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Introduction
Tumor cell growth models usually involve coupled differential 

equations with a high-dimensional parameter space [1]. There are 
many factors thus parameters involved in a model that results in a 
high-dimensional parameter space. Therefore, it is impossible to get 
strict mathematical solutions to the equation set. Therefore, efficient 
numerical methods are necessary to solve the model and calibrate the 
model against experimental data. Various approximation techniques 
have been developed and implemented to get solutions with minimal 
possible errors for complex mathematical models; among them 
numerical simulation and artificial intelligence (AI) techniques are 
excellent choices due to the rapidly increasing computing power in 
recent years [2,3].

Among the search and optimization techniques in the evolutional 
method category, the Particle Swarm Optimization (PSO) technique is 
conceptually simple, easy to implement, and efficient. PSO was inspired 
by the social behavior of bird flocking or fish schooling, the collective 
behaviors of simple individuals interacting with each other and their 
environment. The original intent was to graphically simulate social 
behaviors of these animals. However, it was found that particle swarm 
model could be used to optimize numerical solutions of complex 
computational problems efficiently [4,5].

The goal of this research work is to explore the PSO method that 
helps calibrate the model to fit experimental data within tolerable error 
ranges in a reasonable time frame. The rest of this paper is organized as 
follows. Next section describes the mathematical model and variables 
to be simulated. Two following sections give details of the simulation 
method and show the simulation results as well as a comparison 
between numerical results and experimental data. The final section 
concludes the paper and discusses possible future work.

Related Work
The tumor cell population growth was described by a three-

compartment model and mathematically modeled using a group of 
coupled differential equations. To better understand the dynamics of the 
primary response to adenovirus-mediated induction of an anti-tumor 
immune response, the three-compartment model was developed to 
quantify the cytotoxic CD8+ T cell response to adenovirus vaccination 
and subsequent inhibition of tumor cell growth. Among these three 

compartments, the dynamics of nine state variables that are regulated by 
the governing biological processes were considered. Genetic algorithms 
were implemented to solve the model with certain precision [6]. Table 1 
shows the model variables with corresponding symbols and units. This 
project tried to identity another evolutionary technique in AI that could 
result in a more efficient and effective simulation process. 

Most of evolutionary techniques such as genetic algorithms and 
PSO follow the following procedure [7]:

Step 1. Randomly generate an initial population.

Step 2. Calculate the fitness value for each individual. 

Step 3. Reproduce the population based on fitness values.

Step 4. If requirements are met or the maximum number of 
iterations is reached, stop. 

Otherwise go back to Step 2.

Like genetic algorithms, PSO has been successfully applied in 
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Table 1: Model Variables with Corresponding Symbols and Units.

Variable Description Symbol Unit
Naïve CD8+ T cells TN cells per mm3

Effector CD8+ T cells in lymph node TE1 cells per mm3

Adenovirus in lymph node LV Relative Light Units 
(RLU) per mm3

Effector CD8+ T cells in blood TE2 cells per mm3

MHC class I positive tumor cells CMHCI
+ cell number

MHC class I negative tumor cells CMHCI
− cell number

Effector CD8+ T cells in tumor microenvironment TE3 cells per mm3

Interferon gamma IFNγ moles per mm3

Tumor necrosis factor α TNFα moles per mm3
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After finding the two best values, the particle updates its velocity 
and position using the following formulas.

v[ ] = v[ ] + c1 * rand( ) * (pbest[ ] - present[ ]) 

      + c2 * rand( ) * (gbest[ ] - present[ ])                                (8)

present[ ]=persent[ ]+v[ ]                  (9)

Formulas (8) and (9) show the global version of PSO. For the local 
version, the local best lbest[ ] is used instead of gbest[ ]. v[ ] is the particle 
velocity. persent[ ] is the current particle position or the solution. pbest[ ] 
is the individual best. gbest[ ] is the global best. rand( ) is a random 
number between (0, 1). c1 and c2 are adjustable learning factors. c1=c2  
∈[1.0, 3.0] in our simulation. If the sum of accelerations causes the 
speed in a dimension to exceed Vmax, which is a parameter specified by 
the user, the speed in that dimension is set to Vmax. This prevents the 
particle from possibly moving out an optimal area too fast. The pseudo 
code of the global version of the PSO technique is as follows. For the 
local version, lbest is used instead of gbest.

