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Introduction
With the continued reduction of dimensions of technological 

devices, the heat produced can be important, component failures can 
occur. According to NASA, 90% of failures are due to defects and 
thermal interconnects, according to the US Air Force, 55% of electronic 
failures are due to thermal effects [1]. The heat transfer control in these 
systems is a major challenge of miniaturization. Further reducing the 
size of the systems causes the decreased ability of materials to distribute 
heat when the scales are of the order of a nanometer or micrometer 
sometimes due to the spatial confinement effect in the nanostructures. 
Therefore, measurement of thermal parameters of thin films and heat 
transfer modeling in these systems are important from the theoretical 
point of view to understand the physical mechanisms underlying and 
from the point of view of the application to improve the design [2].

Heat transfer plays an important role in science and also affects 
the variation in the electrical, thermal and physical properties of 
materials. Heat transfer in semiconductor samples allows us to study 
the evolution of the temperature, taking account of the conduction and 
convection in the materials. The measurement in this area requires very 
sophisticated experiments because it requires considerable affinity. The 
temperature has an effect on the concentration of ionized impurity, the 
mobility and the electric conductivity of a semiconductor [3]. Some 
researchers [4] assume that the electrical conductivity is a constant at 
higher temperatures than room temperature. At high temperature, 
the particles are agitated with a thermally high kinetic energy. These 
particles cede its kinetic energy to neighboring particles having a low 
temperature for the entire system reaches thermal equilibrium.

The difference between a semiconductor and an insulator is that a 
semiconductor is low temperature insulation. It becomes conductive 
when its temperature becomes higher. Indeed, beyond a certain level 
of thermal motion, 

the electrons of an intrinsic semiconductor gain sufficient 
energy to jump the band gap and move from the valence band to the 
conduction band. Thus, it exists, an electron pair and an occurrence of 
conduction by both electrons and holes [3]. At high temperatures, the 
intrinsic conductivity can be the major factor in the conductivity of 
a semiconductor. In an oxide insulator or semiconductor, the width 

of the band gap (energy gap, Eg), which by its magnitude, prevents 
thermally excited electrons to jump from the valence band to the 
conduction band. With a thermal agitation, the temperature rises and 
the heat transfer begins to settle. The fact that the conduction electrons 
carry the electrical and thermal loads, Weidman Franz [5] established 
a law linking the thermal conductivity to the electric one. The thermal 
conductivity dependent on the movement of charge carriers is called 
conductivity by electrons or holes. It depends on the concentration of 
charge carriers. In semiconductors, this quantity must greatly depend 
on the temperature.

Because of its connection to the mechanical and chemical stability 
of the layers, good adhesion to various substrates, stability under the 
action of aggressive fluids, its high conductivity, transparency in the 
visible spectral range, low cost, high sensitivity and rapid response, 
the nanocrystals of tin dioxide (SnO2) is considered an attractive 
material for various technological applications include electronic 
and optoelectronic devices, electroluminescent displays, photocells, 
detectors, sensors and anti-reflection coatings [6-10]. In the hetero-
structure SnO2/SiO2/Si, the interfacial layer (SiO2) plays an important 
role in reducing the dark current, leading to the improvement of the 
circuit voltage in the cell. It is, in this framework, that this research will 
be established.

The first investigations on single crystals of SnO2 are due to 
Jaruzelski [11]. He measured the optical absorption, and the electrical 
conductivity in the crystal. Jaruzelski analyzed the pattern of energy 
levels in single crystals SnO2 with the photoelectric method. Morgan 
and Wright [12] studied the electrical conductivity in single crystals 
of SnO2 doped with antimony. An idea that the gas sensor can be 
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Abstract
Physical and numerical descriptions related to the heat transfer phenomenon inside the multilayer nanomaterial 

