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Numerical Approach for Determining Impact of Steric 
Effects in Biological Ion Channel

Abstract
Flow through biological ion channel is understandably complex to support numerous and vital processes that promote life. To account for the biological evolution, mathematical 
modelling that incorporates electrostatic interaction of ions and effects due to size exclusion has been studied, conceivably with element of difficulty and inaccuracy. In this 
paper the Nernst-Planck(NP) equation for ion fluxes that uses Lennard Jonnes(LJ) potential to incorporate finite size effects in terms of hard sphere repulsion is examined. 
To minimize emerging numerical intricacy, the LJ potential is modified by a band limit function with a cut-off length to eliminate troublesome high frequencies in the integral 
function. This process is achieved through Fourier transform to simplify and hence render the mPNP equation solvable with precision. The resultant modified NP and Poisson 
equation representing electrostatic potential are then coupled to form system of equation which describes a realistic transport phenomena in ion channel. Consequently, 
to discretize the 2D steady system of equations, mixed finite element approach based on Taylor hood eight node square referenced elements is adopted. In the method, 
Galerkin weighted residual approach help obtain sparse matrix and finally Picard Method applied to the nonlinear terms in the algebraic equations to linearize them and 
improve rate of convergence. Iterative solution for the system of equations then obtained and concentration profiles of ion species under varied steric effects for mPNP are 
computed and analysed.
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Introduction

Biological ion channels are proteins with pores down their middle, found in 
nearly all membranes of biological cells [1]. These channels control the access 
to the interior of cells to perform biological functions such as; signal transfers 
in the nervous system, regulation of secretion of hormones among others. The 
mechanisms of ionic flow within a channel as a function of ionic concentration, 
membrane potential and the structure of the channel is a central problem in 
molecular biophysics such as in [2]. One of the most popular continuum theories 
describing ion transport in complex biological system is the Poisson Nernst 
Planck (PNP) model [3]. The PNP equations describe the electro diffusion of 
ions under the effect of electric field induced by ion charges themselves. The 
model uses a combinatation of Poissons equation to describe how ions and the 
channel protein creates electrical potential and the Nernst−Planck equations 
to describe migration and diffusion of ions in gradients of concentration and 
electrical potential. The two are coupled to form the PNP model, also known 
as the drift diffusion equations which are widely used to describe the behaviour 
of semiconductors, solid state devices like transistors, nano-devices in 
biophysics and physical chemistry as illustrated in [1-5]. Given that classical 
PNP model have known limitations; it neglects the finite size effects of ion 
particles and does not account for non-electrostatic interaction between ions 
see [4,6-8]. As a result the PNP model cannot adequately describe the flow 
behaviour of biological ion channel. In recent years, mathematical studies 
in this area have modified the PNP equation to include finite volume effects 
and electrostatic interactions. Among the numerical techniques used to model 
these equations include Finite difference(FD) [5,9,10], spectral methods [4,11] 
and Finite Element methods(FEM) [7,12-14]. Amongst the most appropriate 
numerical method for biological channels is FEM as it can adequately handle 
irregular geometries and no uniform boundaries. The adaptive finite element 

solver for simulating ion transport through three dimensional ion channel 
system that consists of protein and membrane was employed by [15]. This was 
implemented using a parallel finite element package capable of large scale 
parallel computations, efficiency and accuracy. The simulator was applied to 
the gramicidin A channel protein, to calculate the electrostatic potential, ion 
concentration and I-V curve and their numerical performance studied [8] used 
stabilized schemes in simulation of ion transport through 3D models. Streamline 
upwind Petrov-Galerkin (SUPG) method and the Pseudo Residual free bubble 
function was introduced to enhance the numerical robustness and convergence 
performance of the finite element algorithm in the ion channel. The two schemes 
gave reasonable results for the proteins in agreement with experimental data 
and Brownian motion. Validity of the PNP model was extended by adding an 
excess chemical potential (ECP) correction to account for finite ion size and 
water occupation in [4]. The modification of the standard drift diffusion solution 
methodology was accomplished by adding an outer iteration for the correction 
achieving feasible convergence rates with simple test structures considered. 
Under equilibrium conditions in the absence of fixed charge on the membrane, 
PNP theory predicted uniform ion densities while PNP/ECP predicted non-
uniform charge distribution. A mathematical model for finite size effects using 
a regularized Lennard Jones (LJ) repulsive potential under energy variational 
framework and its numerical verification to recover layering behaviour was 
presented by [12]. Edge finite element method was used to solve system of 
modified PNP and convex iteration scheme to ensure self consistency between 
ionic concentrations and electrostatic potentials. Both PNP with LJ repulsive 
potential and Density function theory hard sphere potential have same overall 
behaviour of ion concentration in that, ion concentration near the boundary 
was found to be larger than in bulk. The integral term in the LJ potential 
has been established to reduces the numerical convergence of solution this 
computations. Thus in this study we modify the kernel in this potential to reduce 
computation time and obtain more accurate solution. Consequently, we employ 
picard linearisation to nonlinear terms to determine the iterative solution in the 
numerical scheme making them less costly on time. Numerous mathematical 
studies in simulation of PNP with steric effects using FEM are mostly limited 
to 1D cases [12] since simulation of realistic ion channel is computationally 
expensive or 3D cases [9] with difficulty in numerical convergence. In this work 
we adopt new approximation of the LJ potential in the energy functional with 
hard-sphere repulsion using band limit function which cut-off higher frequencies 
and preserve spatial frequencies in fourier modes. This approximation is done 
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where Sσ ≈ σd−12, the dimensional space d ≤ 3. Applying the energy variational 
method, we obtain a new mathematical model for NP equation given by

