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Introduction
In relation with the knowledge of air currents in the atmosphere 

and the grasp of the flow in turbomachinery, the flows on rotating 
fields have been attracting a number of researchers. The experimental 
and numerical studies have been conducted mainly for incompressible 
flows. The effect of the Coriolis force on the flow stability [1], the 
change in the turbulence structures due to the field rotation [2,3], the 
characteristics of the secondary flows [4,5], and the hydrodynamic 
losses [5,6] have been made clear.

Vortices are among the most important and fundamental 
composites of flow structures. The comprehension of the dynamics 
promises to contribute the clarification of various turbulent 
phenomena. Vortex ring has attracted much attention on account of the 
simple geometry [7], and some researches of the behavior on rotating 
fields have been reported. Eisenga et al. [8] conducted an experimental 
study using a rotating water tank. A vortex ring was launched in the 
direction perpendicular to the rotating axis, and the deformation and 
the change in the convection motion were explored. Verzicco et al. [9] 
carried out an experimental investigation on a vortex ring launched in 
the direction parallel to the rotating axis. They investigated a secondary 
vortex ring, the vorticity of which is of opposite sign to that of the 
vortex ring, appearing at the head of the vortex ring. They also reported 
the occurrence of a swirling flow around the central axis behind the 
vortex ring. Brend and Thomas [10] confirmed such swirling flow 
behind the vortex ring by an experiment similar to that of Verzicco et 
al. For a vortex ring convecting along the rotating axis, however, the 
velocity and vorticity induced by the Coriolis force as well as the time-
evolution characteristics have not been fully studied. 

This study simulates the behavior of a vortex ring convecting 
along the axis of a rotating field to clarify the effect of the Coriolis 
force on the velocity and vorticity fields. Vortex in cell (VIC) method 
is employed for the simulation. It is one of the vortex methods for 
incompressible flows. It discretizes the vorticity field into vortex 
elements and computes the time evolution of the flow by tracing the 
convection of each vortex element using the Lagrangian approach. The 
Lagrangian calculation markedly reduces the numerical diffusion and 
also improves numerical stability. Thus, the VIC method is eminently 
suitable for direct numerical simulation (DNS) of turbulent flows [11-

13]. One of the authors [14] has previously proposed the improvements 
of the VIC method, and demonstrated the validity by applying the 
improved VIC method to the DNS of a turbulent channel flow. This 
study uses the improved VIC method. The simulation confirms that 
the strength of the vortex ring decreases as the angular velocity of the 
flow field increases and that secondary vortex rings appear at the head 
and in the rear of the vortex ring. The simulation also makes clear that 
a streamwise longitudinal vortex appears around the central (rotating) 
axis behind the vortex ring and that a swirling flow occurs along the 
vortex core.

Basic Equations and Simulation Method
Conservation equations for flow

Let us consider an incompressible flow on a field rotating with a 
constant angular velocity. The mass and momentum conservation 
equations written in a reference frame rotating with the field are given 
by

0∇⋅ =u    (1)

( ) 21 2p
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ − Ω×

∂
u u u u u                (2)

where Ω  is the angular velocity, and p  is the modified pressure which 
includes the centrifugal effect.

Taking the curl of Eq. (2) and substituting Eq. (1) into the resultant 
equation, the vorticity equation is derived. The vorticity equation, 
expressed in the non-dimensional form by using the diameter 0D  and 
circulation 0Γ  of a vortex ring at the initial time, is written as 

*Corresponding author: Tomomi Uchiyama, EcoTopia Science Institute,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, E-mail:
uchiyama@is.nagoya-u.ac.jp

Received November 29, 2013; Accepted January 14, 2015; Published January 
22, 2015

Citation: Uchiyama T, Nakano M, Degawa T (2015) Numerical Simulation of the 
Behavior for a Vortex Ring Convecting along the Axis of a Rotating Field. J Vortex 
Sci Technol 2: 107. doi: 10.4172/2090-8369.1000107

Copyright: © 2015 Uchiyama T, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
This study simulates the behavior of a vortex ring on a field rotating with a constant angular velocity. The vortex ring 

convects along the rotating axis of the field. The Reynolds number based on the circulation of the vortex ring is 500, and 
the rotation number defined with the circulation and the angular velocity ranges from 0 to 0.4. The simulation highlights 
secondary vortex rings at the head and in the rear of the vortex ring, a streamwise longitudinal vortex around the central 
(rotating) axis, and a swirling flow along the vortex core. The generation of such vortical structures by the Coriolis force 
is explored. The simulation also discusses the effect of the rotation number on the time-evolution characteristics of the 
vortex ring.

