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IDH2-mediated reductive carboxylation of α-KG plays an important 
role in sustaining energy production and promoting cell proliferation 
during periods of hypoxia [15]. IDH2, as an important source of 
mitochondrial NADPH, also plays an important role in protecting cells 
from oxidative stress. 

Since α-KG is a TCA cycle intermediate and an essential cofactor 
for many enzymes, including JmjC domain-containing histone 
demethylases, ten-eleven translocation 1  5-methylcytosine hydroxylases 
(TET1) and EglN prolyl-4-hydroxylases(PHDs). 2-hydroxyglutarate 
(2-HG) is structurally similar to α-KG and generated by mutant 
IDH1/2, leading to epigenetic alterations and tumorgenesis. However, 
recently scientists found that 2-HG could also accumulate in non-IDH 
mutated cancer due to multiple cellular mechanisms. In this review, 
we will discuss the mechanisms of 2-HG production in non-mutated 
cancer cells and their implication in 2-HG associated human cancers.

Enantiomers of 2-HG

2-HG carries an asymmetric carbon atom in its carbon backbone
and therefore occurs in two distinct forms, D-2-hydroxyglutarate (D-2-
HG) and L-2-hydroxyglutarate (L-2-HG) (Figure 2). It is important to 
note that both D-2-HG and L-2-HG are found in human body [16]. 
Although the enantiomers of D L-2-HG are identical in their physical 
and chemical properties, these metabolites are entirely different entities 
in term of their biochemical properties. Routine analytical methods to 
detect 2-HG are not able to differentiate between D- and L-2-HG, and 
as a consequence the sum of the two metabolites is measured. Although 
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Introduction
Malignant tumor is a complex disease due to the varieties of the 

carcinogenic mechanism [1-4]. Metabolic abnormality has been 
considered to play an important role in tumorigenesis and tumor 
progression since the observation was made by Otto Warburg [5]. 
What he thought was cancer cells preferentially generate energy 
by metabolizing glucose to lactate under aerobic condition [5], 
indicating cancer cells switch from oxidative phosphorylation to 
glycolysis to generate ATP in adequate oxygen condition, also 
known as "Warburg effect" [6,7]. Although normal cells use ‘aerobic 
glycolysis’ for proliferation, "Warburg effect" supports the hypothesis 
that this metabolic transform is a crucial characteristic of the rapid 
proliferating  cells [8]. However, whether this metabolic alteration is 
the cause of cancer or the response of accelerated cell proliferation is 
still not well defined. 

Mutations of Isocitrate dehydrogenase1/2 (IDH1/2) greatly 
contribute to tumorigenesis in acute myelocytic leukemia (AML) and 
glioma. Eukaryotic cells express three different isoforms of IDH, IDH1, 
2 and 3 [9]. IDH1 and IDH2 are homodimeric NADP+-dependent 
enzymes that catalyze the oxidative decarboxylation of isocitrate 
to produce α-ketoglutarate (α-KG), NADPH, and CO2. IDH3 is a 
structurally unrelated heterotetrameric NAD+-dependent enzyme that 
similarly decarboxylates isocitrate and produces α-KG, NADH, and 
CO2. The reactions catalyzed by IDH1 and IDH2 are reversible, and 
the directionality of the reactions therefore depends in large part on 
the relative Km values of the forward and reverse reactions and the 
relative levels of isocitrate and α-KG in the cell [10]. The reaction 
catalyzed by IDH3 is irreversible under physiologic conditions and is 
principally regulated by substrate availability and positive and negative 
allosteric effectors. IDH1 localizes to the cytoplasm and plays a key role 
in promoting the activity of the numerous cytoplasmic and nuclear 
dioxygenases that require α-KG as a cosubstrate [11]. IDH1 catalyzes 
the reductive carboxylation of α-KG to isocitrate, which can then be 
further metabolized to acetyl-CoA to support lipid biosynthesis [12-
14]. IDH2 and IDH3, in contrast, localize to the mitochondrial matrix. 

