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Abstract
Histological tissue section consists of rich information about cell type, cellular morphology, cell state and health etc. 

which is very important for clinical diagnosis and therapy. Automated analysis provides insights of tumor subtypes. Since 
tumor sections are collected from different laboratory, some issues arises called technical and biological variations. 
In this paper we developed an approach for nuclear segmentation on tumours histological section, which addresses 
problems of processing tissues at different laboratory under microscope. Eventually, the resolution is formulated in multi 
reference level set frame. Experimental results show performance of proposed method.
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Introduction
The histological tumor tissue section provides morphometric 

composition to gain insight into cellular morphology, organization, and 
sample tumor heterogeneity in large cohort. Tumor section represents, 
strong incorporation and representation to detect mitotic cell, cellular 
abnormality, and autoimmune responses. If tumor tissue morphology 
and infrastructure can be marked on a very large scale record set, 
then it will shows the path for composing prognostic database. The 
same manner genome analysis techniques identified molecular 
subtype. Genome-wide molecular analysis (e.g. transcriptome) has 
the benefits of supervised methods for data examination and pathway 
quality improvement, which can allow assumption generation for the 
prevailing techniques. Also histological stains structure are compicated 
to evaluate due to the biological and technical variations. They provides 
details understanding into tissue composition and heterogeneity in 
case of unusual events. The histological tissue section visualized with 
hematoxylin and eosin stains (H&E), called as DNA content (e.g. 
nuclei) and protein respectively in different variation of color. A trained 
pathologist can detect outline of the rich content in cellular morphology, 
such as cell shape, cell organization, cell state and health, and cellular 
production. The main issue to process with the large collection of 
dataset is color composition concerned to (e.g. damage) and biological 
variation (e.g. cell type, cell state) across tissue section while scanning 
under microscope. Regarding to heterogeneity in tumor architecture, 
nuclear color in the area identified in one tissue area may be same as 
to cytoplasmic color in another tissue. At the same time, nuclear color 
density or chromatin content may vary within slide image. Therefore, 
image research should be supportable and strong, with respect to 
change in sample arrangements and tumor base within the entire slide 
image and across the tumor dataset. The tissue parts are scanned at 
either at 20X or 40X. Each image is segmented into 1k × 1k pixels for 
evolving. This paper includes 1) pre-processing for edge detection. 

Related Work

The main complications in nuclear segmentation are cellular 
structure (technical, biological) variation or heterogeneity. The 
techniques for automatic detection and segmentation are based on 
adaptive thresholding by morphological operator [1,2], fuzzy clustering 
[3], level set based on gradient information and energy minimization 
function [4,5]. Color deconvolution after optimum thresholding [6], 

color and texture based hybrid analysis followed by clustering [7]. 
There is some application combined by above mentioned techniques. 
i.e., iterative radial voting [8] was used to estimate seeds for the location 
of nuclei and the model interaction between neighboring nuclei
with multiphase level set [9,10], and in [1] an initial segmentation
of nucleus with graph cut is obtained by multi scale detection and
result further refined with next iteration of same method. Nuclear
segmentation through color decomposition, using the same techniques 
developed for fluorescence microscopy [11]. Still it is a challenging to
effectively address the systematical requirements of tumor histological
characterization. Thresholding and clustering re-applicable for only
constant chromatin content for nuclei in the image. But due to wide
variation in chromatin contents problems occurs with overlapping and
clumping of the nuclei, also due to tissue thickness, they cannot be
segmented properly. The method proposed in [12] focus iterative radial 
voting on delineation of overlapping nuclei [6], but seed detection can
have failed in the presence of wide variation in the nuclear size, lead to
fragmentation.

Pre-Processing
Our method expressed a preprocessing construction representation 

of nuclear and background of an image based on nuclear response and 
image denoising using LoG operator nuclear channel.

 These representations expressed in terms of GMM and we will then 
utilize a level set framework to segment foreground and background 
content. Finally delineated blobs are subjected to convexity constraints 
for partitioning clumps of nuclei.

Nuclear response LoG filter

As discussed previous, while processing tumor tissues under 
different laboratories under microscope, Hence local variations in 
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an image are captured by LoG filter. LoG is used for edge detection 
of nuclei and background samples. We calculated MSE, SNR and 
PSNR for noise level. Normally these parameters are used for image 
compression but here we used to compare edge detection quality. If the 
PSNR value is getting less then it shows high edge detection capability. 
Given dataset scanned at 20× or 40× objective during processing each 
image is manually segmented and processed with LOG filter, and MSE, 
SNR, PSNR are collected. These tissue sections processed and scanned 
under different laboratories, some biological variations may occur due 
to addition of noise. For pre-processing of image denoising is necessary. 
Here MSE (mean squared error) is used to represent cumulative squared 
error between detected and original image and PSNR (peak signal to 
noise ratio) represent a measure of the peak error [13] (Table 1).

Proposed Method
Gaussian mixture model

GMM [14] is used to approximate complicated distribution of 
output coming from object and background of an image, which 
provide general frame work to characterize heterogeneity. Statistically, 
a mixture model is usually defined as probability distribution of 
convex combination of several independent components with different 
probability distribution. The aim is to estimate from which source 
output is generated as well as parameter describing source components 
of GMM. With a set of N samples (image points) from n dimensional 
space, X={x1,…xj,…xN} in which each sample drawn from M Gaussian 
components. A GMM can be denoted as,

( ) ( )1
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i j ii

P X p Xθ α θ
=

=∑| | .

 where the parameters are Ө ={α1,…,αM,θ1,…θM} such that, 
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μi is mean and ∑i is covariance matrix i=1,..M Gaussian xj is drawn from 
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is used to estimate hidden distribution given data.

