabolic syndrome (MetS) is associated with neurocognitive 
impairments, owing to a long-term effect of poor metabolism. 
However, even relatively short-term impairments in metabolism, 
without clinically manifest vascular disease, may be associated with 
smaller hippocampal volumes and cognitive decline [41]. Western 
high-energy diet intake (i.e. consumption of high saturated fats 
and high simple carbohydrates, HFHS) is associated with cognitive 
impairment and hippocampal-dependent memory inhibition [42]. Rats 
that consumed this diet had poor hippocampal-dependent cognitive 

functioning. Further, diets rich in HFHS showed deleterious effect on 
BBB permeability [43] and reduced BDNF in the hippocampus [44,45].

Aging and Inflammation Upregulation
Immunosenescence – i.e. deterioration of the immune system 

with age is associated with an increased susceptibility to infection 
and autoimmune disease among others. Indeed, normal ageing is 
considered to be a chronic low-grade pro-inflammatory state that 
may have up to a 4-fold increase in serum levels of pro-inflammatory 
mediators. LPS-stimulated macrophages from 65-yr-old old subjects 
generated significantly more IL-1, TNF-α, and IL-6, and significantly 
more exosomal mRNAs for TNF-α, IL-6, and IL-12, than macrophages 
from 21- to 45-yr-old subjects [46,47]. Systemic inflammation 
markers including C-reactive protein (CRP), TNF-α, IL-1β, IL-
6, IL -8, IL -10, IL -12, plasminogen activator inhibitor, SAA, and 
vascular adhesion molecule-1 were analyzed (controlling for age, sex, 
education, cardiovascular risk factors, obesity and other metabolic 
factors, smoking, alcohol consumption, depression and presence of 
the apolipoprotein ε4 genotype) in 873 non-demented community-
dwelling elderly participants, aged 70-90 years [47]. Cytokines, e.g. IL-6 
and IL-12 were associated with reduced speed and executive processing 
functions in the the Sydney Memory and Ageing Study [48]. 

A variety of factors may contribute to the inflammatory state 
including the recurring and/or chronic antigenic stress that may affects 
immune system activating macrophages and related cells [46,49]. Aging 
also has an effect on the stability of gut microbial communities. Aging 
is associated with reduced immune function; however, increased use 
of medications, alcohol, and changes in nutrition—all of which may 
modify the gut microbiota [49]. Further, there is increased production 
of pro-inflammaory cytokines such as TNF-α, IL-1β, IL-6, and IL-8 
in the elderly [47]. Other data have confirmed the above mentioned 
as well as documented NF-kappaB, cyclooxygenase-2, adhesion 
molecules, and inducible NO synthase as other key players involved 
in the age-related Upregulation of inflammatory process [51,52]. LPS 
stimulation elicited higher cytokine and exosomal mRNA (ex-mRNA) 
responses from CNS-located macrophages (CM) in older subjects. 
Aβ- and LPS-stimulated CMs from 65-yr-old subjects that generated 
significantly more TNF-α, IL-1 β, and IL-6, and significantly more ex-
mRNAs for TNF-α, IL-6, and IL-12, than CMs from 20 matched 21- to 
45-yr-old subjects [46]. 

Gut Microbiota and Energy Harvesting
Diet is one of the most important determinants of microbial 

diversity within the gut [53]. There are significant shifts in gut 
microbiome composition according to differing diets [54,55]. The gut 
microbiota is an important environmental factor and has a regulatory 
function on energy metabolism of the host [56] via energy harvest from 
the diet and energy storage in the host [57-60]. The Western-type diet 
i.e. high-fat, high-sugar (HFHS), or high polysaccharide-containing 
plant diets have been shown to significantly alter gut’s microbiome 
composition [61,62]. This is reflected by the fact that despite feeding 
a high-fat diet, the microbiota of both rats [63] and mice [64] when 
enriched in Clostridiales in the Firmicutes phylum, do not become 
obese. Furthermore, subjects who achieved weight loss demonstrated 
increased counts of Bacteroides fragilis and Lactobacillus and decreased 
counts of Clostridium coccoides and Bifidobacterium longum [65]. 
There is evidence that germ-free mice are protected against obesity; 
however, the transfer of gut microbiota from conventionally raised 
animal to germ-free animal results in dramatic increase in body fat 
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content of the latter [58]. Indeed, the pathogenesis of obesity is a 
function of the impact of diet on the gut microbiome owing in part to 
the differing composition of the latter existing between lean and obese 
humans and mice [55].