Abstract
Mutations in metabolic enzymes, especially Isocitrate dehydrogenase1/2, strongly implicate altered metabolism in 

tumorigenesis by generating 2-HG. 2-HG is an oncometabolite mostly identified in AML and glioma. Wild type IDH1 and 
IDH2 catalyze the interconversion of isocitrate and α-KG, which is a TCA cycle intermediate and an essential cofactor 
for many enzymes, while 2-HG produced by mutant of IDH1/2 functions as a competitive inhibitor of α-KG, leading to 
epigenetic alteration and disruption of PHDs-mediated protein hydroxylation. However how is 2-HG produced in non-IDH 
mutated cells is still not well defined. Recent studies demonstrated that the accumulation of 2-HG in non-IDH mutated 
cells might be due to many other cellular mechanisms, including MYC status, expression of IDH1/2, dysregulation 
of 2-HGDH and hypoxia. Here we review what is known about the molecular mechanisms of transformation by IDH 
mutations and the mechanisms of carcinogenic metabolites 2-HG accumulation in non-IDH mutated cells. We also 
discuss the strategies for separation of two enantiomers of 2-HG (D and L) and their implications for the identification of 
the cancer subtypes and the development of targeted therapies to treat different types of human malignancies.

M
et

ab

olomics: OpenAccess

ISSN: 2153-0769
Metabolomics: Open Access



Citation: He J, Zhao Z, Xu G, Liu Y (2015) Novel Insight into 2-Hydroxyglutarate Production in Human Cells. Metabolomics 5: 159. doi:10.4172/2153-
0769.1000159

Page 2 of 5

Volume 5 • Issue 4 • 1000159
Metabolomics
ISSN: 2153-0769 JOM an open access journal 

the product caused by IDH1/2 mutations was demonstrated to be D-2-
HG [17], numbers of reports measured total 2HG instead of D-2-HG 
[18-20]. As a consequence, minor increase of D-2-HG might be missed 
since endogenous levels of L-2-HG in healthy individuals is equal to 
or exceeds the level of D-2-HG. It is proposed that level of the IDH-
specific D-2-HG rather than total 2-HG could increase the specificity to 
predict IDH1/2 mutations [17-21]. In addition, the accurate diagnosis 
of 2-HG related metabolic diseases relies on the determination of the 
configuration of the enantiomers, either D-2-HG or L-2-HG in patients 
[22,23]. 

In addition, a recent study suggested that IDH mutations lower 
2-oxoglutarate production and hence EglN activity, leading to HIF-1α 
stabilization, although this finding has been disputed [24]. Early studies 
showed that D-2-HG cannot only reduce levels of α-ketoglutarate, but 
also inhibit activity of HIF1α-PHDs, leading to decreased HIF-1α 
degradation and an enhanced HIF-1α orchestrated “pseudohypoxic” 
response. Accordingly, HIF1α has been shown to be upregulated in cells 
treated with exogenous D-2-HG and in cells that overexpress mutant 
IDH1. Conversely, later studies suggested that in contrast to L-2-HG, 
D-2-HG stimulates the activity of this enzyme [25,26]. Accordingly, 
the expression of mutant IDH1 has been shown to enhance HIF-1α 
degradation and diminish HIF1α response levels, whereas the loss of 
HIF1α-PHD activity can block the transformation ability of mutant 
IDH. In certain cellular contexts, therefore, HIF1α or other specific 
targets of hydroxylation by HIF1α-PHD appear to suppress the 
oncogenic potential of D-2-HG. Thus, it remains somewhat unclear 
whether D-2-HG has an agonistic or antagonistic effect on HIF-1α-
PHD at tumor-relevant concentrations and whether HIF1α could 
act as a tumor suppressor in some IDH-mutated tumors. In general, 
determination of D-2-HG and L-2-HG instead of total 2-HG is more 
persuasive and required for clinical and scientific research.