of thin film are determined. The mathematical model, of a multilayer of thin film of tin dioxide that deposits on a 
composite substrate of Silicon Dioxide/Silicon, is studied and solved by two numerical techniques, by taking into 
account the variability of the thermal conductivity. The two main interests in this study are the determination of the 
value of the applied maximum temperature on the multilayer nanomaterial, and the analysis, of the effect of the 
porosity medium that exists between certain layers, on the heat transfer. In plus, in order to determine our system 
physical parameters, the influence of the thickness of the thin deposit film is studied and the numerical model, which 
estimates these values in the heterojunction device, is analyzed.
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developed using a metal oxide semiconductor used to detect toxic 
gases was developed using the sintering of SnO2. These gas sensors have 
evolved according to the method of obtaining layers of tin dioxide [13].

Mathematical model

A mathematical model that describes the transfer of heat in 
heterojunction device is proposed. This model is based on the two 
dimensional heat transfer equation. It may present a roughness shape 
and heat resistance. The thermal conductivity of the material also has 
a great influence on the transfer process. Thermo-physical properties 
of the used materials are determined in order to thermally study the 
physical system that is formed by several materials in contact. Thus, the 
structural design of a modern sensor can be schematized by a physical 
model consisting of an insulating layer between two semiconductor 
layers. It is presented by the following Figure 1.

In this system, the heat transfer that develops in the heated tin 
dioxide layer having a thickness of 0.2 microns coupled with another 
layer of cold silicon, having a thickness of 1 micron, is studied 
numerically. A third layer of silicon dioxide, SiO2 is considered between 
these two layers.

To complete the mathematical model, the relation that links the 
two thermal (λ) and electrical (σ) (conductivities given by Weidman 
Franz [5] is used:

λ σ= L T  where ( )2 2 2 8 2/ 3 2.44.10 (w / K )π −= = ΩL k e             (1) 

The tin dioxide thermal conductivity, that is function of 
temperature, is given by this curve Figure 2.

Using the least squares method, correlation between the thermal 
conductivity and the temperature of the tin dioxide is given by the 
following Equation: 

4 22.136 10 0.078 27.484λ −= − × × + × +T T                 (2)

In this case, silicon is a substrate followed by an insulating layer. 
Then, the silicon layer is not strongly influenced by the heating 
temperature. As a result, the thermal conductivity of the silicon is 
considered constant (149W/(mK)). In addition, the SiO2 layer serving 
as an insulator, has a very low electrical conductivity. Then, its thermal 
conductivity is constant (1.4 W/(mK)). Finally, the mathematical 
model is represented in the following Figure 3.

To simplify the mathematical model, the following simplifying 
conditions are used: Heat transfer is carried out in a two-dimensional 
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Figure 3: Mathematical model.

transient manner, the transfer occurs without heat generation and 
without chemical reaction, there is no generated heat flow, the pressure 
is the atmospheric one, the radiation effects are considered negligible. 
Using these simplifying conditions, the heat equation is the following:

( ) ( )/ / / / /ρ λ λ∂ ∂ = ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂pC T t T x x T y y                            (3)

With ρ  is the density and pC  is the specific heat of the used 
materials.

Taking into account the variability of the thermal conductivity as 
a function of the temperature in the tin dioxide layer, the equation (3) 
becomes:

( )( )
( )( )

4

4 2 2 2 2 2

4.272 10 0.078

2.136 10 0.078 27.484

T T x T x T y T y

T T T x T y Cp T tρ

−

−

− × + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ +

− × + + ∂ ∂ + ∂ ∂ = ∂ ∂
            (4)

To complete the mathematical model, the simplified heat equation 
is linked to the initial and boundary conditions (Figure 4) as the 
following:

Initial conditions for t<t0

For: x=x0 to xn and y=y0 to yn then T=T0=298.15 K

Boundary conditions for t>t0

For x=x0 For x=xnFigure 1: Structural design of a modern sensor.
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Q=0 (adiabatic system)
0

/⇒ ∂ ∂ xT x =0 Q=0 (adiabatic system)
 /⇒ ∂ ∂ 

nxT x  =0

For y=y0          For y=yn                           (5)

Q=0 (adiabatic system)
0

  /⇒ ∂ ∂ yT y =0    Q=h∆T

With Q is the heat quantity and h is the convective heat transfer 
coefficient.

