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Obesity and diabetes (type 1 and 2 diabetes) are currently a major 
health problem worldwide with growing in prevalence. The incidence 
of metabolic disease, including type 2 diabetes with obesity, has 
increased to epidemic levels. Obesity and diabetes induce secondary 
diseases with various pathophysiologic states, which are important in 
clinical aspects including cardiovascular disease, neural disturbance, 
kidney disease, osteoporosis and cancer [1-6]. Obesity is based on 
stimulation of adipogenesis. Bone marrow mesenchymal stem cells 
are multipotent cells, which among other cell lineages, and give to 
differentiate into adipocytes, osteoblasts, chondrocytes and myoblasts 
[1]. This occurs through cross talk between complex signaling 
pathways including those derived from bone morphogenic proteins, 
winglesstype MMTV integration site (Wnt) proteins, hedgehogs, delta/
jagged proteins, fibroblastic growth factors, insulin, insulin-like growth 
factors, and transcriptional regulators of adipocyte and osteoblast 
differentiation including peroxisome proliferators-activated receptor-
gamma (PPARγ) and runt-related transcription factor 2 (Runx2) [1-
3]. Insulin, which is secreted by feeding, stimulates adipogenesis from 
bone marrow mesenchymal stem cells. In addition, bone marrow 
adiposity and mature adipocytes with obesity greatly produces tumor 
necrosis factor-α (TNF-α), an inflammatory cytokine [4]. This TNF-α 
may cause insulin resistance that leads to type 2 diabetes.

Various hormones and cytokines, which include leptin, 
adiponectin, insulin, epinephrine, cortisol, glucagon, TNF-α and 
other factors, are well known as key molecules that relate to obesity 
and diabetes. Disturbance of these factors may play an important role 
in pathophysiologic conditions of obesity and diabetes. In addition, it 
has been proposed that regucalcin, a suppressor protein of intracellular 
signaling systems [7], may be a key molecule in obesity, diabetes 
and osteoporosis. Regucalcin has been demonstrated to stimulate 
adipogenesis in mouse bone marrow cell culture in vitro [8], suggesting 
an involvement as a stimulatory factor in adipogenesis. 

Regucalcin, which was discovered in 1978 [9], plays a multifunctional 
role as a suppressor protein in signal transduction in various cell 
types and plays a cell physiologic role in maintaining cell homeostasis 
for various stimuli [10-14]. Cytoplasmic regucalcin localizes into 
the nucleus, and it suppresses nuclear protein kinase and protein 
phosphatase activities and DNA and RNA synthesis and regulates gene 
expression for various proteins [15]. Regucalcin has also been shown 
to suppress protein synthesis and activate proteolysis, suggesting a 
role as suppressor in protein turnover [11]. Moreover, overexpression 
of endogenous regucalcin has been demonstrated to suppress cell 
proliferation and apoptosis induced through multisignaling pathways 
in various cell types [16,17]. Thus, regucalcin plays a pivotal role in cell 
regulation.

Moreover, there is growing evidence that regucalcin plays an 
important role in the regulation of glucose and lipid metabolism. 
Fasting-induced decrease in the hepatic regucalcin mRNA expression 
has been shown to restore after re-feeding in rats in vivo [18], 
suggesting that feeding is a physiologic factor in the regulation of 
the regucalcin gene expression. In addition, oral administration of 
glucose to fasted rats causes a significant increase in hepatic regucalcin 

mRNA expression [18], suggesting an involvement of insulin secreted 
from pancreatic cells after glucose administration. Moreover, 
hepatic regucalcin mRNA expression is clearly elevated after a single 
subcutaneous administration of insulin to fasted rats in vivo [18]. In 
fact, insulin has been demonstrated to directly stimulate regucalcin 
mRNA and protein expressions in human hepatoma cells (HepG2) 
in vitro [19]. Thus, insulin, which is related to metabolism of blood 
glucose after feeding, stimulates regucalcin expression in liver cells. In 
addition, hepatic regucalcin expression has been shown to markedly 
decrease after a single subcutaneous administration of streptozotocin 
that induces type 1 diabetes [20]. These findings may support the view 
that regucalcin may be involved in liver metabolic disorder related to 
diabetes.

Deficiency of regucalcin has been reported to cause an impairment 
of glucose tolerance in regucalcin knockout (KO) mice [21]. Regucalcin 
KO mice causes a significant increase in blood glucose concentration 
and a decrease in serum insulin levels after glucose administration 
compared with wild-type mice in vivo [22], suggesting that regucalcin 
participates in the regulation of glucose metabolism related to insulin 
action. Insulin resistance may be modeled in culture system by using 
cloned rat hepatoma H4-II-E cells cultured with insulin and TNF-α 
in vitro [22]. This in vitro model nicely mimics insulin resistance in 
human type 2 diabetic mellitus. When H4-II-E cells are cultured in the 
presence of TNF-α plus insulin in vitro, regucalcin is identified as an 
important protein, which is involved in insulin resistance, by proteome 
analysis [23]. Thus, regucalcin may be a key molecule that is related 
to insulin resistance. Moreover, regucalcin has been demonstrated 
to stimulate glucose utilization and lipid production in H4-II-E cells 
in vitro [24]. Overexpression of endogenous regucalcin is found to 
stimulate the production of triglyceride and free fatty acid in H4-II-E 
cells cultured with or without the supplementation of glucose in the 
absence of insulin [24]. Regucalcin may stimulate lipid production 
that is linked to glucose metabolism in liver cells in vitro. Moreover, 
the effect of insulin, which enhances medium glucose consumption, 
triglyceride and free fatty acid productions in liver cells cultured with 
glucose supplementation, is suppressed by overexpression of regucalcin 
in vitro [25]. 