Diverse mechanisms of aberrant 2-HG accumulation 

Generation of D-2-HG by IDH mutations in human cancers: 
The identification of cancer-associated mutations in three metabolic 
enzymes including fumaric acid dehydrogenase (FH), succinate 
dehydrogenase (SDH), and isocitrate dehydrogenase (IDH), which 
suggests that altered cellular metabolism and carcinogenesis are 
closely related. Loss-of-function mutations in FH and SDH have been 
identified in renal cell paragangliomas and carcinomas [27]. Mutations 
in two isoforms of IDH (IDH1 and IDH2), are common found in 
cancers, including gliomas, chondrosarcoma, cholangiocarcinoma, 
colorectal cancer, prostate cancer, lung cancer and some subtypes 
of acute myeloid leukemia [28-30]. As mentioned above, IDH, a key 
enzyme in TCA cycle, catalyzes isocitrate into α-KG, which plays an 
important role in biological material and energy metabolism. While the 
mutations alter the active site of the enzyme leading to high levels of a 
carcinogenic metabolite, 2-HG, which is normally found at very low 
levels in cells [31-33]. Wild-type IDH1 and IDH2 first catalyze isocitrate 
oxidation to oxalosuccinate, which is an unstable intermediate. In this 
reaction, NADPH will be produced. In the second step, oxalosuccinate 
transfer to α-KG, resulting in production of CO2. Mutant IDH1 and 
IDH2 catalyze a single-step reaction. In this reaction, NADPH is 
oxidized to NADP+, with concomitant reduction of α-KG to 2-HG. 
The mutant enzymes are unable to catalyze the carboxylation of 2-HG 
and therefore cannot generate α-KG (Figure 1). Some research groups 
have demonstrated that 2-HG functions as an ‘oncometabolite’ by 
affecting a variety of signaling pathways related to cellular proliferation, 
transformation and differentiation, also 2-HG could modulate the 
activity of metabolic and epigenetic tumor suppressor enzymes that 

use α-KG as a cosubstrate [34-36]. α-KG and 2-HG differ only in the 
replacement of the "ketone" group in α-KG with a hydroxyl group in 
2-HG. IDH1 and IDH2 mutations occur at different frequencies in 
different tumor types [37-58].

HG accumulation in non-IDH mutated cells

MYC-driven D-2-HG accumulation: Recently, Ambs’ group 
demonstrated that D-2-HG accumulated at high levels in a subset of 
tumors and human breast cancer cell lines without IDH mutation [58]. 
They discovered an association between increased D-2-HG levels and 
MYC pathway activation in breast cancer. The aberrant accumulation 
of D-2-HG in a subset of human breast tumors with poor outcome and 
linked this observation to MYC activation and glutamine dependence. 
This absence of IDH mutations in breast tumors suggested a novel 
mechanism for D-2-HG accumulation in breast cancer. Further 
analyses by this group revealed globally increased DNA methylation 
in D-2-HG-high tumors and identified a tumor subtype with high 
tissue D-2-HG and a distinct DNA methylation pattern that was 
associated with poor prognosis and occurred with higher frequency in 
African-American patients. Tumors of this subtype had a stem cell–
like transcriptional signature and tended to overexpress glutaminase, 
suggesting a functional relationship between glutamine and 2-HG 
metabolism in breast cancer [58].

Furthermore, D-2-HG is found frequently accumulated in tumors 
and cell lines of the basal-like/ mesenchymal subtype, reaching 
concentrations comparable to those in IDH-mutant gliomas and 
leukemias, despite the absence of IDH mutations. 

Involvement of L-2-HG dehydrogenase in L-2-HG accumulation: 
There were also some evidence, showing that L-2-HG elevation is 
mediated in part by reduced expression of L-2-HG dehydrogenase 
(L-2-HGDH) [59]. L-2HGDH reconstitution in renal cell carcinoma 
(RCC) lowers L-2-HG and promotes 5hmC accumulation. In addition, 
L-2HGDH expression in RCC cells reduces histone methylation and 
suppresses  in vitro  tumor phenotypes, suggesting that L-2-HG is 
also capable to inhibit normal function of α-KG and contribute to 
tumorigenesis of kidney cancer.

Hypoxia-mediated accumulation of L-2-HG: An intratumoral 
hypoxia environment could be formed, due to the rapid proliferation of 
cancer cells. When cells are placed in a low oxygen environment they 
normally undergo a series of metabolic adaptations including an 
increase in glucose uptake and glycolysis and a decrease in oxidative 
phosphorylation. Conversely, the presence of oxygen is associated with 
a decrease in glycolysis and an increase in oxidative phosphorylation. 
The coupling of oxidative phosphorylation is mediated by the Hypoxia-
inducible factors (HIFs) [60]. HIFs  are  transcription factors  that 
respond to changes in available oxygen in the cellular environment, to 
be specific, to decreases in oxygen, or hypoxia [61]. HIF is a heterodimer 
consisting of an unstable alpha subunit and a stable beta subunit [62-
64]. Under low oxygen conditions the HIF1α subunit is stabilized, 
dimerizes with a HIF beta subunit, translocates to the nucleus, and 
transcriptionally activates a suite of genes that increase glucose uptake, 
increase glycolysis, and decrease oxidative phosphorylation [62-64]. 