Numerical Simulation of the Behavior for a Vortex Ring Convecting along 
the Axis of a Rotating Field
Tomomi Uchiyama1*, Masato Nakano2 and Tomohiro Degawa3

1EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
2JFE KANKYO Corporation, 3-1 Benten-cho, Tsurumi-ku, Yokohama 230-0044, Japan
3Numazu National College of Technology, 3600, Ooka, Numazu, Shizuoka 410-8501, Japan

Fluid Mechanics: Open Access Fl
ui

d
Mec

hanics: OpenAccess 

ISSN: 2476-2296



Citation: Uchiyama T, Nakano M, Degawa T (2015) Numerical Simulation of the Behavior for a Vortex Ring Convecting along the Axis of a Rotating 
Field. Fluid Mech Open Acc 2: 107. doi: 10.4172/2090-8369.1000107

Volume 2 • Issue 1 • 1000107Fluid Mech Open Acc
ISSN: 2090-8369, an open access journal 

Page 2 of 9

( ) ( ) ( )21 Ro
Ret

∂
+∇⋅ =∇⋅ + ∇ + ⋅∇

∂
u u k uω

ω ω ω (3)

where ω  ( u×∇= ) is the vorticity, and k  is the unit vector parallel 
to the rotating axis. The Reynolds number Re and the rotation number 
Ro are defined as

0Re /ν= Γ                 (4)

2
0 0Ro 2 /D= Ω Γ              (5)

Orthogonal decomposition of velocity

According to the Helmholtz theorem, the velocity u  is the sum of 
the gradient of a scalar potential φ  and the curl of a vector potential 
ψ :

ϕ=∇ +∇×u ψ                     (6)

The velocity calculated by (6) remains unaltered when any
gradient of a scalar potential function is added to ψ . To remove this 
arbitrariness, the following solenoidal condition is imposed on ψ :

0∇⋅ =ψ    (7) 

Taking the curl of Eq. (6) and substituting Eq. (7) into the resultant 
equation, we obtain the following vector Poisson equation for ψ :

2∇ = −ψ ω               (8)

Similarly, substituting Eq. (6) into Eq. (1) and recognizing that 
( ) 0∇⋅ ∇× =ψ , we obtain the Laplace equation for φ :

2 0ϕ∇ =                 (9)

Discretization of vorticity field into vortex elements

Once ψ  and φ  have been computed from Eqs. (8) and (9)
respectively, the velocity u  is calculated from Eq. (6). The vorticity 
ω  in Eq. (8) is estimated from Eq. (3). The VIC method discretizes the 
vorticity field into vortex elements, and calculates the distribution of 
ω  by tracing the convection of each vortex element.

It is postulated that the position and vorticity for the vortex element 
p are px ( )ppp z,y,x=  and pω , respectively. The Lagrangian form of
the vorticity equation, Eq. (3), is written as follows:

( )d
d

p
pt

=
x

u x               (10)

( ) ( )( ) ( ) ( ) ( )2d 1 Ro
d Re

p
p p p pt

=∇⋅ + ∇ + ⋅∇u x x x k u x
ω

ω ω (11)

When the position and vorticity of a vortex element are known at 
time t , the values at ttt ∆+=  are computed from Eqs. (10) and (11).
In the VIC method, the flow field is divided into computational grid 
cells to define ψ , φ  and ω  on the grids. If ω  is defined at a position

kx ( )kkk z,y,x= , the vorticity ω  is assigned to kx , or a vortex 
element with ω  is redistributed onto kx .

