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Introduction
In this paper we study the physical problem of heat conduction in a 

rod of length L. This problem first studied by Fourier at the beginning 
of the 19th century in his celebrated volume on the analytical theory 
of heat, has become during the intervening century and a half the 
paradigm for the very extensive study of parabolic partial differential 
equations (PDEs), linear and nonlinear [1]. The temperature of a rod is 
governed by a PDE that is often defined by [2]:

 = < < ≥, 0 , 0,t xxu ku x L t 			   (1)

where ≡ ( , )u u x t  represents the temperature of the rod at the position 

x at time t, and k  is the thermal diffusivity of the material that measures 
the rod ability to heat conduction.

The domain of the solution is a semi-infinite strip of width L that 
continues indefinitely in time. In a practical computation, the solution 
is obtained only for a finite time, say = maxT t . Solution to equation 
1 requires specification of initial condition at t = 0 and boundary 
conditions at x = 0 and x = L. Simple initial and boundary conditions 
(IBCs) are:

= ≤ ≤( ,0) ( ), 0 ,u x f x x L    (2)

= ≥1(0, ) ( ), 0u t h t t 				   (3)

= ≥2( , ) ( ), 0u L t h t t 				   (4)

The initial condition in equation 2 describes the initial temperature 
u at time t=0 and the given boundary conditions in equation 3 and 
equation 4 indicate that the temperature of rod ends are functions 
of t. Other boundary conditions, e.g. gradient (Neumann) or mixed 
conditions, can be specified. In this article, only the conditions in 
equation 3 and 4 are considered. The existence and uniqueness property 
of this case problem have been studied by J. R. Cannon in [1]. It is of 
interest to note that the PDE in equation 1 arises in two different types, 
namely:

Homogeneous heat equation

 = ≤ ≤ ≥, 0 , 0t xxu ku x L t 			   (5)

Further, heat equation with a lateral heat loss is formally derived as 
a homogeneous PDE of the form:

= − ≤ ≤ ≥, 0 , 0,t xxu ku cu x L t               (6)

where c is a positive constant.

Inhomogeneous heat equation

This type of equations is often given by

= + ≤ ≤ ≥( , ), 0 , 0t xxu ku g x t x L t  ,		   (7)

where g(x; t) is called the heat source.

Heat equation mainly in one-dimension had been studied by many 
authors [3]. A comparative study between the traditional separation 
of variables method and Adomian method for heat equation had been 
examined by Gorguis and Chan [4]. Dehghan [5] considered the use 
of second-order finite difference scheme to solve the two-dimensional 
heat equation. After that, Mohebbi and Dehghan [6] presented a fourth-
order compact finite difference approximation and cubic C1-spline 
collocation method for the solution with fourth-order accuracy in both 
space and time variables. Recently Dabral et al. [3], propose B-spline 
finite element method to get numerical solutions of one dimensional 
heat Equation.

Wavelet methods have been applied for solving PDEs from 
beginning of the early 1990s [7]. In the last two decades this problem 
has attracted great attention and numerous papers about this topic 
have been published. Due to this fact we must confine somewhat our 
analysis; in the following only PDEs of mathematical physics (elliptic, 
parabolic and hyperbolic equations) and of elastostatics are considered. 
From the first field of investigation the papers [8-13] can be cited. As to 
the elasticity problems we refer to the papers [14-20]. In all these papers 
different wavelet families have been applied. In most cases the wavelet 
coefficients were calculated by the Galerkin or collocation method, by 
it we have to evaluate integrals of some combinations of the wavelet 
functions (called also connection coefficients).
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Abstract
In this paper, we develop an efficient Chebyshev wavelet method for well-known one-dimensional heat equation. 