Obesity and Cerebrovascular changes 
Obesity exerts several negative effects on the brain. For example, 

obesity and its associated risk factors have an impact on the cerebral 
vasculature. Indeed, pathological alterations in the cerebral vasculature 
correlated with an increased blood pressure (BP) which may be an 
essential contributor to brain pathology in the obese rats and human 
population [66,67]. The middle cerebral arteries of obese Zucker rats 
(OZRs) undergo structural remodeling and they have greater cerebral 
injury after cerebral ischemia. Such cerebrovascular changes correlate 
with the development of hypertension which is the major determinant 
for stroke risk in obese subjects [68]. Mean gray matter cerebral blood 
flow (CBF) was found to be 15% lower in individuals with metabolic 
syndrome (MetS) compared to controls. Voxel-wise image analysis 
indicated that the MetS subjects possess lower CBF across a large 
portion of the cortex. Those with MetS show lower immediate memory 
function; a mediation analysis indicated this relationship in part to be 
mediated by CBF. Abdominal obesity and elevated triglycerides (among 
the MetS factors) were most strongly associated with lower CBF in 
metabolic syndrome patients [69]. This highlights the importance of 
reducing the cardiovascular risk factors in order to maintain CBF and 
cognition in an aging obese population.

Importantly, it has been demonstrated that obesity is tightly 
correlated with higher level of reactive oxygen species (ROS), which 
in the brain promotes cognitive impairment [70]. Owing to significant 
impairment in glutathione peroxidase, there is a direct relationship 
between obesity and the level of oxidative stress within the brain [70]. 
Consequently, in the metabolically abnormal obese with oxidative 
stress, the decline on the global score was found to be faster than among 
normal weight individuals [71]. Further, it has been documented 
recently that aging exacerbates obesity-induced oxidative stress and 
inflammation in peri-vascular adipose tissue in mice [48]. In view of 
the abovementioned modulating factors in obesity, it is not surprising 
that clinically MetS subjects are considered to have an elevated risk of 
vascular dementia [72,73].

Gut inflammation, LPS Leakage and Obesity
Inflammation is a coordinated response to noxious stimuli, in order 

to maintain homeostasis. The obesity-triggered inflammatory response 
involves many components of the classical inflammatory pathway that 
includes systemic hyper-cytokinemia, acute phase proteins (e.g. CRP), 
and recruitment of leukocytes to the gut and adipose tissue (i.e. the 
inflamed tissues) and activation of tissue leukocytes plus generation of 
LPS in humans [74,75]. LPS – an endotoxin is derived from the cell 
wall of gram-negative bacteria; it circulates at low concentrations in the 
blood of healthy individuals. However, in the presence of high fat (HF) 
diet-induced obesity there is a substantial increase in gut pathogenic 
microbiome and metabolic endotoxemia i.e. when LPS concentration 
is much higher in the blood in both animals and humans [76,77].

Bacteria and HF diet interact to promote pro-inflammatory 
changes in the gut which has a strong and significant association with 
progression of obesity [78-80]. Rodent and human studies demonstrate 
that chronic inflammation is characterized by macrophage infiltration 
in adipose tissue during obesity [81,82]. There is increased TNF-α 
secretion from hypertrophied adipocytes [83]. This condition 

causes alteration of the immune cells, including TH1 cells, B cells, 
neutrophils, and mast cells that induce M1 activation of macrophages 
owing to elevated levels of TNF-α and IFNγ. Further, the secretion of 
chemoattractants such as MCP-1 and MIF and of cytokines TNF-α, IL-
1β, and IL-6, drive immune cells including dendritic cells, T cells, and 
macrophages into adipose tissue. Thus, this may develop a feedback 
loop of pro-inflammatory cytokines that exacerbates inflammatory 
pathology, and causes further immune cell infiltration and enhanced 
cytokine secretion in both animals and humans [84]. This promotes an 
ongoing Upregulation of the inflammatory milieu. 

