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Introduction
Due to the advances in both digital electronic medical record 

(EMR) systems and next generation sequencing (NGS); most hospitals 
and biomedical research institutes have massive amounts of biomedical 
data (size of peta-bytes of data); which pose challenges to be stored; 
visualized; and analysed. Therefore, there is an essential need for a 
breakthrough computational intelligence engine to query, analyse, and 
handle this large amount of biomedical data, at least to (i) improve 
population health and physicians’ reliability in their daily clinical 
practice and (ii) improve the research discoveries within translational 
biomedical research and precision medicine. The main focus of this 
research is to develop or apply machine learning frameworks to 
handle the most common challenge problems in biomedicine and 
healthcare, especially after integrating both genotype and phenotype 
data. The advances in both big data analytics and large-scale machine 
learning paradigms is the key to success in designing future biomedical 
computational tools that are required to meet the challenges in 
healthcare [1,2]. 

Machine learning and knowledge discovery methods fall into four 
main categories: (i) supervised learning (forecasting and classification) 
(ii) unsupervised learning (clustering) (iii) semi-supervised learning
and (iv) association rules with inductions. The specific challenge that we 
address in our research is the development of suitable decision support 
strategies based on novel innovative machine learning algorithms for
the design and interpretation of novel predictive models for specific
healthcare events using the available large data sets of individual or
population biomedical data to fulfil the essential needs for personalized 
medicine at the bedside.
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Abstract
Currently, due to the availability of massive biomedical data on each individual, both healthcare and life Science 

is becoming data-driven. The input-attributes are structured/un-structured data with many challenges, including 
sparse-binary attributes with imbalanced outcomes, non-unique distributed structure and high- dimensional data, 
which hamper efforts to make a clinical decision in clinical practice. In recent decades, considerable effort has been 
made toward overcoming most of these challenges, but still there is an essential need for significant improvements 
in this field, especially after integrating both omics and phenotype data for future personalized medicine. These 
challenges motivate us to use the state-of-the-art of big data analytics and large-scale machine learning frameworks 
to confront most of the challenges and provide proper clinical solutions to assess physicians in clinical practice at the 
bedside and subsequently provide high quality care while reducing its cost.

This research proposes a new recursive screening incremental ranking machine learning paradigm to empower 
the desired classifiers, especially for imbalanced training data, to create suitable data-driven clusters without prior 
information and later reduce the dimensionality of large biomedical data sets. The new framework combines many 
binary-attributes based on two criteria: (i) the minimum power value for each combination and (ii) the classification 
power of such a combination. Next, these sets of combined attributes are investigated by physicians to select the 
proper set of rules that make clinical sense and subsequently to use the result to empower the desired healthcare 
event (binary or multinomial target) at the bedside. After empowering the target class categories, we select the 
k-significant risk drivers with a suitable volume of data and high correlation to the desire outcome, and next, we
establish the proper segmentation using AND-OR associative relationships. Finally, we use the propensity score
to handle the imbalanced data, and next, we build break-through machine learning/data mining predictive models
based on functional networks’ maximum-likelihood and Newton-Raphson iterative matrix computation mechanism
to expedite the implementations within high performance computing platforms, such as scalable MapReduce HDFS,
Spark MLlib, and Google Sibyl. Comparative studies with both simulated and real-life biomedical databases are
carried out for identifying specific biomedical and healthcare outcomes, such as asthma, breast cancer, gene
mutations selection and genomic association studies for specific complex diseases. Results have shown that the
proposed incremental learning scheme empower the new classifier with reliable and stable performance. The new
classifier outperforms the current existing predictive models in both high quality outcome and less expensive in
execution time, especially, with imbalanced and sparse with high-dimensional big biomedical data. We recommend
future work to be conducted using real-life integrated clinic-genomic big data with genome-wide association studies
for future personalized medicine.
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Recently, the advances in biomedical technology (EMR with 
NGS) have greatly increased the amount of available information that 
is often relevant to clinical decision support and cohorts of experts. 
These advances have the enormous potential of creating innovative 
data mining and machine learning algorithms toward improving 
diagnostic or prognostic accuracy as well as therapy selection 
capabilities. However; the available big data biomedical information 
comes with a larger risk of data overload and suboptimal utilization 
of the information in clinical practice, especially in precision medicine 
with biomarkers and drug discoveries and in predicting an individual’s 
appropriate responses to a specific drug.