( )
vN

k p k p k p
k p

p

x x y y z z
W W W

x y z
− − −     

=           ∆ ∆ ∆     
∑xω ω                (12)

where vN  is the number of vortex elements, and x∆ , y∆  and z∆  
are the grid widths. For the redistribution function W , the following 
equation is employed [15].
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             (13)

Equation (13) was used for the simulations of time-developing 
free shear flows [11-13]. The DNS of a turbulent channel flow [14] and 
that of a jet issuing from a rectangular nozzle [16] were successfully 
performed with Eq. (13).

Discretization with staggered grid and correction of vorticity

When solving Eqs. (8) and (9), staggered grids are used to ensure 
consistency between the discretized equations, and to prevent numerical 
oscillations of the solution [14]. Figure 1 shows the staggered grid. The 
scalar potential φ  is defined at the center of the grid. The velocity u  is 
defined at the sides, while the vorticity ω  and the vector potential ψ  
are defined on the edges.

In the VIC method, the vorticity field is discretized into vortex 
elements, and the field is expressed by superimposing the vorticity 
distributions around each vortex element. The superposition is 
performed by Eq. (12). The resulting vorticity field rω  does not 
necessarily satisfy the solenoidal condition. The authors' previous study 
[14] demonstrated that the curl of the velocity calculated from rω

yields a vorticity that satisfies the solenoidal condition. This correction
method for the vorticity is employed in this simulation [15].

Numerical procedure

Given the flow at time t , the flow at tt ∆+  is simulated by the
following procedure:

Calculate the time variation of pω  at every grid point from Eq. 
(11).

Calculate the convection of each vortex element from Eq. (10). 

Calculate ω  from Eq. (12).

Calculate ψ  from Eq. (8). 

Calculate φ  from Eq. (9).

Calculate u  from Eq. (6).

Figure 1: Staggered.
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Correct the vorticity, or calculate the corrected vorticity from the 
curl of u .

Computational Conditions
At the initial time ( 0=*t ), the vortex ring is expressed by giving 

the vorticity component φω  normal to the cross-section of the vortex 
core. This study gives the vorticity distribution employed in the 
simulations of a vortex ring on a non-rotating field by Stanway et al. 
[17] and Wee-Ghoniem [18]. The azimuthal vorticity φω  is as follows

2

0
2
0 0

expK sK
a aφω π

  Γ  = −  
   

 (14)

where 0Γ  is the circulation and K=2.241822/4. 0a  and s  are the core
radius and the distance from the center of the vortex core respectively 
as shown in Figure 2a.

The origin of coordinates is set at the center of the vortex ring. The 
z-axis is parallel to the convection direction of the vortex ring. The
angle between the radius vector r  and the x-axis is denoted by ϕ . The 
contours of φω  on the x-z section at y=0 are shown in Figure 2b.

Figure 3 shows the vortex ring at 0=*t , where the iso-surface 
of the azimuthal vorticity φω , ( )2

0 0/ / 0.8Dφω Γ = , is presented. The 
computational domain of 000 844 DDD ××  is also shown in Figure 

3. The boundary behind the vortex ring locates at 500 .D/z −= . The
number of grids is 80 80 160× × . The computational domain rotates
with a constant angular velocity Ω  around the central axis (z-axis) of
the vortex ring.

The computational conditions are listed in Table 1. The cases for the 
rotation number Ro of 0≤ Ro≤ 0.2 are simulated at the core diameter
of 0 02 / 0.35a D =  and the Reynolds number of 5000 =Γ ν/ . As 
the vortex ring convects in quiescent fluid, φ  is set at zero in the
computational domain, and the solution of Eq. (9) can be omitted. 
A slip condition is imposed on the boundaries. For example, the 
conditions at 20 ±=D/x  are expressed as:

0, 0, 0x
y zx

ψ
ψ ψ

∂
= = =

∂
 (15)

Four planes passing through the central axis of the vortex ring 
are set as shown in Figure 3. The strength of the vortex ring or the 
circulation Γ  is calculated on the planes by the following equation

( )OPAB OPCD OPEF OPGH

1 d d d d
4

S S S SΓ = ⋅ + ⋅ ⋅ ⋅∫ ∫ ∫ ∫n n n nω ω ω ω            (16)

where n  is the unit vector normal to the plane.