For each particle 

    Initialize particle

End

Do

    For each particle 

        Calculate fitness value

        If the fitness value is better than the best fitness value pBest stored

            set current value as the new pBest

    End

    Choose the particle with the best fitness value of all the particles as 
the gBest

    For each particle 

        Calculate particle velocity using equation (8)

        Update particle position using equation (9)

    End 

While predefined maximum number of iterations or minimum error 
is not reached

Since no crossover or mutation operation is involved in the PSO 
search process, PSO could potentially result in a better performance 
than genetic algorithms or other evolutional techniques that involve 
more operations.

Simulation Design
Figure 1 shows a Graphical User Interface (GUI) that was designed 

and implemented for the simulation engine so state variable initial 
values, parameter ranges, and simulation control variables can be 
specified directly on the interface, which much facilitated the research 
process using the model. The simulation program can also show the 
simulation process with current best solutions. The simulator stores all 
results that meet the criteria in plain text files. Further data mining and 
graphing can be easily performed on the stored results. 

many areas: function optimization, artificial neural network training, 
fuzzy system control, and other areas where genetic algorithms can 
be applied. The basic PSO theory is as follows. Assume the scenario 
of a group of birds randomly searching food in an area. There is only 
one food source in the area. Every bird knows the distance of the food. 
An effective strategy is to follow the bird which is nearest to the food 
source. PSO learns from the scenario and uses it to solve optimization 
problems. In PSO, each single solution is a bird in the search space, 
which is also called a particle. All particles have fitness values which 
are evaluated by the fitness function, which is optimized. Each particle 
has a velocity vector that contains both the speed and direction 
information of the particle in the search space. All particles fly through 
the search space by following the current optimal particle. In a PSO 
search, simulations can utilize local processes and might underlie the 
unpredictable group dynamics of social behavior. The development of 
PSO is ongoing; there are still many unknown areas in PSO researches 
such as the mathematical validation of the particle swarm theory [8,9]. 

Numerical Solutions and Particle Swarm Optimization
Runge-Kutta method of order four was used to solve the coupled 

differential equations. If the function f(t,y) is continuous and satisfies a 
Lipschits condition in the variable y, the initial value problem (1) over 
an interval a ≤  t ≤ b is considered and solved numerically.

y’=f(t, y)                  (1)

The Runge-Kutta method of order four uses the formulas (2) and (3) 
as an approximate solution to the differential equation using a discrete 
set of points ( ){ }4

0
,

=k k k
t  y . Parameters k1, k2, k3, and k4 are calculated 

using formulas (4) – (7). 
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Formulas (2) - (7) were implemented in the numerical simulator 
to solve the nine coupled differential equations in the model. The 
parameter ranges and initial values in the equations could be specified 
on the interface of the simulation program.

When PSO is used to conduct a search, it is initialized with a group 
of random particles or solutions and then searches for optimal solutions 
by updating generations. In every iteration, each particle is updated by 
following two best values. The first one is the best solution with the 
best fitness value a particle has achieved so far. The fitness value is also 
stored. This value is represented by pbest. The second best value that is 
tracked by the particle swarm optimizer is the best value reached so far 
by all particles in the population. This best value is a global best and is 
represented by gbest. When a particle takes part of the population as its 
topological neighbors, the best value is a local best and is represented 
by lbest. This results in the local version of PSO. The global version 
runs faster but might get trapped and potentially converge to a local 
optimum. Local version runs slower but is not easy to get trapped into 
a local optimum. In the simulation, the global version was used to get 
quick results and the local version was used to refine the search.
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Figure 3: Simulation Results and Experimental Data for Effector CD8+ T Cells 
in Blood.
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A systematic list of test cases was constructed to test the special cases 
and extreme cases. After each simulation run, the simulation results 
from the text-based file outputs are obtained and checked against the 
expected results. For each test case, the generated results should match 
the expected results. This systematic procedure validates the simulator 
so it can be used to simulate other cases.

Simulation Results
The parameters used in the simulation are as follows. Dimension of 

particles is determined by the number of parameters to be optimized. 
The simulator counts the number of parameters and uses it as the 
dimension for particles. The number of particles has a typical range of 
20 to 40. For some special scenarios, 100 or 200 particles were tested 
as well. The particle maximum velocity on each dimension Vmax 
determines the maximum change a particle can make during any 
iteration. Vmax can also be specified on the simulator interface. For 
example, if the particle coordinate ranges are (x1, x2, x3)∈[-10, 10], 
Vmax is set to 20 for all three dimensions. Different parameter ranges 
could be specified for different dimensions of particles. After certain 
dimensions are optimized, their parameter values were fixed to reduce 
the dimension of the search space and increase the speed of the search 
process.