To recapitulate, consumption of a HF diet by both animals and 
humans results in changes to the gut microbiota composition (see 
above), and significant increases in LPS/endotoxin concentrations 
[85,86]. The systemic LPS/endotoxin level from pathogenic microbiota 
results from increased intestinal permeability. This sequence of events 
is evidenced by the study in which antibiotics were administered to both 
HF-fed and ob/ob mice [87]. This treatment resulted in reduced levels 
of gut LPS content, endotoxemia, intestinal permeability, body weight 
gain and fat mass deposition, markers of inflammation, oxidative stress, 
and infiltration of macrophages into visceral adipose tissue. Thus, the 
gut microbiota in conjunction with HF diet, are pivotal in influence the 
development of chronic low-level systemic inflammation and obesity. 

Comments
Neuroinflammation

During the past decade, it has been demonstrated that persistent 
excess of nutritional intake and over-nutrition-induced obesity result 
in chronic and low-grade inflammation. This leads to up-regulation of 
IKKβ/NF-κB-induced neuroinflammation. The neuroinflammation 
impairs central regulatory pathways of energy balance and nutritional 
metabolism, thus leading to obesity, diabetes, cardiovascular, and other 
complications [81,88-91]. Hypothalamic inflammation can impair 
insulin release from β cells, impair peripheral insulin action, and 
potentiate hypertension, as revealed in rodents [92-94]. Many of these 
effects are generated by signals from the sympathetic nervous system, 
which is also capable of inducing inflammatory changes in adipose 
tissue in response to neuronal injury [95].

Adipose tissue and brain from HF diet-fed animals show increased 
TNF-α as well as macrophage and microglial activation. Further, both 
brains and adipose tissue may also show elevated amyloid precursor 
protein (APP) levels localized to neurons, macrophage and adipocytes 
[81]. Thus, as documented in a murine model of high fat diet-induced 
obesity, the latter may results in concomitant pro-inflammatory 
changes in brain and adipose tissue; however, the increased level of 
APP may be a further contributing factor to upregulate inflammatory 
changes [81].

Neuroinflammation is associated with a variety of neurodegenerative 
diseases including AD. Old age is associated with innate peripheral 
immune stimulation (see above) and an increase in neuroinflammation 
[96-104]. LPS has been shown to increase inflammatory response 
in the brain of healthy aged mice [105]. When young and old mice 
were injected with Escherichia coli LPS to mimic an acute peripheral 
infection/endotoxemia, the hippocampus of old animals had an 
increased inflammatory response, compared to younger animals [106]. 
Following LPS injection, mRNA encoding TNF-α, IL-1β, and IL-6 
was higher in hippocampal neurons of old mice compared to their 
young counterparts [106]. The hippocampus of LPS-treated old mice 
had more microglial cells; moreover, IL-1β-positive cells were present 
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in the dentate gyrus (DG) and in the CA1, CA2, and CA3, compared 
to young adults [106,107]. In a test of cognition (to integrate new 
information and complete a spatial task in a mouse model of working 
memory version - water maze), the hippocampal processing was found 
dysfunctional in LPS-treated old animals compared to the younger ones 
[106]. This is due in part to compromised hippocampal neurogenesis 
and impaired hippocampus-dependent spatial memory as confirmed 
recently in the LPS-induced inflammatory paradigm [108]. The above 
data on infection-related cognitive impairment is consistent with 
studies showing a link between aging, endotoxemia, and deterioration 
of the hippocampus cells [109], resulting in hippocampal dysfunction 
and cognitive decline [110,111]. There is an inherent relationship 
between infection and cognition, in that infection in the elderly 
induces cognitive impairment, while cognitive dysfunction exacerbates 
infection [107,112,113]. An analogous situation would be – obesity 
enhances gut’s pathogenic bacteria, while the latter upregulate systemic 
endotoxemia which in turn causes neuroinflammation and cognitive 
decline, as per animals and human studies [96-111].