Continuity at the interfaces:

At the SnO2/air and air/SiO2 interfaces, the continuity of the 
conduction and the convection is given by the following relationships:

( )
2 2

/ /λ λ∂ ∂ ∂ ∂ + −  =SnO air aSnO airT y T y h T T                                           (6)

( )
2 2

/ /λ λ∂ ∂ ∂ ∂ + −  =SiO air aSiO airT y T y h T T                (7)

Where, Ta is the ambient medium temperature.

At the interface Si/SiO2, the continuity of the thermal conductivities 
is given by the following relationship:

2 2
/ /λ λ∂ ∂ ∂ ∂ = Si SiOSi SiOT y T y                                            (8)

At the interface of the two layers SiO2 and SnO2, the continuity of 
the thermal conductivities is given by the following relationship: 

2 22 2
/ /λ λ=∂ ∂ ∂ ∂  SiO SnOSiO SnOT y T y                        (9)

Numerical treatment

The equations of the mathematical model that describes the 
physical phenomenon are schemed by two numerical methods: the 
explicit finite difference method and the finite element method.

Scheming with the explicit finite difference method: The 
computational domain is divided into computing network nodes 
(i∆x, j∆y, n∆t). ∆x and ∆y, are the space steps, and ∆t is the time step. 
The schemed form of the two-dimensional heat transfer equation 
with variable thermal conductivity in the case of tin dioxide is the 
following: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
, , , 1, , , 1

1, , 1, 1, , 1 , , 1 , 1

1

[ ]

+
− −

+ − − + − −

 = − − − − +  
 + + +  

n n n n n n
i j i j i j i j i j i j

n n n n n n n n
i j i j i j i j i j i j i j i j

T T A A B B A

T BT T T

λ λ λ λ

λ λ λ λ
                      (10)

With ( ) ( )2 2/ /ρ ρ= ∆ ∆ = ∆ ∆p pA t C x B t C y

And ( )
4 2

, 2.136 10 0.078 27.484λ −= − × × + × +n n n
i j T T

Similarly, the initial and boundary conditions (5-9) are schemed in 
the following manner:

Initial conditions:

T(1:nx,1:nny,1)=298.15 K

Boundary conditions:

T (1:nx,nny,1:m)=673.15 K; (Hot face)

T(1,1:nny,1:m)=T(2,1:nny,1:m); (Adiabatic face)

T(nx,1:nny,1:m)=T(nx-1,1:nny,1:m); (Adiabatic face)

T(1:nx,1,1:m)=T(1:nx,2,1:m); (Adiabatic face)                               (11)

Conduction continuity at the interface SnO2/SiO2:

( ) ( ) ( )( ) ( )2 2 2 2,    ,  1   ,  1 /λ λ λ λ= − + + +n n n
SiO SnO SiO SnOT i j T i j T i j

Conduction continuity at the interface Si/SiO2: 

( ) ( ) ( )( ) ( ) 
 2 2,   ,  1   ,  1 /λ λ λ λ= − + + +n n n

si SiO Si SiOT i j T i j T i j

When there is porosity (air layer) between SnO2 and SiO2:

Conduction and convection continuities at the interface SnO2/air:

( ) ( )( ) ( ) ( )( ) ( )( )   
2

,  1 ,  / ,  ,  1 / ,  λ λ+ − = − − + −n n n n n
SnO air aT i j T i j Dy T i j T i j Dy h T T i j

Conduction & convection continuities at the interface air/SiO2:

( ) ( )( ) ( ) ( )( ) ( )( )  
2 ,  ,  1 / ,  1 ,  / ,  λ λ− − = + − + −n n n n n

SiO air aT i j T i j Dy T i j T i j Dy h T T i j

Scheming with the finite element method

To solve the Equation (3) by the finite element method, the residue 
weighed in the Galerkin formulation as reported by Poulain et al. [14] 
and Hatta et al. [15] is used. The heat equation is multiplied by an 
arbitrary function *T , called the weighing function, and integrated 
along the volume. Thus, the formulation of the integral of the low 
thermal problem is obtained:

( ) ( ) ( ) ( )* * * *, . .
ϕ

ρ λ = + − +  
 ∫ ∫ ∫

a

V S V

w T T T CpTdV T h T T dS grad T grad T dV  =0            (12)

The analytical solution of equation (12) is generally inaccessible. 
The numerical solution by the finite element method, which is a 
particular case of the Galerkin method, (the temperature field and the 
test functions are belonging to the same finite-dimensional space), 
is used. The medium is divided into a finite number of elements 
interconnected only at nodal points. For each element occupying the 
space, the temperature at any point can be expressed as a function of 
their values to their nodal point: 

( ) [ ]{ }, , =T x y t N T                       (13)

Where [N] is known as a form of matrix and a function of spatial 
positions, {T} is a vector which contains the values of the temperature 
at the nodal points of the element. It follows that the temperature 
gradient at any point can be written as: 

( ){ } { } { }/ , /= ∂ ∂ ∂ ∂ =   grad T T T x T y B T               (14)

Where [B]=[L][N] and [L] designates a differential operator.

Substituting equation (14) in equation (3), the heat flux in the 
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Figure 4: Boundary conditions of the SnO2/Air/SiO2/Si.
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element can be obtained as follows: 

{ } { } [ ]{ }1 2, λ= = −q T q q B T                (15)

Assume that the medium undergoes a virtual temperature change, 
δT. Then, multiplying Equation (12) by δT and by incorporating 
into the whole of the space domain, and with the substitution of the 
Equations (13) and (15), the finite element approximation of the heat 
equation, can be obtained by:

( ) { } { } ( ){ }( )* *, = + + −              

T
w T T T D T C N T M =0                (16)

Where, the dot represents differentiation, while respecting time. 
The elementary matrices and the vector of the external heat load are 
given by:

ρ=          ∫ T
p

V

D C N N dV                  (17)

= λ          ∫ T

V

C B B dV                              (18)

ϕ

=          ∫ T

S

N N h N dS                  (19)

ϕ

=      ∫ T
a

S

M N hT dS               (20)

[D] is the thermal capacity matrix; [C] is the thermal conductivity 
matrix, [N] is the thermal convection matrix, and [M] is the nodal flux 
vector.

Using the finite difference scheme, Equation (16) becomes:

{ } { }( ) ( ){ }1 /  0+
− ∆ + + − =              

n n nD T T t C N T M             (21)

Equation (21) is solved using an explicit finite difference method 
and Gauss-Legendre integration.

Results and Discussion
Numerical model validation

After both numerical models reach the calculation stability 
condition, comparisons (Figure 5) between the results for a sample 
of silicon coupled to silicon dioxide on the one hand, and a sample 

of silicon coupled to silicon dioxide, and tin dioxide, on the other 
hand, are performed. The results show satisfactory qualitative and 
quantitative agreements. Unlike in some profiles, comes from the 
numerical method (the finite difference method), which is considered 
less perfect than the finite element one.

Physical parameters influence on the thermal transfer 
phenomenon

In the following, the finite element method and the thermal 
conductivity of tin dioxide which has a parabolic profile relative to 
the temperature are used. This latter strongly influences on the heat 
transfer mechanisms of the system.

Effect of the imposed temperature: The study is carried out on 
heterojunction device SnO2/SiO2/Si, of different depths (0.2 µm/50 
nm/1 µm), and a length of 1µm, with different temperatures applied to 
the surface of SnO2.