 i = 1,.....N                      (6)

where the flux Ji is given by

Coupling equation (4) and (6) forms a system of PNP equations with steric 
effects, which satisfies the dissipation law given below

           (7)

where   is the chemical potential.

Simplifying equation(6) above we obtain rates of concentration for the two 
ions cn(negative) and cp(positive) given by

                                                (8)

                     (9)

where gnn = ε11(2a11)12, gnp = ε12(a1 + a2)12, gpp = ε22(2a22)12. Coupling 
these equations with equation (4) for ρ0=0, to obtain the system of equations 
which we aim to solve in this paper.

Finite Element Discretisation and 
Linearisation

In this section, we consider a two dimensional steady state mPNP given 
by equations (8) and (9) for two ion species denoted by n and p, with valencies 
taken to be zn = −1 and zp = 1, and radii a1 = 1.5˚A and a2 = 2.0˚A, respectively. 
Dirichlet boundary conditions of concentration and potential are specified at 
the channel inlet and outlet while adiabatic conditions is prescribed at the 
channel walls.

where η is unit normal to the boundaries x = 0,1.

To simulate the system of steady state mPNP equations we apply Mixed 
Finite Element Method(MFEM) based on Taylor-hood elements. This method 
consists rectangular elements with eight nodes each to model concentration 
components cn and cp and four nodes to model potential, φ see, [17,18] and 
Figure 1 below. The quadratic interpolation functions are used for concentration 

with the help of a cutoff length σ approaching zero, see [11] to simplify the 
kernel in the functional. As a result the new energy functional is used to derive 
equations of PNP with steric effects (mPNP), which is simple and numerically 
viable than the later. The mixed FEM based on Taylor-hood elements is 
described for the mPNP equations to simulate two dimension flow in ion 
channel.

Poisson Nernst-Planck equation with Steric effects

In this section we consider a continuum flow in a two dimensional steady 
state domain to represent a channel in cell membrane. The energy variational 
approach is used to derive a system of differential equations including finite 
size effects of ions using the Lennard Jones repulsive potential. This potential 
introduces the ion interaction which are modeled as hard spheres. The 
contribution of the repulsive potential to the total free energy functional is given 
by

                  (1)

where ci and zi are concentration and valence for the ith ion. φ is the electrostatic 
potential, KB is the Boltzmann constant, T is the absolute temperature, N is the 
number of ions, e is the unit charge, ρ0 is the permanent charge density. Given 
that ai and aj are the radii of the ith and jth in equation (1) and εij becomes their 
coupling energy constant.

Taking the variational derivative with respect to each ion  to obtain the 
repulsive energy term into the system of equations which leads to the Nernst-
Planck equation for charge densities

= 0                               (2)

where  is the flux given by

  (3)

where Di is the diffusion coefficient. The first, second and third terms in equation 
(3) are respectively, diffusion, drift driven by electrostatic potential in the field 
and the hard sphere potential that characterizes finite size of ions depending 
on the ion species.