In the proposed method we applied operational matrices of integration to get numerical solution of the one-
dimensional heat equation with Dirichlet boundary conditions. The power of this manageable method is confirmed. 
Moreover the use of Chebyshev wavelet is found to be accurate, simple and fast.
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The aim of the present work is to develop Chebyshev wavelet 
method with operational matrices of integration for solution the one-
dimensional heat equation with Dirichlet boundary conditions, which 
is fast, mathematically simple and guarantees the necessary accuracy 
for a relative small number of grid points. The outline of this article 
is as follows. In Properties of Chebyshev wavelets section; we describe 
properties of Chebyshev wavelet. In Description section; the proposed 
method is used to approximate the solution of the problem. After 
description section; the numerical examples of applying the method of 
this article are presented. Finally a conclusion is drawn in last section.

Properties of Chebyshev Wavelets
Wavelets and Chebyshev wavelets

Wavelets constitute a family of functions constructed from dilations 
and translations of a single function called the mother wavelet ψ ( )t . 
When the dilation parameter a and the translation parameter b varies 
continuously we have the following family of continuous wavelets as 
[21]:

 ψ ψ
− −

= ∈ ≠

1/2

, ( ) ( ), , , 0a b
t bt a a b a

a
	               (7)

If we restrict the parameters a and b to discrete values as 
− −= = > >0 0 0 0 0, , 1, 0k ka a b nb a a b  and n and k positive integers, we have 

the following family of discrete wavelets:

 ψ ψ= −
/2

, 0 0 0( ) ( )
k k

k n t a a t nb 			                  (8)

where ψ , ( )k n t  forms a wavelet basis for 

2( ).L  In particular, when 

a0=2 and b0=1, ψ , ( )k n t  forms an orthonormal basis. That is 
ψ ψ δ δ=, ,( ( ), ( )) .k n l m kl nmt t

Chebyshev wavelets ψ ψ=, ˆ( ) ( , , , )n m t k n m t  have four arguments;  
−∈ =

1, 1,2,.....2 ,kk n and = −ˆ 2 1,n n  moreover m is the degree of 
the Chebyshev polynomials of the first kind and t is the normalized 
time. They are defined on the interval [0,1] as:

 ψ
 −= − ≤ ≤




/2
,

0 ,

ˆ ˆ1ˆ( ) 2 (2 ), ,
2 2

k k
n m m k k

otherwise

n nt T t n t 	             (10)

Where,

π

π


 ==  >




1 , 0
( ) ,

02 ( ),
m

m

m
T t

m
T t

			               (11)

m = 0; 1; ….; M -1; and M is a fixed positive integer. The 
coefficients in (11) are used for orthonormality of the system. Here, 

∈ ={ ( ), 0}, 1,2,3......mT t m m  is the well-known Chebyshev 
polynomials of order m which are orthogonal with respect to the 
weight function = − 2( ) 1 / 1w t t  on the interval [-1, 1], and satisfy the 
following recursive formula:

+ −= = = − =0 1 1 1( ) 1, ( ) ( ) 2 ( ) ( ), 1,2,3....m m mT t T t t T t tT t T T m

We should note that in dealing with Chebyshev polynomials the 
weight function = −ˆ ( ) (2 1)w t w t  have to be dilated and translated as 

 = − ˆ( ) (2 ),k
n tw t w n

to get orthogonal wavelets.

Function approximation

An arbitrary function ∈ 2( ) ( )f t L R  defined over [0;1] may be 
expanded into Chebyshev wavelets basis as

 ψ
∞ ∞

= =

=∑∑
1 0

( ) ( ),pq pq
p q

f t c t 		                               (12)

where coefficients ψ= ( ( ), ( )),pq pqc f t t  in which (,) denotes the 
inner product. If the infinite series in (12) is truncated, then (12) can 
be written as

 ψ
− −

= =

≈ = Ψ∑∑
12 1

1 0
( ) ( ) ( ),

k M
T

pq pq
p q

f t c t C t 		               (13)

where C and −Ψ × = 1( ) are 1( 2 )kt m m M  matrices, given by

 
− −− − −

 =  1 110 11 1 1 20 2 1 2 0 2 1
, ,..., , ,..., ,... ,..., ,k k

T

M M M
C c c c c c c c
 

ψ ψ ψ ψ ψ ψ ψ− −− − −
 Ψ =  1 110 11 1 1 20 2 1 2 0 2 1

( ) ( ), ( ),..., ( ), ( ),...., ( ),...., ( ),....., ( )k k

T

M M M
t t t t t t t t

For simplicity, we write (13) as

 ψ
=

≈ = Ψ∑
1

( ) ( ) ( ),
m

T
i i

i
f t c t C t 			              (14)

where ψ ψ= =, .i pq i pqc c  The index i, is determined by the relation
= − + +( 1) 1i M p q