The motivation behind our research is to develop the capability of 
harnessing big data advanced analytics to manage the correct patients 
at the correct time with the correct interventions and with high 
quality treatments while reducing the costs. There are many real-life 
examples of the use of predictive modelling in both clinical practice 
and biomedical informatics which include (i) minimizing the mortality 
and re-admission rates of specific patients and providing real-time 
monitoring to provide assessments to physicians to save lives within the 
ICU, especially those preterm children and patients who are admitted 
with chronic diseases and (ii) determining the Single Nucleotide 
Polymorphisms (SNPs) loci in a genome that contains single-base 
variations across a population, which is essential in identifying 
diagnoses and predicting many complex diseases and common traits. 

Related Work and Literature Review
It is known that clustering is the main pillar of machine learning 

in addressing un-supervised learning and similarities in multi-
dimensional data. Although there are many statistical and computer 
science techniques for handling such issues, they are still used in some 
applications, but most of them have drawbacks, specifically, decision 
trees, association rules, apriori optimization, self-organized map, and 
fuzzy clustering methods. The scope of this research is to propose new 
methodology to overcome most of these drawbacks, especially within 
imbalanced and sparse large biomedical data sets. Next, we conduct 
comparative studies and summarize existing methods with their 
limitations in a literature review section, and with implementations, 
provide results interpretations and future outlooks.

With the current challenges in biomedical data, the computations 
in machine learning algorithms must be expedited. This step can be 
performed using the key of successful new parallel and distributed 
HPC computing using multiple processors (multi-cores) within Sidra 
Biomedical Informatics Service Hub HPC distributed systems, based 
on either batch or online sequential modeling; to perform enormous 
computations through a GPFS/LSF platform or MapReduce and Spark 
scalable performance model. It has been proven that both MapReduce 
and Spark platforms have many implemented algorithms such as, 
genetic algorithms and particle swarm optimization [3-5]. We can use 
both MapReduce and Spark with GPFS/LSF platforms to implement 
the new framework and the best classifier computation bottleneck 
for estimating the parameters of the model; which are complicated 
matrix computations with matrixes from very large training data sets. 
Therefore; we introduce a reliable solution for matrix multiplications, 
transposition, and inverses through two separate MapReduce functions.

Assume that we are given biomedical data D={(xi, yi); i=1, . . ., n} 
where yi ε {(0,1,…, c-1) for p binary predictors belongs to {0;1}; which 
are sparse variables with some limitations to connect with the desired 
categorical target Y and c ≥ 2. The focus is to develop a novel data 

mining algorithm to empower the desired group categorical target 
and overcome the difficulties in the building of significant relations/
partitions to enhance future predictions in both healthcare and 
biomedical industry classification problems. Therefore, select the set of 
variables that is appropriate for participating in empowering the target 
class categories (for example, we select k input variables, (X1; X2;...; Xk); 
and then, we determine the appropriate associated interactions that 
empower the target class categories based on the most appropriate 
strategy of selecting this k-significant list of risk drivers with a high 
volume of data and strong relationship to the desired biomedical 
healthcare events.

The benefit of the desired recursive screening clustering data 
mining algorithm is to select the best combination of input features 
within the biomedical data and compute the classification power of 
a specific combination, and then, to create intermediate risk drivers 
within their own specific cluster using the proper combinations 
based on the AND; OR associative relationships. The main focus is 
to overcome the most common challenge problems in addressing big 
biomedical data, namely, sparse characteristics in a high-dimensional 
domain and addressing the curse of dimensionality. Therefore, we 
must find the appropriate significant interactions (combinations) of 
the given data from the available sparse biomedical variables that will 
be utilized to empower the outcome class categories. The last part of 
the problem is to design/develop a new data mining classifier based 
on constrained functional networks with a least squares and conjugate 
gradient optimization criterion. This new classifier considers both 
domain experts and data-driven knowledge discovery using a minimum 
description length to overcome both local optima and complexity due 
to the high dimensionality and sparse input feature space.