N

−∇ · (ε∇φ) = ρ0 + Xzieci                                                       (4)

i=1

The main computational challenge in equations (2)-(4) is the inaccuracy 
and inefficiency in simulation due to the effects of high frequencies, in order to 
address the problem, this paper employs a band-limit function which depends 
on a cut-off length σ to eliminate the high spatial frequencies and preserve 
the bounded spatial frequencies, see [11,16]. The cutoff length is taken to be 
small parameter tending to zero for better approximation. Using this band-limit 
function and fourier analysis an approximate energy functional is derived which 
reduces the numerical complexity of the repulsive term in the LJ potential 
describing ion interaction.

Energy functional in equation (1) is replaced by an equivalent approximate 
energy functional derived in [16] represented as

    (5)

Figure 1: 2D Taylor-hood elements consisting of (•) biquadratic concentration 
elements and () bilinear potential elements.
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components while bilinear interpolation functions for potential, resulting into 20 
unknown variables for each element.

The variables cn, cp and φ can be expressed in form of the shape functions as

where cnj, cpj and φj are the parameter measurements at the nodes. This system 
of mPNP equations are coupled then discretized using Galerkin weighted 
residual approach. The resulting algebraic equations contains nonlinear terms 
which are linearized using Picards method, in order to obtain an iterative 
solution. The following are results obtained for flux and potential

   (10)

   (11)

   (12)

where Ni and Mi are the weight functions for concentration and potential 
respectively, η is the unit outward normal for each control volume and cn is 

the linearized term for concentration. Equation(10)-(12) forms sparse matrix.

Numerical Results and Discussion

Given Sσgpp,Sσgnp and Sσgnn are the three steric linearized components 
of the repulsion term in the mPNP system of equations (10)-(12). The principle 
aim of this section is to demonstrate their effect on the positive and negative 
ion flow in an electro-neutral biological channel environment under mixed 
boundary conditions. This is via computation which assumes the diffusion 
coefficient constant, and the non-linear term Sσ responsible for increasing 
rate of convergence inversely approximated in each of the three components. 
Results illustrated in Figure 2 demonstrate effect of repulsive forces of cations 
in the flow whence other steric components are held constant. On the other 
hand Figures 3 and 4 accounts for the attractive force of the constituent 
opposite ions and repulsive of anions, respectively, all of which are responsible 
for ion flow fluctuations. The above three critical forms in variation implies that 
radius size of an ion plays a role in selectivity as in the subsequent analysis. 
Upon increasing the positive steric effects Sgpp the repulsive forces between 
ion increases resulting into fewer cations being selected to through the channel 
see, Figure 2a as compared to anions, permitting anions flow increase in the 
channel as displayed in Figure 2b. Varying negative steric effects Sgnn the 
repulsive component of anion increases the repulsive forces between them 
thereby reducing their flow as in Figure 4a and permitting increased cations 
flow in the channel, see Figure 4b. Lastly we realize insignificant contribution 
of attractive element of steric effect compared to repulsive effect. But overally, 
contribution of the increase in the attractive component of the steric effect Sgnp 
in the flow diminishes anion and pronounces cation flows though insignificantly 
as in Figure 3a and 3b respectively.It can therefore be deduced that the 

 

  
(a) Anions (b) Cations

Figure 2: Concentration profiles across the channel when varying positive steric effects measurements  595 and () = 
2.795 × 1070.

   (a) Anions (b) Cations

Figure 3: Concentration profiles across the channel for varying of attraction steric effects measurements  98 and () = 3.18 
× 1070.
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attractive components plays the least role in the selectivity of ion species while 
the repulsive components have more impact on the flow of ions. However flow 
of the anions is enhanced in all the situations compared to the cations upon 
varying the repulsive components Sgpp and Sgnn. This may be as a result of 
the size/radius of the ion.

Conclusion

The main objective of the study was to developed PNP with steric effects 
consisting of LJ hard sphere potential which was modified using a band limit 
function to reduce the complexity of computation. A two dimensional steady 
state numerical solution of the mPNP system of equations showing the effects 
of variation of steric effects on ion flow and concentration is discussed. In effect 
we have observed the effects of repulsive and attractive steric forces on ion 
flow and deducted the role played by radial size in selectivity. The Mixed Finite 
element approach enabled the establishment of distinction between the flow in 
relation to steric components qualitatively. Lastly, it is fundamental to note that 
an anion has a smaller size compared to cation therefore easing selectivity and 
flow in the channel as established in the study. Effects of potential variation is 
also worth examining for such a flow in addition to computational efficiency in 
triangular elements in Taylor-hood method. 
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