Figure 1: Reactions catalyzed by wild-type and mutant IDH1 and 2.

https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Hypoxia_(medical)
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Recently, Intlekofer et al. and Oldham et al. showed mammalian cells 
selectively produce the L-2-HG under hypoxia in HIF-independent 
manner and L-2-HG arises from reduction of glutamine-derived 
a-KG [65]. During hypoxia, the resulting increase in L-2-HG is 
necessary and sufficient for the induction of increased methylation 
of histone repressive marks, including histone 3 lysine 9 (H3K9me3). 
L-2-HG regulates histone methylation levels and to help mitigate 
cellular reductive stress through inhibition of glycolysis and electron 
transport [65,66]. Furthermore, HIF1α and IDH1/2 independent L-2-
HG induction by hypoxia may stabilize HIF1α, supporting a HIF1α 
dependent cell metabolic pattern in low oxygen condition. 

Imbalanced IDH1/2 expression and D-2-HG overproduction: 
Base on above, a research group in Osaka University developed a novel 
methodology to computationally analyze gene expression in colorectal 
cancer (CRC), and revealed a novel and potential mechanism of CRC 
development, through overproduction of D-2-HG when there is an 
imbalance between IDH1 and IDH2 expression, resulting in decreased 
clearance of D-2-HG when the β-oxidization pathway is diminished 
[67]. Additional validation analysis with another gene expression 
dataset resulted in IDH1/2 imbalanced expression with a shorter 
disease-free survival (DFS) compared with balanced expression [67]. 

Separation of L-2-HG from D-2-HG 

Considering that D-2-HG and L-2-HG enantiomers have identical 
physical and chemical properties, separation of the enantiomers is 
challenging. Two strategies have been developed to separate and 
quantify D/L-2HG by utilizing chiral column or chiral derivatization 
[68,69]. Rashed et al. used a ristocetin A glycopeptide antibiotic 
silica gel bonded chiral column combined with mass spectrometry 
analysis to detect D-2-HG and L-2-HG. While this strategy could not 
demonstrate perfect performance in real sample, such as metabolite 
products, especially small molecular metabolites with high polarity. 
In addition, the detection sensitivity of the method is very low due 
to the poor ionization efficiency of 2-HG in mass spectrometry. 
Chalmers et al. and Cheng et al. used chiral derivatization reagent to 
derivatize 2-HG followed by gas chromatography/mass spectrometry 
(GC/MS) or liquids chromatography/mass spectrometry (LC/MS) 
analysis respectively. However, the two-step derivatization procedure 
was tedious and the derivatized D-2-HG and L-2-HG were still not 
well separated in subsequent analysis [70,71]. Therefore, to develop 
a convenient and accurate approach to detect D-2-HG and L-2-
HG enantiomers is highly desired for the diagnosis of 2-HG related 
metabolic diseases (Figure 2).

Conclusion
Accumulation of D-2-HG by IDH mutations greatly contributes 

to tumorigenesis in Glioma and AML through modulating DNA and 
histone methylation pattern, while the elevation of L-2-HG could be 
associated with MYC, 2-HGDH and hypoxia. In addition, L-2-HG has 
been shown to be capable to alter DNA methylation by impairing α-KG 
mediated enzyme activity, which is quite similar to D-2-HG. However, 
if so, is excessive aerobic exercise or anaerobic exercise associated 
with increased risk of cancer? How is L-D-2HG metabolized? Is there 
any other key molecules responsible for L-2-HG degradation? Does 
hypoxia promote cancer pathogenesis via L-2-HG? Further studies 
are required to elucidate the 2-HG related metabolic pathway, as well 
as the approaches for separation of these two enantiomers in human-
derived specimens. 
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