Challenges and Motivations
In working with biomedical data, we face many challenges, namely, 

sparse and high dimensionality with its corresponding collinearity 
and reduction problems. Therefore, the attribute contributions in 
identifying a specific healthcare event will be meaningless. In addition, 
due to the sparse within the input-space features; the predictive 
modelling computations will face challenging problems in determining 
the importance and meaning of the high volume of data within a 
specific cluster during the visualization and predictions. Furthermore, 
the expansion of the high-dimensional input biomedical feature space 
will lead to an ill-condition feature-space matrix, which leads to over 
fitting problems.

To assess and overcome some of the above-referenced challenges, 
we are proposing a new recursive screening clustering incremental 
ranking machine learning algorithm to handle biomedical data’s 
common challenges. This new machine learning framework uses the 
priori structure information algorithm and association rule strategies 
to improve the classification or regression performance and then 
performs an assessment to identify the important and significant 
features (input attributes). The advantage of our new mathematical 
algorithms framework will expedite the implementation processes 
of biomedical data analytics and the predictions of both continuous 
and categorical healthcare outcomes, then it provides high quality 
treatment while reducing the cost.

To achieve our research, it is essential to review the state-of-the-art 
of the popular machine learning techniques that can work with sparse 
biomedical data. Based on the findings, we specify the most common 
drawbacks and limitations of these techniques with multi-dimensional 
sparse overlapping big biomedical data. We recommend future work 
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processing) – otherwise; the procedure is very time consuming.

(ii) Calculate the classification power of this combination (there are 
different formulas for its definition), for example;

(iii) Compute the following: 

Power(COMB(i))=max (Ns1/Ns;Ns2/Ns);

Obviously, Power (any combination) ≥0.5; if Power≥ PowerMin; 
then save COMB(i).

(iv)Save the set of attributes and rules: The binary predictors that 
are included in this combination (all of them have the value 1); 
which is the value of Power (COMB (i)); will be saved.

•	 Next; the physicians or case managers will investigate this set of 
rules and check their proper adequacy from a medical point of 
view. Based on both domain expert and data-driven conclusions; 
we keep only the rules that fall into common choices.

(v)Dominating Group/Class will have the following values:

•	 1 if Ns1>Ns2; (if G1 is the target class) and

•	 0 if Ns1 ≤ Ns2; (if G2 is the target class).

•	 END.

Initializations and critical cases

Here, we present the basic steps within the novel desired training 
algorithm using many unconditional and conditional loops to reduce 
the rules; for example; the probability of each group is important; due 
to the following details:

o	We may have different minimum power values (precision) for 
each class, specifically for imbalanced data (very rare), (G=1 
in 98%; and G=0 in 2%) of the observations. Therefore, we use 
two different PowerMin values; such as PowerMin(1)=99.5 and 
PowerMin(0)=25% (we are interested in such a combination 
only because it is a very rare class) or

o	We may check the threshold in Step 2 and then select the Target 
Class (in this case G=0) and give the PowerMin value only for the 
Target Class.

o	The two above steps must be performed after computing the 
classifier power using the following formula:

Power (COMB (i))=Ns_TargetClass/Ns.

Based on this novel recursive clustering paradigm we will be able 
to handle a sparse and multidimensional input space and the curse of 
dimensionality. In addition, save these binary predictors within each 
combination. Next, the physicians or case managers will investigate 
this set of rules and check their adequacy from a medical point of view.

According to both the domain expert and data-driven conclusions, 
we keep only the rules that fall into common choices. During the 
implementations, we used the most popular data analytics and 
modeling quality measures and requirements to discover the risk 
drivers and to be certain of both the efficiency and reliability of the 
developed new framework using both simulated and real-life practical 
issues in both biomedicine and healthcare domains, in other words;

If the target is continuous values:

o	For the given set of attributes within a set of data; D; we compute 
the following quality measures:

to be conducted using simulated and real-life (integrated clinical and 
omics) data to check the performance and comparative studies with 
statistical techniques, decision trees, association rules, fuzzy clustering 
means, k-nearest neighbour, SOM and apriori algorithms.