An elegant study utilized a transgenic mouse model whose unique 
feature involved human IL-1β transgene that directed overexpression 
of IL-1β, with temporal and regional control [114]. The human IL-1β 
overexpression activated glia, enhanced IL-1beta protein and PGE-2 
levels, and elevated pro-inflammatory cytokine and chemokine mRNAs 
– all specifically within the hippocampus. IL-1β overexpression for 
two weeks attenuated hippocampus-dependent long-term contextual 
and spatial memory in mice, while hippocampus-independent 
short-term memory lacked any detectable loss. IL-1β-associated 
neuroinflammation also reduced levels of the plasticity-related gene 
Arc [114]. Chronic systemic inflammation has been shown to induce 
proinflammatory microglial phenotype in middle-aged rats. Further, 
microglia expresses IL-1β in the hippocampal CA1 region of rats in 
an age-dependent manner also. Inflammation induces deficits in the 
LTP in the Schaffer collateral-CA1 synapses of the older rats (but 
not in young animals), and impairs post-tetanic potentiations in the 
hippocampus [115]. 

Impact of obesity on the hippocampus

Obesity - a growing global health problem not only contributes 
to diabetes, hypertension, cardiovascular diseases, and cancer, but it 
may also cause dementia. Obesity is considered to be a risk factor for 
AD and vascular dementia being associated with neuroinflammation 
and impaired cognitive function. The hippocampus is sensitive to 
inflammatory insults and subjects with peripheral/systemic infections 
may manifest cognitive dysfunction [106,107,116,117]. This is because 
the inflammatory cytokines have confirmed impaired synaptic plasticity 
in the DG and CA regions of the animal hippocampus [118-123].

The identification of neurodegenerative changes in obese Zucker 
rats (OZRs) may represent important features for better characterizing 
neuronal involvement in this model of MetS. Both pre-frontal cortex 
(PFC) and hippocampus showed an increased number of GFAP 
immunoreactive astrocytes; they were located in the CA1 and CA3 
subfields and dentate gyrus of OZRs (compared to their lean rats) [124].

The increased consumption of saturated fats in a HF diet (HFD) 
contributes to obesity, memory loss, and cognitive impairment in 
C57BL/6 mice [125]. HFD increased the toxic level of malondialdehyde, 
reduced the growth of neural progenitor cells, and decreased the level 
of brain-derived neurotrophic factor (BDNF) in the hippocampus. The 
impairment affecting the hippocampal neurogenesis was ascribed to 
increased lipid peroxidation and decreased BDNF [125]. 

In an interesting study, high fat refined carbohydrate diet (HF/
RC) has been shown to alter recruitment of transcription factors and 
decreases CREB phosphorylation, possibly due to oxidative-related 
pathways [126]. This is also considered to modulate the vulnerability of 
the hippocampal CA1 region to the episodic hypoxia in OSA patients, 
thus enhancing neurocognitive decline [126]. 

It is important to underscore that the hippocampus is strongly 
linked to food-related behavior also [127,128]. It has a major 
function in the control of feeding behavior based on the detection 
and integration of energy state signals via memory and encoding 
information about food experiences, as shown in rodents [129]. The 
hippocampal-dependent memory inhibition, therefore, may be critical 
to refrain from responding to environmental cues associated with food, 
and thus consume energy intake in excess [42]. Thus, a dysfunctional 
hippocampus may indeed be a risk factor in obesity; obese persons 
would have a lower activation of the hippocampus than non-obese 
in response to food cues. Indeed, neuroimaging studies have shown 
significantly less hippocampal activation in obese subjects in response 
to food cues [130,131].

Gut-brain axis

The gastrointestinal tract (GIT) epithelium is constantly exposed 
to microbes, other pathogens, and food antigens. GIT is endowed 
with immunologic and non-immunologic mechanisms that neutralize 
and eliminate the above deleterious agents. This is accomplished by 
the GIT due to an extensive integrated neuro-immune network and 
immune system encompassing immune cells, lymphoid aggregates 
and intra-epithelial lymphocytes. Further, the intestinal mucosa of an 
adult contains about 80% of the body's activated B cells - terminally 
differentiated to plasma cells (PCs). Most mucosal PCs produce IgA, 
hence, GIT possesses abundant mucosal immunity. Further, specific 
receptors for neurotransmitters, such as substance P, vasoactive 
intestinal polypeptide (VIP), and somatostatin, are present on 
many immune cells. The secretion of mucus, gastric acid, water and 
electrolyte as well as peristalsis is regulated by gut’s “intrinsic” enteric 
nervous system (ENS) and “extrinsic” – i.e. CNS counterparts. 