Since the abovementioned four planes include the cross-section of 
the vortex core, the locations, at which the velocity falls to zero, exist 
on each plane. This simulation regards the locations as the center of the 
vortex core. The coordinates of the location on each plane are averaged 
to detect the diameter D  and z-coordinate vz  of the vortex ring.

Results and Discussion
Behavior of vortex ring on non-rotating field (Ro=0)

The behavior of the vortex ring on the non-rotating filed (Ro=0) 
is shown in Figure 4. The azimuthal vorticity φω  representing the
vortex ring is presented with the iso-surface ( ( )2

0 0/ / 0.8Dφω Γ = ) at four 
time points. The vortex ring convects along the central axis (z-axis) 
with maintaining its axisymmetric vorticity distribution. The strength 
reduces with the passage of time owing to the viscous effect. 

Figure 5 shows the time evolution of φω  on the x-z cross-section 
at y=0. The vortex core is circular at 0=*t  as found from Figure 2b. 
But it is stretched along the central axis (z-axis) at * 6.25t = , becoming 
ellipsoidal. In the rear end of the vortex core, the contours are axially 
elongated. The vorticity decreases with the passage of time at * 6.25t ≥ . 
Such vorticity distribution coincides with the simulation by Wee and 
Ghoniem [18] at the same condition as this study. One can confirm the 
validity of the present simulation method.

The time-evolution characteristics of the vortex ring are shown in 
Figure 6. The circulation 

0ΓΓ /  decreases as the time passes. This is 
attributable to the viscous effect, and the decrement remains unaltered 

Figure 2: Vortex ring and azimuthal vorticity φω  at 0=*t .

Figure 3: Vortex ring at t*=0 and computational domain.

Core diameter; 002 D/a 0.35

Reynolds number; 0Re /ν= Γ 500

Rotation number; 0 0Ro 2 /= Ω Γ
0, 0.08, 0.16, 0.2

Computational domain
000 844 DDD ××

Number of grids 80 80 160× ×

Time increment; ( )0
2
0 Γ∆ /D/t 0.0125

Table 1: Computational conditions.
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at 52.t* ≥ . The convection velocity also lowers with the passage of 
time because of the reduction of the circulation, as found from the time 
variation of the convection distance 0D/zv . The diameter 0D/D  
increases as the time passes.

Behavior of vortex ring on rotating field (Ro=0.2) 

The behavior of the vortex ring at the rotation number Ro=0.2 is 
shown in Figure 7, where the azimuthal vorticity φω  that presents 
the vortex ring is plotted by the iso-surface ( ( )2

0 0/ / 0.8Dφω Γ = ) in gray. 
The vortex ring convects straight along the rotating axis (z-axis) with 
maintaining its axisymmetric vorticity distribution. When compared 
with the result on the non-rotating filed (Ro=0) shown in Figure 4, φω  
decreases markedly with the passage of time at * 12.5t ≥ . The iso-surface 
disappears at * 25t = . These are caused by a secondary vortex ring, the 
azimuthal vorticity of which is of opposite sign to that of the vortex 
ring, occurs at the head of the vortex ring, and accordingly it interacts 
with the vortex ring as mentioned later. In Figure 7, the vorticity 
component in the axial (z) direction, zω , is superimposed by the iso-
surface ( ( )2

0 0/ / 0.8z Dω Γ = ) in yellow. Though the axial vorticity zω  
does not appear in the non-rotating condition (Ro=0), it occurs locally 
around the central axis near the vortex ring at * 6.25t =  in the case 
of Ro=0.2. Similar vorticity field was also numerically simulated by 
Verzicco et al. [9] at Re=1476 and Ro=0.4. The azimuthal vorticity zω  is 
composed of the azimuthal velocity ϕu  induced by the Coriolis force 
as discussed later. The streamwise longitudinal vortex, represented by 

zω , is axisymmetric, and it is elongated in the axial (z) direction with 
the convection of the vortex ring. The strength of zω  decreases as the 
passage of time at * 12.5t ≥ . The vorticity region of 0φω >  corresponds 
to the vortex ring. The region of 0φω >  also occurs due to the rotation 

Figure 4: Time-evolution of vortex ring at Ro=0.

Figure 5: Time-evolution of azimuthal vorticity at Ro=0.

Figure 6: Time-evolution characteristics of vortex ring at Ro=0.