Novel Recursive Clustering Algorithm
The desire training algorithm of the recursive screening clustering 

technique is to select the proper combination of predictors (input 
variables) from given biomedical data with multidimensional sparse 
binary attributes. This set of rules will be revised by the physicians and 
then used to enhance the classification power of the desired binary 
target. The entire implementation to obtain a specific combination is 
briefly summarized in algorithm 1:

Algorithm 1: New incremental recursive clustering

•	 Step 1: Suppose that we have a binary classification problem 
with G1 – (Group1/Class1) with n1 observations and G2 – (Group2/
Class2) with n2 observations; where (n) or N=n1+n2. The goal is to 
create p binary predictors: x1, x2… xi,… xp; (it is known that the 
binary/sparse biomedical data has some limitations in connecting 
with the desired target and that it is difficult to build significant 
relations to predict future healthcare outcomes). The goal is to find 
important interactions (partitions or clustering of data) between 
some of the sparse variables that will empower the desired target 
class/group.

•	 Step 2: Select the set of variables that is appropriate for 
participating (for example; we select k variables: x1, x2… xi,… xk); 
and then select the best interactions (appropriate clusters) out of it. 
This step can be achieved by building an appropriate strategy for 
selecting this k-significant list of risk drivers with the appropriate 
high volume of data and a strong relationship with the available 
target (both continuous and multi-category values).

•	 Step 3: The core idea of the recursive clustering mechanism is to 
select many parameters:

•	 MinIntCnt=minimum number of variables to be included in each 
interaction (obviously 2<=MinIntCnt<=k);

•	 MaxIntCnt=maximum number of variables to be included in 
each interaction (obviously MinIntCnt<=MaxIntCnt<=k);

•	 Nmin=minimum number of observations for which a combination 
has the value 1. The traditional value of Nmin is 5 or 10 or 20);

•	 PowerMin=minimum power value for the combination (if Power 
≥ PowerMin – save this combination); where Power ≥ 0.5 (as seen 
below);

•	 for count=MinIntCnt:MaxIntCnt;

select a new combination; (COMB(i)) with the following 
characteristics; for example:

(i) COMB(i)=1 if: x2=1; x3=1; x4=1; x6=1 (all combinations 
contains ONLY binary variables with value=1).

COMB(s)=AND(x2=1; x3=1; x4=1; x6=1);

Therefore; assuming that Ns is the total number of observations; 
where COMB(i)=1 (Ns1 belongs to G1 and Ns2 belongs to g2); where 
Ns=Ns1+Ns2. If Ns<Nmin; then skip this combination (exclude it from 
the calculations using genetic algorithms or simulated annealing to 
handle the sparse and multidimensional input-space and the curse of 
dimensionality, then reduce the number of combinations during the 
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▪▪ Compute the most common statistical summaries 
(volume of positive values; average; median; and 
standard deviation); 

▪▪ Do the transformation (1/attribute; (attribute)2; 
sqrt(attribute); log(1/(1+attribute));

▪▪ Compute the correlation between the target and actual 
attribute and the transformations in step 2;

▪▪ Apply flag criteria to select the higher correlation within 
step 3;

o	Sort the data based on both the volume of positive values and the 
values within the flag criterion column;

o	Select the attributes that have the higher correlations.

 If the target is in the multinomial/binary category:

o	For the given set of attributes within a set of data; we compute 
the following quality measures:

▪▪ Compute the common statistical summaries (volume of 
positive values; ratio in each group);

▪▪ Compute the F-value within each category;

▪▪ Do the transformation (1/attribute; (attribute)2; 
sqrt(attribute); log(1/(1+attribute));

▪▪ Compute the correlation between the target with the 
actual attribute and each transformation within step 2;

▪▪ Apply flag criteria to select the higher correlation within 
step 3;

o	Sort the data based on the volume of positive values and the 
values within the flag criterion column;

o	Select the attributes that have the higher correlations.

Clustering and associations/matching: Similarities with handling 
the biomedical sparse data and dimensionality reduction.

