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A biosensor, which is conventionally defined as “a device that 
uses specific biochemical reactions mediated by isolated enzymes, 
immunosystems, tissues, organelles or whole cells, to detect chemical 
compounds usually by electrical, thermal or optical signals” [1], 
comprises of at least two basic steps: first, target recognition and second, 
signal transduction. In nucleic acid sensing, the single-stranded DNA/
RNA probes are often employed as the sensor probes, since by virtue 
of their capacity of binding to their complementary target nucleic acid 
strands with high sequence-specificity, they can almost always detect 
the presence of the specific target strands in the sample analyte solution, 
without error. Regarding transduction of the molecular recognition 
event into an electronic signal, mostly the optical, electrochemical, 
electrical, mechanical, acoustic or thermal methods are applied in the 
current nucleic acid sensors [2-6]. 

Immobilization of the nucleic acid sensor probes onto a solid 
substrate in the surface-based nucleic acid sensors is one of the crucial 
initial steps that can play a decisive role in the overall performance of 
the sensor. Ideally, the nucleic acid strands are to be immobilized onto 
the solid support in such a way that a specific recognition signal can be 
obtained only if they recognize their target probes via sequence-specific 
hybridization interactions. The experimental setup should be such 
that the various non-specific interactions, e.g. nucleobase-substrate 
interactions as in case of interactions between the nucleobase nitrogen 
and a gold substrate, are largely cancelled out or do not take place to 
a significant extent. Hence, experimental conditions must be adjusted 
for every application, and a large choice of immobilization support and 
methods should be considered before the most optimal arrangement 
can be identified. The immobilization strategy could include primarily 
two means, one, covalent binding via one end of the nucleic acid 
probe, e.g. binding of 5′-thiol-modified DNA oligonucleotides onto 
gold surface via gold-sulfur interactions [7], or binding of a 5′-amino-
modified DNA oligonucleotide onto an epoxy-modified surface [8], 
and two, non-covalent binding (e.g. affinity binding based on the 
strong avidin biotin system, where nucleic acid is biotinylated at its 
5’ end and the avidin is attached directly to carbon-based surface [9]. 

While quite high sensitivity (femto molar to atto molar range) 
in target detection has been exemplified in optical/electrochemical 
transduction [6,10], another approach for sensitivity enhancement, 
i.e. by application of synthetic nucleic acid analogues like peptide 
nucleic acid (PNA) [11] and locked nucleic acid (LNA) [12,13] 
probes, which are capable of forming more stable duplexes with the 
DNA targets than the DNA sensor probes, may also be explored. The 
unique physicochemical nature of the peptidic, non-ionic backbone 
of PNA has promoted the use of PNA oligomers as capture probes in 
electrochemical, optoelectronic sensors, and microarray-based sensors 
[3,14,15].

PNA is an artificially synthesized polymer, invented by Peter E. 
Nielsen (University of Copenhagen), Michael Egholm (University 
of Copenhagen), Rolf H. Berg (Risø National Lab) and Ole Buchardt 
(University of Copenhagen) during the 1990s [11]. PNA is a DNA 
analog, in which a 2-aminoethyl-glycine linkage generally replaces the 

normal phosphodiester backbone [11,16]. A methyl carbonyl linker 
connects natural, as well as unusual (in some cases), nucleotide bases to 
this backbone at the amino nitrogens. PNA is non-ionic, achiral, and is 
not susceptible to hydrolytic (enzymatic) cleavage. PNAs are capable of 
sequence-specific binding with complementary DNA, as well as RNA 
obeying the Watson-Crick base paring [17,18]. Its hybrid complexes 
exhibit extraordinary thermal stability. PNA has high affinity to its 
complementary DNA or RNA molecules, mainly because of the lack 
of electrostatic repulsion between the uncharged PNA backbone, and 
that of the natural nucleic acid. Within the PNA hybrids, the order of 
the thermal stability of the duplexes is found to be PNA−PNA>PNA−
RNA>PNA−DNA [19]. 

In contrast to the DNA−DNA duplexes, the stability of the 
PNA−DNA hybrids is not significantly affected by changes in ionic 
strength, except in the limit of low ionic strength, i.e. when the salt 
concentration is few mM, where the stability increases. The binding 
of PNA to a corresponding complementary DNA oligomer takes 
place in a sequence-specific manner, which means that the thermal 
stability of a hetero-duplex, where PNA is one of the components, 
can be considerably lowered by the presence of imperfect matches. 
Owing to the high sequence specificity of PNA binding to other 
nucleic acid strands, incorporation of any mismatch in the duplex 
considerably affects the Tm value of the hetero-duplex. For example, 
a single base mismatch could result in the lowering of the Tm value 
by 15°C and 11°C, in case of the 15 mer PNA−DNA and DNA−DNA 
duplexes, respectively [20]. This property of PNA is responsible for the 
remarkable discrimination between perfect matches and mismatches 
offered by PNA probes, and makes PNA attractive as oligonucleotide 
recognition elements in biosensor technologies [20]. 