  

Therefore we have

 = 1 2[ , ,...., ] ,T
mC c c c

 ψ ψ ψΨ = 1 2( ) [ ( ), ( ),...., ( )] .T
mt t t t 		                (15)

Similarly, an arbitrary function of two variables ∈ × 

2( , ) ( )u x t L  
defined over ×[0,1) [0,1),  may be expanded into Chebyshev wavelets 
basis as,

 ψ ψ
= =

≈ = Ψ Ψ∑∑
1 1

( , ) ( ) ( ) ( )U ( ),
m m

T
ij i j

i j
u x t u x t x t 	             (16)

where U=[uij] and ψ ψ= ( ( ),( ( , ), ( ))).ij i ju x u x t t  

Taking the collocation points

 −
= =

(2 1) ˆ, 1,2,....., ,
2i
it i m
m

			                  (17)

we define the ×m m  wavelet matrix Φ   as

     −
Φ = Ψ Ψ Ψ   

   

1 3 2 1[ , ,..., ( )].
2 2 2

m
m m m

		               (18)

The operational matrices of Chebyshev wavelet

Chen and Hsiao [22], introduced the concept of operational matrix 
in 1975, and Kilicman and Al Zhour [23] investigated the generalized 
integral operational matrix, that is, the integral of the matrix Ψ( )t   
defined in (15) can be approximated as follows:

 Ψ ≅ Ψ∫0 ( ) ( ),
t

T dT P t 	                                                                      (19)
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where P is the ×m m  operational matrix of one-time integral of matrix 
Ψ( )t , similarly, we can compute the operational matrix nP  of n-time 
integral of  Ψ( )t . Wu and Hsiao [24] proposed a uniform method to 
obtain the corresponding integral operational matrix of different basis. 
For example, the operational matrix of Ψ( )t  can be expressed as:

 −= Φ Φ 1 ,BP P 				                   (20)

and in general the operational matrix Pn can be expressed as follows:

 −= Φ Φ 1.n n
BP P 				                 (21)

ξ ξ ξ
ξ ξ

ξ

−

−

−

 
 
 
 =
 +
 
 
 

 

1 2 1

1 2

3

1 ....
0 1 ....

1 1 0 0 1 ....
( 1)!

0 0 0
0 0 0 0 1

m

m
n

B mnP
nm

		                (22)

where, ξ + + += + − + −1 1 1( 1) 2 ( 1) .n n n
i i i i   

Description of Numerical Method
In this section, we will use the Chebyshev wavelet operational 

matrices for solving the heat equation. Let us consider the 
inhomogeneous one-dimensional heat equation with lateral heat loss 
as:

= − + ≤ ≤ ≤ ≤( , ), 0 1, 0 1.t xxu ku cu g x t x t  	            (23)

And inhomogeneous Dirichlet boundary conditions:

 =( ,0) ( ),u x f x 				                (24)

 = 1(0, ) ( ),u t h t 				                  (25)

 = 2(1, ) ( ),u t h t 				                  (26)

Where ( )f x  and ( )ih t  are two times continuously differentiable 
functions on [0, 1] and ∈ 

2( , ) ( ).u x t L  For solving this problem (23-
26), we assume:

 
∂

= Ψ Ψ
∂ ∂

3

2 ( ) U ( ),Tu x t
t x

				               (27)

Where ×U=[u ]ij m m  is an unknown matrix which should be found 

and Ψ( )t  is the vector that defined in (15). By integrating of (27) one 
time with respect to t and considering (24) we obtain:

  ∂ ∂ ∂ ∂
= Ψ Ψ + = + = ∂ ∂ ∂ ∂ 

2( ) ( ) U ( ) 0 0.T Tu u ux P t x x x
u t x t

	              (28)

Also by integrating of (27) two times with respect to x we get:

 
 ∂ ∂ ∂ ∂

= Ψ Ψ = + = ∂ ∂ ∂ ∂ 
2( ) ( ) U (t)+ 0 0.T Tu u ux P x x x

t t x t 	             (29)

By putting x = 1 into (29) and considering (25) and (26), we have:

 ∂ = Ψ Ψ Ψ Ψ + + −
∂

2 ' ' '
1 2 1( ) ( )U ( )- (1) U ( ) ( ) ( ( ) ( )).T Tu x P t x t h t x h t h t

t
       (30)

Now by integrating of (30) one times with respect to t we get:

= Ψ Ψ − Ψ Ψ +2( , ) ( ) ( ) UP ( ) (1) UP ( ) ( , ),T T Tu x t x P t x t G x t          (31)

Where

 = + − + − − +1 1 2 2 1 1( , ) ( ) ( ) (0) ( ( ) (0) ( ) (0)).G x t f x h t h x h t h h t h      (32)

Now by replacing (28), (30), and (31) into (23) we get:

 
 Ψ + Ψ − Ψ Ψ − 

Ψ Ψ

2 2 2

2

( ) ( ) U- UP ( ) UP ( ) (1) ( ) U ( )

(1) ( ) UP ( ) ( , ),

T T T T T

T T

x P k c P t x P t

cx P t H x t
           (33)

Where

 = + − − − +' ' '
1 2 1( , ) ( ) ( ( ) ( )) "( ) ( , ) ( , ).H x t h t x h T h T kf x cG x t g x t        (34)

Equation (33) is a linear algebraic equation of m2 unknown variables  
=, ( , 1,2,....., ).i ju i j m Here, by taking collocation points, expressed in 

(17), for both t and x equation (33) is transformed into a linear system 
of algebraic equations. By solving this system and determined U, we get 
the numerical solution of this problem by substitute U into (31).

In this section, some numerical examples of the heat equation in 
form (23) with the initial and boundary conditions (24)-(26) with the 
proposed method are investigated. To show the efficiency of the present 
method, we report the root mean square error L2 and maximum error   

∞L errors:

 
=

∞ ≤ ≤

= −

= −

∑ 



2

2
1

1

1 ( , ) ( , ,

max ( , ) ( , ) .

m

i i i i
i

i i i ii m

L u x t u x t
m

L u x t u x t

These examples are considered because both closed form solutions 
are available for them, and they have also been solved using other 
numerical schemes. All programs have been performed by Maple 14 
and with 15 digits.

Example 1

In this example, we consider the classical heat equation in (23) with   
= 1k , c = 0, g(x; t) = 0. The initial and boundary conditions are given 

by
π=( ,0) sin( ),u x x  

= ≤ ≤
= ≤ ≤

(0, ) 0, 0 ,
(1, ) 0. 0 .

u t t T
u t t T

The exact solution of this problem is  ππ=
2

( , ) sin( ) tu x t x e . The 
space-time graph of exact (Ex) and numerical (Nu) solutions for m=16 
(M = 4; k = 3) are presented in figures 1 and 2. The graph of exact and 
numerical solutions for some different times and ∈ 0,1x  are presented 
in figures 3 and 4. The root-mean-square error L2 and maximum error   

∞L for ∈ 0,1x   are presented in table 1. 

Example 2

Consider the heat equation (23) with k = 1, c = 0 and g(x; t) = 0. 
The initial and boundary conditions are given by =( ,0) s ( ),u x sin x s

 
−

= ≤ ≤

= ≤ ≤

(0, ) 0, 0 1,
(1, ) (1) , 0 1.t

u t t
u t sin e t

 The exact solution of this problem is −= 1( , ) sin( )u x t x e  [2]. 