It is noted that the initial temperature begins to increase along the 
depth of the sample, and a function of time, to reach the corresponding 
heating temperature. If the heat flux applied to the surface of SnO2 
increases, the minimum temperature will decrease. To better observe 
this phenomenon, the results in the form of linear temperature profiles 
are presented:

The curves of the Figure 6 show the evolution of the temperature 
during the heat transfer in the multilayer nanomaterials SnO2/SiO2/
Si that is subject only to the conduction. After 100ns, if the applied 
temperature increases, the applied heat flux also increases. Then, the 
profile of the thermal conductivity of SnO2 can no longer withstand this 
temperature increase. According to Figure 6, if the applied temperature 
is between 300 K and 423 K, the temperature starts from 298.08 K and 
384.23 K respectively, and increases with time to reach the heating 
temperature. But if the applied temperature is beyond 423 K, the system 
temperature breakdown and it remains at its initial temperature. In the 
following, the applied temperature of 423 K will be used.

Tin dioxide thickness effect: Similarly, the study is carried out on 
heterojunction device SnO2/SiO2/Si, where the depth of the SnO2 is 
variable (x µm/50 nm/1 µm). The applied temperature is taken equal 
to 423K.
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It is noted that the initial temperature, begins to increase along the 
depth of the sample, and a function of time, in order to reach the heating 
temperature (423K). Quantitatively, if the thickness of the SnO2 layer 
increases, the temperature profile will become less important because 
the thickness of the first layer (SnO2) prevents heat easily diffuse into 
the depth of the sample, leading to the temperature decrease in the 
deeper layers. Qualitatively, if the thickness of the SnO2 layer increases, 
the parabolic evolution of the temperature profile appears clearly. This 
evolution is deducted, from the impact of the parabolic profile of the 
thermal conductivity, on the heat transfer phenomenon, in the SnO2 
layer. It is noted that, in the case where the thermal conductivity is 
variable, the increase of the initial temperature to the heating one is 
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Figure 6: Axial evolution of the temperature in SnO2/SiO2/Si for different applied temperatures.
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Figure 7: Axial evolution of the temperature in the SnO2/SiO2/Si for different SnO2 thicknesses.

less than in the case where the thermal conductivity is constant. Figure 7 
represents the temperature linear profiles:

These curves show the evolution of the temperature during the heat 
transfer into the multilayer SnO2/SiO2/Si, which is subject only to the 
conduction. During 100ns, the heterojunction device will heat up more 
quickly if the thickness of SnO2 is less than 0.2 µm. If the thickness 
of SnO2 is 10 nm and for a time of 100 ns, the temperature increases 
from its initial value of 395.3 K to reach its hot value (423 K). But, for a 
thickness of SnO2, above 0.2 µm (e.g., 500 nm), and a time of 100 ns, the 
temperature increases from 369.191 K, to reach its heating temperature 
(423 K). Therefore, the decrease of the initial value of the temperature 
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in the deep layer of the sample is particularly important, if the thickness 
of the tin dioxide layer is large. Then, to exhaust heat through the depth 
of the sample, it is better to choose a thickness of the thin films of tin 
dioxide lower than 0.2 µm.

Porosity effect on the heat transfer: The effect of the porosity on 
the heat transfer in the heterojunction device is studied numerically. 
Porosity is an air layer defined by the two layers of SnO2 and SiO2. The 
thermal analysis is performed on the sample SnO2/Air/SiO2/Si in the 
form of a sandwich. A heating temperature, equal to 423K, is applied to 
the surface of SnO2. The dimensions and the thermal conductivities of 
the various layers are presented in the following Table 1.

Similarly, the results are presented as temperature profiles, as the 
following Figure 8.