Almost every GIT function is under the regulatory influence of 
the nervous system, including the vagal afferents, spinal afferents, 
sympathetic and parasympathetic efferents and the enteric nervous 
system (ENS). The ENS is considered to be the Gut’s brain and governs 
the GIT activity/homeostasis. Various noxious inputs (mediating 
pathological symptoms) from the gut to the brain reflect processing 
of afferent signals [132-134]. Autonomic dysfunction/imbalance 
and increased sympathetic activity may impart low vagal tone; this 
may underpin symptomatology and alter visceral perception in gut 
pathology, as in functional gastrointestinal disorders, for example [135]. 
It is generally accepted now that there is dysfunctional bidirectional 
“brain-gut axis” pathway between the GIT and the CNS in patients of 
some gut conditions [136-139]. The symbiotic relationship between the 
commensal gut microbiota and its host (animals/humans) protects from 
the effects of infection and inflammation, and modulates the normal 
behavioral responses [140]. However, dysbiosis renders individuals 
with enhanced perception of gut stimuli, pathological symptoms 
(e.g. diarrhea, altered transport of intestinal gas, bowel distention, 
abdominal discomfort, pain, bloating) including psychosocial [141].

Consistent robust evidence indicates that pathogenic gut bacteria 
influence the ENS, via afferent signaling of LPS and pro-inflammatory 
cytokines to the brain. Various regions in the brain may then synthesize 
their own pro-inflammatory cytokines documented in rats [142]. Thus, 
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dysbiosis i.e. changes in the composition of the gut microbiota may 
impact normal gut physiology promoting conditions ranging from 
gut inflammation → to endotoxemia → to neuroinflammation → to 
obesity, via immune, endocrine, and neural pathways. Consequently, 
disturbances of the ANS occurring in obesity and other conditions 
such as irritable bowel syndrome may correlate with brain-gut axis 
dysfunction [138,143-145]. Consequently, the vagus nerve occupies an 
essential role subserving important communicating signals from gut 
bacteria/ GIT to the CNS [146,147].

Perspective on Therapeutic Strategies and Future 
Directions
Benefit of prebiotics, probiotics, and synbiotics 

Gut microbiota—arguably the highest density of microorganisms 
resides in the host. Several converging studies on the GIT inflammatory 
conditions suggest that these conditions are probably caused by defects 
in host immunity due to dysbiosis. Simply put, the immune mechanisms 
that are necessary for gut homeostasis may become dysfunctional and 
lead to bowel inflammation. 

It is quite pragmatic then that immunologically mediated 
alterations including an increase in LPS, pro-inflammatory cytokines, 
and gut permeability be controlled by available options. These include 
Prebiotics, Probiotics, and Synbiotics. Bran is an example of prebiotic; 
it promotes the growth of commensal bacteria e.g. lactobacilli and 
bifidobacteria. Probiotics utilize these beneficial species as exogenous 
supplementation to intestinal microbiota. Synbiotics are exogenous 
supplementation to intestinal and colonic microbiota, and exploit 
the synergistic benefit by combining a prebiotic with probiotic. An 
example would be Bifidobacteria plus fructooligosaccharides (or 
galactooligosaccharides), or Lactobacilis rhamnosuss GG plus inulins. 
These ameliorate mucosal permeability and immune activation in 
human subjects [148], and thus minimize systemic inflammation and 
consequent neuroinflammation via the vagus nerve, shown in mice [149].

Further, Chronic treatment with L. rhamnosus (JB-1) resulted in 
reduced stress-induced anxiety- and depression-related behavior, 
as well as alterations in GABA (B1b) receptor mRNA in the mouse 
brain [150]. These behavioral and neurochemical ameliorating effects, 
however, were absent in vagotomized mice. This emphasized that the 
vagus is a major modulatory communication pathway between the 
gut microbiota and the brain. This also underscores the pivotal role 
of GI bacteria in the bidirectional communication of the gut-brain 
axis highlighting that certain gut bacterial types may indeed induce 
therapeutic benefits in more ways than one [149].