The main parameter scale for LoG filter σ determined based on 
dimensions of malignant and normal nuclear size at 20×. Minimum 
scale value for LoG filter is σmin and maximum scale value is σmax which 
is defined as expected range of sizes of nuclei (Table 2). 

Multireference level set mmodel for nuclei segmentation

Energy function can be minimized as follows [15,16]: 

Let

1) Fk(p) is kth feature of pixel p;

2) Pk
F and Pk

B are probability of fk obtained by nuclei and background, 
then

PK
F(p)= GMMk

F(p)/GMMk
F(p)+ GMMk

B(p) and,

PK
B(p)= GMMk

B(p)/GMMk
F(p)+ GMMk

B(p)

3) k is weight for Ri 
k = <hist(Rk),

4) DI is nuclear channel 

5) C denotes curve.

E=µ . Length (C) + υ Area(inside(C))
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Where, µ, υ, λF, λB,  α are fixed coefficients. CF, CB are mean intensities 
of nuclear region i.e., nuclear foreground and background respectively, 
measured in (DI). The first two terms used for smoothness of nuclear 
boundary and size respectively. Second two terms for variation in groups 
of nuclear staining space for nuclear and background respectively. And 
last four terms related to prior knowledge [17,18].

The separation of nuclei foreground and background can be 
achieved by minimizing energy function via level set evolution. 
Regularized Heaviside function as follows:

 ( ) 1 21 arctan
2

zH z
π

  = +   ∈  
………………..                                        (2)

IMAGE ID SNR PSNR MSE
01 12.78 19.22 58.50
02 14.41 18.27 48.54
03 13.12 18.95 56.25
04 14.37 18.30 48.75
05 15.24 17.75 44,07
06 15.01 18.77 42.78
07 15.91 17.99 40.82
08 13.91 18.83 51.40
09 15.19 18.60 44.35
10 14.34 18.76 48.89
11 13.51 18.84 53.79
12 16.38 18.79 38.64
13 12.24 18.23 62.30

Table 1: Calculation of SNR, PSNR and MSE after processing by LoG filter.

IMAGE ID
PERFORMANCE MEASURE FOR σ

2.0 4.0 6.0
1 0.50 0.69 0.76
2 0.44 0.59 0.67
3 0.63 0.74 0.78
4 0.69 0.73 0.76
5 0.60 0.75 0.77
6 0.72 0.76 0.76
7 0.77 0.78 0.78
8 0.72 0.78 0.78
9 0.75 0.76 0.76
10 0.71 0.76 0.76
11 0.55 0,65 0.76
12 0.78 0.78 0.78
13 0.18 0.30 0.59

Tabel 2: Performance measurement after reducing cross validation error for the 
range of σ (min and max scale of LoG based on dimensions of malignant and 
normal of size of nuclei).
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where  is regulation parameter of Heaviside function. And delta 
function as follows:

( ) ( )dZ H Z
dz

δ = ………………………….                                                      (3)

The impartial energy function can be rewritten as,
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Energy function minimization achieved by gradient decent method, 
and Eular Lagrange equation for 𝜙 is:
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Basically MRL is region based active contour model and it is not 
sensitive to initialization. In our approach we initialize zero level 
set contour at the center of the image having constant radius, which 
evolved until the differences in spatial location between two zero level 
set from consecutive iterations are below the threshold (Figure 1). 

Nuclear partition via geometric reasoning

Final part is nuclei partitioning. However after level set evolution, 
we got binarized image of clumps of nuclei , next step is partition them 
into single nucleus. Generally nulear shape is convex in shape therefore 
overlapping nuclei detected by concavities has to be separate out through 

geometric reasoning, which is explained by following steps [18]:

1) Detection of maximum point curvature: As the contour of 
nuclear mask extracted, derivative are computed by derivative of 
Gaussian.

2) Delauney triangulation : DT is applied to all points of maximum 
curvature for making possible grouping. The conclusion of grouping 
then refined by removing edges based on triangulation rules.

3) Geometric reasoning: Properties of both obtained graph and 
shape of object combined for edge inference. 

Discussion
Our objective dataset consists of hematoxylin and eosin stained 

GBM tumor section samples collected from different laboratories. 
Those samples have some technical variation, as they are collected 
from different laboratories. We manually selected 13 samples and 
segmentation was carried out on decomposed tissue block.

Gmm component considered are 20. Other parameter setting 
were α=1.5, μ=0.2/timestep, λ=0.05, and σ{2.0,4.0,6.0}, in which 
determination of σ based on dimensions of malignant and normal 
nuclear size at 20×, and all other parameter selected to minimize the 
cross validation error. The algorithm implemented in Matlab 2014.

Conclusion and Future Work
System can better characterize with variation in data, thus much 

robust and effective. The LoG filter response gives edge detection 
information hence background contents are excluded which leads 
to increase in precision but the drawback of it is the tiny fragments 
are also indicated. Segmentation performance is indicated by Table 
3. Our future work will focus on improving nuclear segmentation 
by withdrawing the drawbacks and evaluating the method on other 
remaining tumor types.
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