Application of PNA as a sensor probe in nucleic acid sensor 
technologies holds great promise for rapid (since formation of 
PNA−DNA duplex is faster than formation of DNA–DNA duplex) 
and cost-effective detection (since lesser amount of sample is needed 
due to high sensitivity in PNA-based measurements) of specific 
DNA sequences. Usually, single-stranded PNA (ssPNA) probes are 
immobilized onto the transducer surface by chemical means, e.g. 
gold-sulfur bond formation for immobilization of thiolated ssPNA 
probes onto the gold surface [20]. Once the PNA sensor probes can 
detect the complementary (or non-complementary) target nucleic acid 
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strands in the sample solution, the response from the hybridization 
event or a lack of it is converted into a useful electronic response by the 
transducer. The first report by Jensen et al. [19] in 1997 on detection 
of PNA−DNA and PNA−RNA hybridization using surface plasmon 
resonance (SPR), showed that the sensor can differentiate between a 
complementary and a non-complementary oligonucleotide sequence. 
The sensor chip used in this case was a thin gold film covered with a 
layer of dextran and containing streptavidin, chemically coupled to the 
dextran layer. Biotinylated PNA molecules were immobilized on the 
surface by means of strong coupling between biotin and streptavidin. 
The amount of the bound substance (complementary, as well as various 
non-complementary DNA and RNA oligonucleotides) was measured 
as a function of time, when a solution containing the target strands was 
flown over the chip surface. In this way, the association kinetics could 
be studied. The quartz crystal microbalance (QCM) mass measuring 
method can also be applied in studying hybridization of nucleic acids 
on solid surfaces [21-23]. The first report about the study of PNA–
DNA hybridization using the QCM biosensor and PNA as the sensor 
probes comes from the work of Wang et al. [24], which showed that 
the system could differentiate between complementary and non-
complementary oligonucleotides. A fast and sensitive detection 
of mismatched sequences was made possible by monitoring the 
frequency vs. time response of the PNA-based QCM sensor. The PNA 
molecules used in the above-mentioned study contained a cysteine 
attached to the PNA strand with the help of an ethylene glycol unit, 
and a PNA monolayer could be formed onto the gold-coated quartz 
crystal surface using this thiol-PNA construct [24]. The immobilized 
PNA probes exhibited remarkable sequence specificity and gave rise 
to rapid hybridization with the target oligonucleotides sequences. 
The use of PNA as recognition probe for detection of target nucleic 
acid strand using electrochemical means has been reported, as early 
as in 1998, by Wang [20]. Their method consisted of four steps: PNA 
probe immobilization onto the transducer surface (here, a carbon paste 
electrode), hybridization to target DNA strands, indicator binding and 
chronopotentiometric transduction. The hybridization experiment was 
carried out by immersing the electrode into the stirred buffer solution 
containing a desired target, followed by measurement of signal.

Motivated by the previous reports that PNA can potentially be a 
better alternative for on-surface nucleic acid detection technologies 
compared to DNA probes, the Mukhopadhyay group developed a 
sensitive and robust bio-active self assembled PNA sensor layer, which 
is capable of efficient and specific target detection. The formation 
of close association of ssPNA strands was found to be relatively 
straightforward, and compact self-assembled PNA films could be 
readily generated on solid substrates like gold (111) surface by a simple 
immersion method [25]. In such films, the immobilized ssPNA strands 
could be oriented away from the surface, as elicited from reflection 
absorption infrared spectroscopy (RAIRS) experiments [25], and non-
specific interactions with the underlying gold substrate could be largely 
avoided, creating an ideal situation for the target nucleic acid strands to 
access the immobilized sensor PNA probes. On the contrary, the DNA 
films comprising the negatively charged ssDNA strands have been 
found to be mostly disordered/poorly ordered [26], where nonspecific 
DNA−surface interactions could occur through the relatively exposed 
nucleobases, resulting in reduced bioactivity of the film [27]. Ghosh et 
al. [28] have recently reported that the mismatch discrimination ability 
of such surface-anchored PNA layers could be successfully enhanced via 
ionic control, i.e. by varying salt concentration and the type of counter-
ion. While the nature of ionic dependence of ‘on-surface’ behavior of 
PNA probes deviated significantly from the ‘solution’ behavior of these 

probes, e.g. in case of the singly mismatched duplexes, considerable 
similarities were also observed, e.g. in case of the fully mismatched 
duplexes. The single base mismatch discrimination capacity of the 
PNA probes could be further amplified by controlling PNA probe 
density using a nanoparticle-based approach, where gold (111) surface 
was modified with gold nanoparticles prior to PNA adsorption [29]. 
The simple strategy for formation of the surface-attached AuNP-PNA 
construct appeared to be beneficial not only because the difficulty in 
attaching PNA probes onto AuNPs, without AuNPs getting aggregated, 
could be overcome, but importantly, because this allowed an increase 
in the sensor probe density, and therefore, increase in the hybridization 
probability. Considering the need for developing sensitive, target-
specific and robust high-throughput array technologies, PNA-based 
nucleic acid detection assays, as presented in this report, could offer 
practical inputs in achieving better control on on-surface DNA 
detection capabilities. 
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