Advantage of the new clustering framework

The advantages of the new clustering technique can be summarized 
as follows:

▪▪ The proposed novel recursive clustering paradigm can 
handle a sparse and multidimensional input space and 
the curse of dimensionality then, reduce the number 
of combinations during the development of the data 
mining predictive modeling classifier;

▪▪ The binary predictors within each combination are 
investigated by the physicians or case managers and 
are checked for adequacy from a medical point of view. 
Therefore; based on both the domain expert and data-
driven conclusions;

▪▪ We keep only the ones that fall into common choices;

▪▪ The new paradigm can be deployed within parallelized 
distributed HPC systems to handle big biomedical data 
and fulfill the need of personalized medicine;

▪▪ The novel data mining recursive clustering technique 
is simple and has O(n) computations with no prior 
information/probability similar to the ones with the 

current techniques;

▪▪ In our study; we use a new data mining classifier that is 
based on constrained functional networks with a least 
squares and conjugate gradient optimization criterion. 
This new classifier considers both the domain expert 
and data-driven knowledge discovery using a minimum 
description length to overcome both local optima and 
complexity due to high dimensionality and a sparse 
input feature space;

▪▪ With the new framework; there is no need to worry about 
the number of clusters; k; and no sensitivity to outliers 
that leads to skewed means or to initial conditions that 
produce different results of the clustering;

▪▪ The new paradigm is unlike a k-means cluster technique; 
but we have no non-linear ratio-scale. Therefore; the 
new paradigm has O(n); whereas; the k-means cluster 
computation has a complexity of O(K*n*No. Iterations);

▪▪ The new algorithm uses both associations that are based 
on volume of each class category and its quotation power 
classification support; unlike the Apriori algorithm O 
(2*No. of items). In addition; the Apriori algorithm is a 
time-consuming algorithm; especially when k is large;

▪▪ In the new recursive clustering algorithm; there is 
no need to specify the distance functions among the 
clusters, unlike Fuzzy C-Means and k-means clustering 
with the Mahalanobis distance with a mean and 
covariance matrix, which are very sensitive to outliers 
and centers;

▪▪ The new algorithm is optimal due to the use of a genetic 
algorithm and minimum description length, which 
leads to fast local optima, unlike the ID3, which is not 
optimal, due to its use of expected entropy reduction;

▪▪ The new algorithm does not suffer from any problems 
when we build the rules, unlike the decision trees, 
which suffer from the problem of errors propagating 
throughout the tree, which is a very serious problem as 
the number of classes’ increases.

▪▪ Therefore, we have developed the appropriate 
significant interactions (combinations) of a given data 
set from the available sparse biomedical variables that 
will be utilized to empower the outcome class categories. 
The next sections will include the entire process and 
implementations of the proposed novel recursive and 
incremental algorithm to empower functional networks 
classifier using numerous of clinical and genomics 
data and simulation studies within high performance 
computing platform: scalable MapReduce HDFS, Spark 
MLlib, and Google Sibyl [6-8].

Novel Machine Learning Classifier
Background

In the past few years; functional network models have become 
popular frameworks for the predictive modeling of different real-life 
applications, such as medicine and business. The obtained results 
have proven that functional networks can be considered to be a 
remarkable data mining knowledge discovery paradigm for predicting 
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both continuous and categorical outcomes [9-11]. However, this new 
intelligence system framework has not been utilized in the biomedicine 
and healthcare industries, especially for big data. The motivation 
behind this research is to propose machine learning based on functional 
networks and use the strength of the MapReduce and Spark distributed 
platforms to expedite the computations of functional networks that are 
based on maximum-likelihood estimation (FunNets- MLE) classifiers 
and then design a suitable decision and overcome the common 
challenges within big biomedical data and fulfill the requirements of 
personalized medicine.

In FunNets-MLE, the MLE is a good concave optimal solution 
that is certainly convergent but is very sensitive to noisy data, 
additionally, it takes an enormous number of iterative computations to 
approximate. The Newton-Raphson method is a fast iterative process 
for approximation, especially within a distributed file systems (DSF) 
platform; such as Hadoop or Spark, to calculate matrix transposes; 
computations; and inverses; especially with sparse and multi-
dimensional data. In this research; we are utilizing the minimum 
description length criterion that take care of both outliers/missing values 
and handle collinearity among attributes; then the RSVD methodology 
can work fast with no obstacles. In addition; we use different criteria for 
imputation to deal with missing data, depending on the percentage of 
missing values within each attributes; for instance; use mean/median of 
the rest of non-missing values within each attribute and assign a high 
value when missing; then this will prevent a record with a missing value 
to be integrated in the neighbourhood or significant of attributes.