Figure 7: Time-evolution of azimuthal vorticity φω  and axial
vorticity zω  at Ro=0.2 (Gray; ( )2

0 0/ / 0.8Dφω Γ = , Blue; 

( )2
0 0/ / 0.08Dφω Γ = − , Yellow; ( )2

0 0/ / 0.8z Dω Γ = ).
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of the flow field. The iso-surface of ( )2
0 0/ / 0.08Dφω Γ = −  is shown in 

blue. Such secondary vortex ring appears around the central axis at the 
head of the vortex ring when 52.t * = , and similar vortex ring also 
occurs in the rear of the vortex ring at * 3.75t = . These secondary vortex 
rings are axisymmetric. In the study of Verzicco et al. [9] at Re=738 and 
Ro=0.4, the secondary vortex ring at the head of the vortex ring was 
simulated. When * 12.5t ≥ , the absolute value of the vorticity for the 
vortex ring decreases markedly with the passage of time. However, the 
streamwise longitudinal vortex and the secondary vortex rings, which 
are induced by the field rotation, less attenuate, and their iso-surfaces 
exist even at * 25t = .

The time evolution of the distribution for the azimuthal velocity 
ϕu on the x-z section at y=0 is shown in Figure 8. The contours for

( )00 D//u Γϕ  are plotted, where the contours of 0>ϕu  and 0<ϕu
are plotted in red and blue respectively. The region of 0>ϕu  indicates
that the flow direction coincides with the rotating direction of the field. 
The center of the vortex core is also indicated by the symbol +. The 
flow with 0>ϕu  appears around the central axis and behind the vortex 
ring. The velocity constitutes the axial vorticity zω  shown in Figure 7. 
The flows with 0<ϕu  are observed outside of the vortex cores and at
the head of the vortex ring. The absolute value of the velocity is smaller.

The appearance of the azimuthal velocity ϕu  shown in Figure 8 is 
caused by the Coriolis force. In the non-rotating condition (Ro=0) at 

52.t * = , the velocity distributes on the x-z section at y=0 as shown 
in Figure 9a. The planes at 0<x  and 0>x  are denoted by A and B, 
respectively. If the angle between the velocity u  and the rotating axis 
(z-axis) is denoted by θ  as shown in Figure 9b and c the flow with 

0>ϕu is induced by the Coriolis force on the planes A and B in the
case of πθ <<0 . Such condition for θ  is satisfied by the flow toward 
the central (rotating) axis. It is confirmed that the condition is satisfied 
in the region of 0>ϕu  shown in Figure 8. It should be noted that 
flow toward the central axis occurs behind the vortex cores, and the 

flow with 0<ϕu  exists there as found in Figure 8. This is caused by the 
fact that the flow with 0<ϕu  induced at the head of the vortex ring is
transported to the rear part due to the vortex motion of the vortex ring.

Figure 10 shows the velocity distribution on the x-y section 
perpendicular to the convection direction of the vortex ring. The results 
on the section 040 D.  behind the vortex core are depicted. A circle 
passing through the vortex cores is superimposed. The diameter D  
corresponds to the diameter of the vortex ring. The flow with 0>ϕu  
toward the rotating direction of the flow field is observed around the 
central axis, and the small-scale flow with 0<ϕu  toward the opposite 
direction is found outside of the vortex cores. 

The secondary vortex rings having the negative azimuthal vorticity 

Figure 8: Time-evolution of azimuthal velocity ϕu  at Ro=0.2 
(Interval of contour lines ϕu∆  is 0.01. Red and blue lines 
denote positive and negative values respectively).

Figure 9: Azimuthal velocity ϕu  induced by Coriolis force on
planes A and B.