Vagus nerve stimulation (VNS) and α7 nAChR agonists

There have been considerable advances in clinical neurostimulation 
in recent years. VNS has been approved by the FDA as a neurostimulation 
modality in clinical medicine, and is not a novel treatment modality any 
longer. VNS is now a well-established beneficial therapy in a subset of 
patients with treatment-resistant depression [150] and epilepsy [151]. 

The current research on VNS shows that the vagus/brainstem may 
modulate immune responses. A recent study determined the beneficial 
effects of VNS in attenuating LPS-induced (intraperitoneally injected) 
acute lung injury (ALI) in rats. VNS improved lung injury evidenced 
by a significant reduction in lung edema, neutrophil infiltration, and 
pulmonary permeability [152]. Additionally, VNS decreased the 
expressions of Src-suppressed C kinase substrate and E-selectin proteins 
in lung tissue and effectively attenuated the levels of proinflammatory 

cytokines including TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage 
fluid [152].

In canines with heart failure (HF), long-term, low level VNS 
improved left ventricular (LV) systolic function, prevented progressive 
LV hypertrophy, and improved biomarkers of HF (compared with 
control animals that did not receive VNS) [153]. Further, other 
studies in canine HF have also shown that Chronic VNS improves 
cardiac autonomic control and significantly attenuates HF [154]. The 
therapeutic benefit of VNS in dogs included pronounced cardiac and 
anti-inflammatory benefits; it improved heart rate variability and 
baroreflex sensitivity, and lowered plasma norepinephrine, angiotensin 
II, and CRP levels [154]. 

The effect of VNS was recently examined in LPS-challenged 
(intraperitoneal injection) mice. The endotoxin induced intestinal 
tight junction injury with increased intestinal permeability, evidenced 
by increased amount of fluorescein isothiocyanate-dextran (FID) in 
circulation [155]. VNS (of right cervical vagus nerve) [156] ameliorated 
the tight junction damage, decreased permeability to FID, and reversed 
the decreased expression of tight junction proteins occludin and 
zonula occludens 1 [155]. α-bungarotoxin is a specific α7-nAchR 
antagonist, its administration prior to VNS significantly abolished the 
above protective impact of VNS. This study showed that attenuation 
of tight junction disruption and intestinal epithelial permeability in 
LPS-induced endotoxemia is mediated by α7-nAchR [155]. The recent 
simplified transcutaneous auricular VNS technique may be worth 
pursuing since it is a simpler and least invasive VNS treatment option 
[157]. Given the above mentioned documented benefits of VNS on 
many inflammatory mechanisms in vagus-innervated organs including 
GIT, there is a strong case for its utilization in ameliorating obesity-
related gut inflammation, systemic inflammation, neuroinflammation, 
and cognitive decline.

Future research on the connection between the brain and the 
immune system in dysfunctional gut disorders may offer Challenges 
and opportunities. There has been considerable emphasis on the 
afferent and efferent parasympathetic activity playing a crucial role 
in immunomodulation [140,158-161]. When mice receive LPS 
endotoxin, they up-regulate synthesis of proinflammatory cytokines 
[162,163], and there is intestinal epithelial cell shedding [164], 
analogous to humans. VNS has been shown to significantly inhibit 
TNF-α in animal receiving LPS [165]. The mechanism responsible for 
inhibition of cytokine synthesis is attributed to acetylcholine (ACh), 
which is the neurotransmitter of vagus nerve [162,163,166]. Cytokine-
producing cells express α7 nAChR which transduce an intracellular 
signal that inhibits cytokine synthesis [163,166]. Moreover, VNS in α7 
nAChR-knockout animals fails to suppress cytokine synthesis whereas 
it significantly inhibits cytokine release in wild-type littermates [163]. 
This indicates that vagus cholinergic signals in conjunction with α7 
nAChR modulate cytokine synthesis. Hence, VNS and administration 
of α7 nAChR agonists in obesity may inhibit proinflammatory 
cytokines, including TNF- α, IL-1β, and IL-6 [166-168]. Such 
therapeutic application may represent a novel form of treatment in 
patients with obesity, gut inflammatory processes, and disruption 
of vagal afferent and efferent functions (viz. gut-brain axis). Finally, 
alpha7 nAChR agonism may also have clinical benefit in ameliorating 
cognitive/memory dysfunction, and vulnerability to AD via attenuating 
tau hyperphosphorylation [169].