These curves show the evolution of the temperature during the 
heat transfer in the SnO2/Air/SiO2/Si, taking account of the conduction 
and convection, to interfaces SnO2/Air and Air/SiO2. The presence 
of the air layer (porosity) coming from a deposition problem of a 

semiconductor thin layer on a substrate prevents the temperature of 
the latter to evacuate quickly. This kind of transfer leads to a rapid 
temperature increase in the semiconductor layer. The three presentations 
of Figure 8 show the existence of two levels. The first level corresponds 
to the heating of the SnO2 layer, and the second one corresponds to the 
heating of the Si/SiO2 layer. Unfortunately, the intermediate portion 
between the two levels insulates thermally, the semiconductor of the 
substrate, and prevents the semiconductor temperature to evacuate 
quickly [16-19].

Figure 9 indicates clearly the difference between the sample of 
SnO2/Air/SiO2/Si and that of SnO2/SiO2/Si. The difference between the 
two curves is becoming more important with time. This difference is 
due to the presence of porosity. It traps the temperature in the SnO2 
layer. For a time t=100 ns remarkable jump between the two curves is 
presented. Then, the presence of the porosity between the thin layer 
and the substrate highly insulates the top of the sample (thin layer) 
and entraps the temperature in the latter; this reduces the heat transfer 
phenomenon from the top to the bottom of the sample.

Conclusion 
The two-dimensional heat transfer equation, that is coupled to the 

initial and boundary conditions at different interfaces of heterojunction 
device (SnO2/SiO2/Si) and/or (SnO2/Air/SiO2/Si), taking into account 
the variability of the thermal conductivity of the tin dioxide, is studied 
numerically. If the contact between the tin dioxide layer and the 
substrate is made without the presence of a porosity (air layer), the 
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Figure 8: Axial evolution of the temperature in SnO2/Air/SiO2/Si in 1,100 and 1000 ns.

Materials Dimensions Thermal Conductivities
SnO2 1 µm*0.2 µm -2.136 × 10-4 × T2+0.078 × T+27.484 W/ (m.K)

SiO2 1 µm*50 nm 1.4 W/(m.K)
Si 1 µm*1 µm 149 W/(m.K)
Air 1 µm*25 nm 3.7 × 10-4+T(9.32 × 10-5-2.59 × 10-8 × T)

Table 1: Dimensions and thermal conductivities of SnO2/Air/SiO2/Si.
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 Figure 9: Comparison between the two sandwiches SnO2/Air/SiO2/Si and SnO2/SiO2/Si.

coupling is done by the continuity of the conduction at the interfaces. 
Otherwise, the coupling is realized by the continuity of the conduction 
and convection at the interfaces. The mathematical model is schemed 
by two different methods: the explicit finite difference method and the 
finite element method. The results are the following:

1. Comparison between both results of the two numerical methods 
showed satisfactory qualitative and quantitative agreements to both Si/
SiO2 and Si/SiO2/SnO2, and that the results of the finite element method 
is more efficient than that of the finite difference ones.

2. The results of the finite element method show that the variable
thermal conductivity of tin dioxide does not permit to apply a high 
thermal gradient between the surface of the sample and the other 
layers, which prevents to apply a temperature higher than 423 K.

3. The influence of layer thickness of tin dioxide on the heat transfer 
through the heterojunction device is studied. Therefore, the decrease of 
the initial value of the temperature in the deep layer of the sample is 
particularly important, if the thickness of the SnO2 layer is large. Then, 
to exhaust heat through the depth of the sample, it is better to choose a 
thickness of the thin films of tin dioxide lower than 0.2 µm.

4. Finally, during the deposition of the thin layer, the presence of
the porosity (air layer) between the thin layer and the substrate highly 
insulates the top of the sample (tin dioxide layer) and entraps the 
temperature in the latter; this reduces the heat transfer phenomenon 
from the top to the bottom of the sample. Thus, a thermal fatigue can 
contribute an electrical strain which decreases the electrical efficiency 
of the system.
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