Figure 10: Azimuthal velocity on x-y plane behind vortex ring.
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ϕω  are induced due to the rotation of the flow field as shown in Figure 
7. The generation mechanism can be explained with the use of the
vorticity equation for ϕω :

( ) ( ) ( )21 Ro
Re

u
t z
φ φ

φ φ φ

ω∂ ∂
+∇⋅ =∇⋅ + ∇ +

∂ ∂
u uω ω ω             (17)

One can find from Eq. (17) that the azimuthal vorticity φω  is 
induced in the region where the azimuthal velocity ϕu  varies in the 
convection direction of the vortex ring (z-direction). The velocity 

ϕu decreases markedly in the z-direction around the central axis at
the head of the vortex ring as discovered in Figure 8. Figure 11 shows 
the distribution of φω  on the x-z section at y=0, where the contours 
of 0φω <  are plotted in blue. Around the central axis at the head of 
the vortex ring or in the abovementioned region of 0<∂∂ z/uϕ , 
the region of 0φω <  or the secondary vortex ring is found. According 
to Figure 8, the region of 0<∂∂ z/uϕ  also exists in the rear of the 
vortex ring. In this region, the secondary vortex ring with 0φω <  also 
appears at *5 12.5t≤ ≤  shown in Figure 11. As the absolute value of 
the velocity gradient z/u ∂∂ ϕ  is smaller than that at the head of the 
vortex ring, the strength of the secondary vortex ring is lower.

Effect of Ro on behavior of vortex ring

The iso-surfaces of the vorticity components φω  and zω  at 
Ro=0.08 and 0.16 are shown in Figure 12, where the results at * 12.5t =  
and 25 are plotted. When compared with the results at Ro=0.2 shown 
in Figure 7, the reduction of the strength for the vortex ring becomes 
larger as Ro increases. The scale of the streamwise longitudinal vortex 
around the central axis and that of the secondary vortex rings become 
larger with the increase of Ro.

Figure 13 shows the distribution of the axial velocity zu on the

Figure 11: Time-evolution of azimuthal vorticity φω  on x-z

plane at Ro=0.2 (Interval of contour lines φω∆  is 0.08. Red and 
blue lines denote positive and negative values respectively).

Figure 12: Azimuthal vorticity φω  and axial vorticity zω  at Ro=0.08 and 
0.16 (Gray; ( )2

0 0/ / 0.8Dφω Γ = , Blue; ( )2
0 0/ / 0.08Dφω Γ = − , Yellow; 

( )2
0 0/ / 0.8z Dω Γ = ).

Figure 13: Distribution of axial velocity along centerline of vortex ring.

central axis, where the results at five time points for Ro=0 and 0.2 
are plotted. When Ro=0.2, zu  lessens greatly, demonstrating the 
reduction of the strength for the vortex ring due to the field rotation. 
The position, where zu  takes its maximum value, corresponds to the 
center of the vortex core. When Ro=0.2, zu  decreases markedly at the 
head of the vortex core. This is because the secondary vortex ring with 

0φω <  and 0<zu  exists there.

The time-evolution characteristics of the vortex ring are shown in 
Figure 14. The decrement of the circulation Γ  becomes larger with the 
increase of Ro. The marked decrement occurs at *2.5 12.5t≤ ≤ . This is 
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Figure 14: Effect of Ro on time-evolution characteristics of vortex ring.

Figure 15: Time-evolution of helicity at Ro=0.2 (Gray and blue iso-
surfaces denote   and -0.04 respectively).

Figure 16: Streamlines around vortex ring at t*=12.5 when Ro=0.2.

Figure17: Effect of Ro on helicity at t*=25 (Gray and blue iso-
surfaces denote ( )2 3

0 0/ / 0.04H DΓ =  and -0.04 respectively).

because the velocity around the vortex ring is higher, and accordingly 
the Coriolis force affects more the vortex ring. The convection velocity 
of the vortex ring also lowers due to the reduction of Γ . The diameter 
D increases more with the increment of Ro. Because the secondary 
vortex ring with 0φω <  appears at the head of the vortex ring as 
shown in Figure 11, and therefore it pushes the region with the positive 
azimuthal vorticity 0φω >  in the radially outer direction.

Time evolution of helicity

The helicity H  ( = ⋅u ω ) is zero on the non-rotating field. But it 
takes the finite values on the rotating field. Calculating the helicity H  at 
Ro=0.2, it evolves with the passage of time as shown in Figure 15, where 
the iso-surfaces of ( )2 3

0 0/ / 0.04H DΓ = ±  are plotted. The positive helicity 
appears around the central axis behind the vortex ring. This presents the 
streamwise longitudinal vortex composed of the positive axial vorticity 

zω  induced by the Coriolis force and the positive axial velocity zu  in 
the wake of the vortex ring. The negative helicity distributes along the 
vortex core. This presents the swirling flow composed of the negative 
azimuthal velocity ϕv  induced by the Coriolis force and the positive
azimuthal vorticity φω  of the vortex ring.