Figures 2-8 show the comparison between the numerical simulation 
results and three samples of experimental data for eight variables that 
have corresponding experimental data [6]. Among them the total 
tumor volume is a combination of the results from two variables – the 
MHC class I positive tumor cells volume CMHCI

+ and the MHC class I 
negative tumor cells volume CMHCI

−.

Figure 1: Simulator with Variable Initial Values, Parameter Ranges, and PSO Control Variables.
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Figure 2: Simulation Results and Experimental Data for Effector CD8+ T 
cells in Lymph Node.
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were fitted properly in a six-day simulation time frame. Compared 
to the genetic algorithms, PSO technique resulted in comparable 
simulation results [6] using about 60% of the time consumed by genetic 
algorithms, on average. This shows the performance advantage of the 
PSO technique over genetic algorithms, besides its simplicity. Search 
and optimization efficiency is critical for the tumor dynamics models 
with high-dimensional parameter spaces, which makes PSO a better 
option when simulating models with similar characteristics.

PSO was also analyzed from a methodology point of view. PSO shares 
many similarities with other evolutionary computation techniques such 
as genetic algorithms. Both methods start with a randomly generated 
population, have fitness values to evaluate the population, update the 
population, and search for the optimum with random techniques. 
The information sharing mechanism in PSO is significantly different, 
however. In genetic algorithms, chromosomes share information with 
each other. The whole population moves like one group towards an 
optimal area. In PSO, only the best particle gives out the information to 
others. It is a one-way information sharing mechanism. The evolution 
only looks for the best solution. Compared with genetic algorithms, all 
particles tend to converge to the best solution quickly even in the local 
version in most cases. Unlike genetic algorithms, PSO has no evolution 
operators such as crossover or mutation. In PSO, particles, or the 
potential solutions, have memory and update themselves with internal 
velocities. Compared to genetic algorithms, PSO is easy to implement 
and there are fewer parameters to adjust in the simulation process, 
which consumes less simulation resources. 

The simulation process also shows that some commonly used fitness 
or goal functions in biological system models such as the sum of error 
squared and the normalized sum of error squared do not necessarily 
generate the set of parameters which makes the best fit between model 
predictions and experimental data. In this project, the data change rate 
was also considered as a factor and combined with the normalized sum 
of error squared with adjustable weights in order to result in a better 
fitness function that evaluates the difference between calculated results 
and experiment data in a more effective way. The new fitness function 
resulted in comparable results faster in most cases, although it is not 
guaranteed since randomness was involved in the search process. 

Conclusion and Possible Future Work
This research project identified PSO as an efficient optimization 

technique for models with high-dimensional parameter spaces. The 
simulation results from a tumor cell growth dynamics model showed its 
simplicity and efficiency. In PSO, a fitness function must be designed to 
precisely describe how close a given solution is to the optimal in order 
to facilitate the search process. In the process of modeling biological 

Figure 4: Simulation Results and Experimental Data for Effector CD8+ T Cells 
in Tumor Microenvironment.
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Figure 8: Simulation Results and Experimental Data for Tumor Necrosis 
Factor α.

Figure 5: Simulation Results and Experimental Data for Adenovirus in Lymph 
Node.
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Figure 6: Simulation Results and Experimental Data for Tumor Volume (CMHCI
+ 

plus CMHCI
−).
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Figure 7: Simulation Results and Experimental Data for Interferon Gamma.
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It was observed that variables were fitted with different error 
ranges, while the total tumor volume in Figure 6, which is a key state 
variable, shows a good fit. Considering the varieties of mice tumor 
data and possibilities of abnormal data items, the trends of all variables 
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systems, the selection of fitness functions becomes a challenge due to 
different scales and large ranges of model variables as well as limited 
experimental data. A promising future work is to consider more factors 
in models and develop better fitness functions. Another possible work 
is to compare the results and search efficiency of PSO with those from 
other numerical methods such as the Adaptive Markov Chain Monte 
Carlo (AMCMC) technique, which has been widely used to simulate 
biological systems. 
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