Iterative Newton-Raphson functional networks classifier

The core of Newton’s technique is to guess the initial root; Xi.; to 
estimate the new value of the root; X 1.i + F(X , )i k⋅ Θ ; in other words;

1
F(X , )

X 1 = X F(X , ). . i k
i i i k

k

−

⋅
⋅

 ∂ Θ
+ − Θ  ∂Θ 

      	              (1)
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1| | | (X 1) (X X ) | 100. . .s i i i

−
+∈ = + − ×  is an error, say, 10-4. If 
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. . , c; and i=1, . . . , n. The goal is to find π ik; which is the probability that 
observation i falls in class Ak. Assume that ( )ik ikpπ τ=  where p (•) is a 
probability function, which must satisfy the probability conditions; and 

i kτ  is the desired model: 
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then; the goal is to estimate kΘ . The function p(•) can be sigmoidal; 
logit; probit and Cumulative Distribution Function (CDF). During 
the implementation process in our research; the function that we 
are interested in applying Newton-Raphson to, for the purpose 
of expediting the computations, is the first derivative of the Log-
Likelihood function;

( ){ }1 0
( ) log

n n

jk ik e ik
i k

l y π
= =

=∑ ∑   θ             		                   (3)

where yik is the coded matrix; then; the desired Newton-Raphson’s is 
written as in [7]. 
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i,i π π
−

=

= Θ Θ∏X X ;

for j, l=0,1,. . . ., (m+1)P and k, k1=0, 1, c-1. We note that if the 
process is initialized at zero and the MLE is known to have concave 
shape properties, then convergence is guaranteed. Therefore, the 
implementation processes turn out to be matrix multiplications and 
inverses: 

( ) 1
M and ( ) .T T

kY π
−   −   

X X X

To avoid the enormous computational time, we use one of the 
available parallel distributed HPC platforms; namely; the Hadoop 
MapReduce framework, or Spark, or GPFS/LSF systems. Therefore; we 
will easily perform the mapping and reducing computations and specify 
the key value outputs/inputs of each of the Map and Reduce functions; 
as accomplished in [3]. The parallel-FunNets-MLE architecture can 
be drawn easily; which expresses both the first derivatives of the log-
Maximum likelihood function and its corresponding Jacobian or the 

Hessian matrix; 
12
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k k

l x
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. The processes and training algorithm of 

FunNets-MLE is based on Newton-Raphson’s technique according to 
equations 1 through 5.

Randomized large-scale singular value decomposition

To minimize the computational time of our algorithm; we utilize 
the scalable randomized large-scale singular value decomposition 
(RLSVD) within the available parallel distributed HPC platforms: 16 
and 32 cores with the Hadoop MapReduce framework and Spark or 
GPFS/LSF systems. This novel randomized algorithm is a scalable 
singular value decomposition for optimizing the performance of 
the desire machine learning algorithm (Functional networks with 
Maximum-Likelihood estimations based on Newton-Raphson iterative 
approximations) [12]. The core idea is to quickly calculate the inverse 
of a matrix A or determine a rank-k approximation for an m-by-n 
matrix; A; for large m and n (106 or more). Therefore; the goal is to find 
a rank of (k<<n); where TA U V= ∑ ∑ is a k-by-k non-zero-covariance 
matrix with 1 2 ... 0kσ σ σ≥ ≥ ≥ ≥  while U and V are orthonormal 
singular matrices of A.

The advantage of the RSVD method is in presenting a fast and easy 
way to solve problems using Eigen-value decomposition and finding 
spanning columns or rows of a given matrix and then minimizing 
the computational cost. The Matlab script for RSVD can be written as 
follows:

function [U; S; V]=rsvd(A; k)

[m; n]=size(A); nz=nnz(A);

P=randn(n; k + 5); 

Y=full( A * P );

[Q; R]=qr(Y; 0);

B=full( Q’ * A );
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[Uhat; S; V]=svd(B; ‘econ’);

U=Q * Uhat;

U=U(:;1:k); S=S(1:k;1:k); V=V(:;1:k);

This approach offers excellent methodology for computing 
matrixes within a multi-processor and big biomedical data and then 
rapidly reducing the time of the computations; with information being 
gathered at an even faster pace.