Figure 16 shows the streamlines at * 12.5t =  in the case of Ro=0.2. 
One can reconfirm the streamwise longitudinal vortex around the 
central axis behind the vortex core (the positive helicity) and the 
swirling flow along the vortex core (the negative helicity). 

The iso-surfaces of the helicity ( )2 3
0 0/ / 0.04H DΓ = ±  at Ro=0.08

and 0.16 are shown in Figure 17. The absolute value of the helicity 
decreases with the decrease of Ro, and the streamwise longitudinal 
vortex and swirling flow induced by the field rotation reduce their 
scales.

Conclusions
The behavior of a vortex ring on a field rotating with a constant 

angular velocity Ω  is simulated. The vortex ring convects along the 
rotating axis of the field. The vortex in cell (VIC) method is employed 
for the simulation. The behavior at the rotation number Ro ( 0

2
02 ΓΩ= /D ) 
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of 0≤Ro≤ 0.4 is simulated when the Reynolds number Re ( ν/0Γ= )
is 500, where 0Γ  and 0D  are the circulation and diameter of the vortex 
ring at the initial time respectively. The results are summarized as 
follows:

(1) The vortex ring convects straight with maintaining its
axisymmetric geometry in the same way on the non-rotating field. 
But the decrements of the vorticity and convection velocity with the 
passage of time become larger with the increment of Ro. This is because 
a secondary vortex ring, the vorticity of which is of opposite sign to the 
vortex ring, appears at the head of the vortex ring, and accordingly it 
interacts with the vortex ring.

(2) The circumferential flow with the velocity 0>ϕu toward
the same direction as the rotating field occurs due to the Coriolis force 
around the central axis (rotating axis) behind the vortex ring. This 
demonstrates that the rotation yields the axial vorticity zω . The wake 
of the vortex ring and zω  form the streamwise longitudinal vortex 
around the central axis. 

(3) The circumferential flow with the azimuthal velocity 0<ϕu
toward the opposite direction of the rotating field appears owing to 
the Coriolis force outside of the vortex core. The absolute value of the 
velocity is smaller than that of the flow around the central axis. The 
vorticity of the vortex ring and ϕu  form the swirling flow along the 
vortex core. 

(4) The secondary vortex rings occur at the head and in the rear
of the vortex ring. The vorticity has the opposite sign to that of the 
vortex ring. The secondary vortex rings are induced by the fact that the 
Coriolis force acts on the circumferential flow with the velocity ϕu
caused by the field rotation.

(5) The streamwise longitudinal vortex around the central axis
and the swirling flow along the vortex core become larger with the 
increment of Ro. The increment in the diameter of the vortex ring with 
the passage of time is also larger. Because the secondary vortex rings 
appearing at the head of the vortex ring extrudes the vortex ring to the 
outside.

Nomenclatures
a: core radius of vortex ring 

D: diameter of vortex ring 

H: helicity = ⋅u ω

k: unit vector parallel to rotating axis

Nv: number of vortex elements 

n: unit normal vector 

P: pressure 

Re: Reynolds number ν/0Γ=  

Ro: rotation number 0
2
02 ΓΩ= /D  

r: radius vector 

S: distance from center of vortex core 

t: time 

t*: non-dimensional time ( )0
2
0 Γ= /D/t

u: velocity 

W: redistribution function of vorticity 

z,y,x  : orthogonal coordinates

vz  : z-coordinate of center for vortex core

Γ  : circulation 

t∆  : time increment

z,y,x ∆∆∆  : width of computational grid cell

ν  : kinematic viscosity
ρ  : density

φ  : scalar potential

ϕ  : angle between radius vector and x-axis

ψ : vector potential 

Ω  : angular velocity 

ω  : vorticity u×∇=  

Subscripts

0 : initial value

z,y,x  : components in directions of x, y and z

ϕ  : azimuthal component (Table 1).
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