Conclusions
Obesity - a major public health issue promotes disability, and is 
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causally related to several chronic disorders shortening life span. The 
biology of obesity is complex. However, simply put, obesity develops 
from a prolonged imbalance of energy intake, energy expenditure, 
and energy storage. Owing to recent research we now have an ever-
increasing understanding of important concepts e.g. the impact of 
composition and function of the gut microbiota on obesity. Under 
certain conditions of metabolic dysfunction - as in obesity, components 
of the innate immune system may be activated (in the absence of 
external pathogens) leading to pathologic consequences. In obesity, 
the latter involves LPS generation in the gut, gut leakiness to LPS, 
and systemic inflammation leading to neuroinflammation. Persistent 
systemic inflammation triggers and sustains neuroinflammation. The 
latter targets several brain regions including the hippocampus causing 
up-regulation of amyloid beta and neurofibrillary tangles, synapse/
neuronal degeneration, gray matter volume atrophy, and progressive 
cognitive decline. 

The current article highlights an up-regulated cascade in which gut-
microbiota-related dysbiosis generates LPS; this then enhances a web 
of interactions that induce stress, depression, and cognitive decline. 
The ongoing neurotoxicity in obesity increases neuronal dysfunction/
apoptosis in different brain regions including the hippocampus, 
and promotes learning and memory impairment, thus accelerating 
vulnerability to cognitive decline. The failure of recent clinical 
trials in AD is due in part to a lack of appreciation of this complex 
multifactorial neurotoxic-pathophysiological labyrinth, encompassing 
pivotal body systems such as respiratory, cardiovascular, and indeed 
gastrointestinal. The key in the amelioration of cognitive dysfunction 
is first to employ appropriate preventive strategies prior to significant 
hippocampus damage and memory dysfunction. Recommendation is 
made for such strategies, including vagus nerve stimulation.

Systemic inflammation occurs due to LPS efflux from the gut; this 
up-regulates neuroinflammation– including that in the hippocampus 
and cerebellum. Brain pro-inflammatory cytokine generation/
synthesis, i.e. neuroinflammation promotes amyloid deposition and 
tau hyperphosphorylation that enhance hypofunction/dysfunction 
in key brain regions, including the hippocampus and cerebellum. 
This cascade of events promotes neuronal injury/apoptosis and 
degeneration, leading to cognitive impairment and vulnerability to 
Alzheimer’s dementia (Figure 1).

Review Criteria
This Review article was based on searches of the PubMed database 

using the following terms: “Obesity”, “pathogenic gut microbiota”, 
“lipopolysaccharide”, “gut inflammation”, “barrier dysfunction”, 
“systemic inflammation”, “neuroinflammation”, and gut-brain axis 
- alone and in combination. Only articles published in English were 
retrieved. Full-text papers were available for most of the articles, and the 
references of these articles were searched for further relevant material. 
The review is comprised of nine structured sections, plus introduction 
that analyze the current evidence related to obesity-related gut dysbiosis 
and gut inflammation, in the context of neuroinflammation. These 
sections evaluate the relationship of the obesity-gut microbiota to 
systemic and neuroinflammation - at the clinical and epidemiological, 
the neuroanatomical and pathophysiological levels, with reference 
to lipopolysaccharide, pro-inflammatory cytokines, and gut-
brain-gut axis dysfunction. In the Discussion section, a conceptual 
framework is presented regarding the interface of obesity, dysbiosis, 
and gut inflammation and dysfunction, followed by a discussion of 
the hippocampal and cerebellar inflammation/dysfunction. Here, 

significance and therapeutic efficacy is also emphasized in terms of 
clinical utility of probiotics, prebiotics, and synbiotics in conjunction 
with VNS and α7 nAChR agonists, to ameliorate gut inflammation, 
systemic inflammation, and neuro-inflammation. It is hypothesized 
that targeting gut-brain-gut vagal pathways could be a novel therapy 
for ameliorating gut inflammation, neuro-inflammation, and cognitive 
decline. These future directions are considered to be of potential value 
for they may attenuate vulnerability to AD.
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