Molecular mechanism by which regucalcin regulates glucose 
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metabolism related insulin action has been elucidated. Overexpression 
of regucalcin does not reveal stimulatory effects on the gene expression 
of enzymes, which are related to glucose and lipid metabolism, 
including acetyl-CoA carboxylase, HMG-CoA reductase, glucokinase 
and pyruvate kinase in liver cells after culture with or without glucose 
supplementation in the presence of insulin [23], although it is possible 
that regucalcin has a regulatory effect on various enzyme activities, 
which are related to glucose and lipid metabolism in liver cells. 
Interestingly, overexpression of regucalcin has been shown to have 
suppressive effects on the expression of rat insulin receptor (Insr) or 
phosphatidylinositol 3-kinase (PI3K) mRNAs enhanced after culture 
with glucose supplementation in the presence of insulin [23,24]. 
Suppressive effects of regucalcin on the expression of Insr and PI3K 
mRNAs may play an important role in insulin resistance in liver cells 
overexpressing endogenous regucalcin. Insulin resistance in the liver 
is associated with the pathogenesis of nonalcoholic fatty liver disease 
(NFLD), suggesting an involvement in lipid metabolic disorder.

Hepatocytes, which are obtained from regucalcin KO mice at 
12 months of age, have been shown to contain many lipid droplets, 
abnormally enlarged mitochondria with indistinct cristae, and enlarged 
lysosomes filled with electron-dense bodies in the electron microscope 
as compared with that of wild-type mice [25]. Hepatic neutral lipids, 
total phospholipids, total triglyceride and cholesterol in regucalcin KO 
mice are found to markedly increase than those from age-matched 
wild-type mice [25]. Deficiency of regucalcin leads to accumulation of 
liver lipid components. 

Moreover, regucalcin transgenic (TG) rats with overexpression of 
endogenous regucalcin have been shown to induce a remarkable of bone 
loss associated with increase in serum triglyceride and high-density 
lipoprotein (HDL)-cholesterol concentrations at the age of 36 weeks 
in vivo [22]. Serum free fatty acid, triglyceride, cholesterol or HDL-
cholesterol concentrations are markedly increased in regucalcin TG 
male and female rats at 14-50 weeks of age [26]. Thus, hyperlipidemia 
is uniquely induced in regucalcin TG rats with increasing age. 
The change in lipid components in the adipose and liver tissues of 
regucalcin TG rats with increasing age has also been shown in vivo 
[27]. Regucalcin is expressed in the adipose tissues of normal rats [27]. 
Triglyceride content in the adipose tissues is increased in regucalcin 
TG rats with aging [27]. Liver triglyceride, total cholesterol, free fatty 
acid and glycogen contents are decreased in regucalcin TG rats. The 
expression of regucalcin in the liver tissues is enhanced in regucalcin 
TG rats [27]. Regucalcin has been shown to have suppressive effects 
on the activations of glycogen particulate phosphorylase a, cytoplasmic 
pyruvate kinase, and fructose 1,6-diphosphatase in rat liver [8,13]. 
Regucalcin may suppress glycogen synthesis in the liver and stimulate 
glycogenolysis in regucalcin TG rats. As the result, lipid synthesis 
may be stimulated in the liver tissues of the TG rats in vivo. Leptin 
and adiponectine are adipokines that are involved in lipid metabolism 
[28]. Leptin mRNA expression in the adipose or liver tissues has been 
found to decrease in regucalcin TG rats with aging [27]. Adiponectin 
mRNA expression is not changed in the adipose tissues of the TG rats, 
while its level is decreased in the liver tissues [27]. These decreases may 
be partly involved in hyperlipidemia induced in regucalcin TG rats. 
Thus, regucalcin may play an important role in the disorder of lipid 
metabolism in the liver.

Hyperlipidemia has been shown to induce in the lipoprotein lipase- 
deficient mice [28], low-density lipoprotein (LDL) receptor-deficient 
mice [29], apolipoprotein C3-KO mice [30], apolipoprotein C1 TG 
mice [31], very LDL lipoprotein receptor KO mice [32], cholesterol 

7 alpha-hydroxylase-deficient mice [33], apoE-deficient mice [34], 
and hepatic myr-Akt overexpressing mice [35]. These animal models 
for hyperlipidemia are involved in molecules that regulate lipid 
metabolism. Regucalcin has also been proposed to be a key molecule 
that regulates lipid metabolism.

As described above, regucalcin plays a physiological role in lipid 
and glucose metabolism. Regucalcin, which is stimulated by insulin, is 
identified as a molecule that is related to insulin resistance in liver cells. 
Deficiency of regucalcin impairs glucose tolerance and induces lipid 
accumulation in the liver of mice in vivo. Overexpression of regucalcin 
stimulates glycolysis and lipid production in the liver tissues of rats in 
vivo. Disturbance of hepatic regucalcin expression may leads to NFLD. 
Moreover, hyperlipidemia is induced in regucalcin TG rats in vivo. 
Thus, regucalcin may be a key molecule in lipid metabolic disorder 
and diabetes. Regucalcin may be a target molecule for therapy of these 
diseases. Development of further study will be expected.
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