Here n
BP  is the operational matrix of n-time integral of the Block 

Pulse Functions (BPF) [23]:
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The space-time graph of exact and numerical solutions for m=16 are 
presented in figures 5 and 6. The graph of exact and numerical solutions 
for some different times and ∈[0,1]x  are presented in figures 7 and 8. The 
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Figure 1: Ex solution for Example 1.
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Figure 2: Nu solution for Example 1.
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Figure 3: Ex solution in different values of t.
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Figure 4: Nu solution in different values of t.
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Figure 5: Ex solution for Example 2.
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Figure 6: Nu solution for Example 2.

t t=0.1 t=0.3 t=0.5 t=0.7 t=0.9 t=1.0
L 6.79×10-3 3.76×10-4 2.44×10-4 3.17×10-4 3.14×10-3 3.32×10-3

L2 4.86×10-3 8.87×10-5 1.73×10-3 2.04×10-4 2.14×10-3 2.15×10-3

Table 1: The L1 and L2 errors for some different values of t.
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root-mean-square error L2 and maximum error ∞L  for  and ≤ ≤0 1x  
are ≤ ≤0 1t  presented in table 2.

Example 3

In this example we consider the heat equation (23) with = 1k , c 
= 0 and nonhomogeneous term = + 2( , ) (2 )sin( )g x t t t x  the initial and 
boundary conditions are given by
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Figure 7: Ex solution in different values of t.
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Figure 8: Nu solution in different values of t.
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Figure 9: Ex solution for Example 3.
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Figure 10: Nu solution for Example 3.
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Figure 11: Ex solution in different values of t.
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Figure 12: Nu solution in different values of t.t t=0.1 t=0.3 t=0.5 t=0.7 t=0.9 t=1.0

∞L 1.07×10-5 3.45×10-6 5.13×10-6 7.45×10-6 9.47×10-6 1.02×10-5

L2 4.46×10-6 2.15×10-7 3.18×10-6 4.71×10-6 6.04×10-6 6.55×10-6

Table 2: The ∞L  and L2 errors for some different values of t.
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=
= ≤ ≤

= ≤ ≤2

( ,0) 0,
(0, ) 0, 0 1,
(1, ) (1) , 0 1

u x
u t t
u t sin t t

The exact solution of this problem is = 2( , ) ( )u x t t sin x  [2]. 
The space-time graph of exact and numerical solutions for m = 16 
are presented in figures 9 and 10. The graph of exact and numerical 
solutions for some different times and ∈[0,1]x   are presented in figures 
11 and 12. The root-mean-square error L2 and maximum error ∞L   for 
≤ ≤0 1x  and ≤ ≤0 1t  are presented in table 3.

Example 4

Finally consider the heat equation (23) with = 1k  and coefficient 
lateral heat c=2 and g(x; t)=0. The initial and boundary conditions are 
given by 

 =
= ≤ ≤

( ,0) ( ),
(0, ) 0, 0 1,

u x sinh x
u t t

−= ≤ ≤(1, ) (1) , 0 1.tu t sinh e t
 

The exact solution of this problem is −=( , ) ( )tu x t e sinh x  [2]. 
The space-time graph of exact and numerical solutions for m=16 
are presented in figures 13 and 14. The graph of exact and numerical 
solution for some different times and ∈[0,1]x  are presented in figures 
15 and 16. The root-mean-square error L2 and maximum error  

∞L  for
≤ ≤0 1x   and ≤ ≤0 1t  are presented in table 4.

Conclusion
This paper presents a numerical method by combining wavelet 

function with operational matrices of integration to approximate 
numerical solutions of well-known one-dimensional heat equation. In 
the proposed method already a small number of grids points guarantee 
the necessary accuracy. The method is very convenient for solving 
boundary value problems, since the boundary condition are taken into 
account automatically. Also the proposed method is very simple in 
implementation and as the numerical results show the method is very 
efficient for numerical solution of mentioned problem and can be used 
for other partial differential equations.
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Figure 13: Ex solution for Example 3.
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Figure 15: Ex solution in different values of t.
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Figure 16: Nu solution in different values of t.
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