U=randn(50*10000; 1000); V=randn(50*100000; 1000);

A=U*V’; [v; i; j]=find(A);[~;ids]=sort(v); ids=[ids(1:length(v)/500); 
ids(end-length(v)/500:end) ]; A=sparse( v(ids); i(ids); j(ids) );

for k=2:1000; tic; [U0; S0; V0]=svds(A; k); toc; end for k=2:1000; 
tic; [Ur; Sr; Vr=rsvd(A; k); toc; end

This type of methodology can be tested by simulating random data 
with large-scale dimensionalities; say 5 × 105 by 5 × 106; and for 500 
attributes and having a non-zero covariance matrix; then; we have an 
almost 1000-times reduction in the computational time by using RSVD 
versus the common original SVDs in Matlab. The new RSVD elapsed 
computational time is 1.09 seconds; while the regular existing SVDs 
method in Matlab has elapsed computational time of 998.9 seconds. 
The greatest use for such a methodology in the future is; for example; 
biomedical informatics of next generation sequencing and whole-
genome and DNA sequencing or calculating the associations and 
similarities within genome-wide association studies and with respect 
to common or rare diseases. Furthermore; this approach can be applied 
to determine the Principal Component Analysis using an empirical 
covariance matrix from some collection of statistical data and then to 
compute the singular value decomposition of the given matrix to find 
the directions of maximal variance.

Implementation and Discussion
The goal is to deploy the developed machine learning methodology 

based on functional networks maximum likelihood classifier with the 
Newton-Raphson iterative algorithm for many simulated and real-life 
biomedical and healthcare industry data. The results with the desired 
statistical quality measures for both regression and support vector 
machines are summarized in the tables and figures.

Data acquisition

Congestive heart failure (CHF) data: This clinical data consists 
of 4,310 observations and 199 input variables. The target of these 
data involves both groups: Control individuals with 3,288 (76.1%) 
patients and case individuals with 1,031 (23.9%) patients. The data 
were combined together to form classification biomedical data of 4,319 
individuals with a precision of 23.9%; which is a small percentage 
(imbalanced data) and represents a challenge for any machine learning 
or data mining classifier. The entire de-identified data and its ownership 
was supported by MEDai Inc; Elsevier Company, Orlando FL, USA.

Implementations and discussion

All of the implementations were accomplished using Mahout in the 
Hadoop DFS MapReduce platform and MLlib Spark system. The new 
script of the novel recursive clustering framework was implemented 
in R and Matlab using 32- and 16-core HPC distributed systems. The 
implementations were performed based on the data-in-hand of both 
real-life congestive heart failure (CHF) data, very imbalanced breast 
cancer data; genomic wide association study data and gene mutations 
to identify children severe asthma exacerbation; and simulated studies.

Congestive heart failure data: The utilization of the new recursive 
screening clustering mechanism on this clinical data has been achieved; 
and at the end; we list the significant risk drivers (the high-risk 
variables) and all of the processes in the tables and graphs. The entire 
set of processes and implementations are as follows:

Step 1: Split for (a) Babies+pregnant women; and (b) all others 
(Everything below is for all others).

Step 2: Run the proper statistical inference pre-processing 
calculations as explained above for classification problems with binary 
categorical outcomes. The desired target (dependent variable) is 0/1; 
where 1 is the target class; (for example; Readmission; Mortality; ICU 
admission; Sepsis). Therefore; we consider the treatment cost and 
length of stay (LOS) to be continuous outcomes (regression problem 
with the other script code: LOS ≥ 10 and LOS ≥ 25. Day 1 model 
truncation: LOS=max 25; the goal is ≥ 10 (red); and therefore; the PPV 
is the N1 criterion; not R2.

Step 3: Either for continuous or categorical outcomes; select the 
top 10 measures with the max ratio (in general F-ratio ≥ 4 is a good 
value for a high risk) and (volume of clustering data: N>20 or 10); if 
N=G0+G1 and G1 (target class observations) ≥ 5.

-	 Select these 10 splits or drivers; paste them and run (R-Script 
for either Classification or Regression) again; select the first 
one and paste its results in the final list: High-Risk variables 
(X’s=Readmission/Mortality; ICU; or Sepsis);

-	 Split according to the first clustering; and run (R-Script for either 
Classification or Regression) the script for the other nine splits or 
risk drivers;

-	 Select the first one (max ratio) if the ratio is still good and is not 
correlated with the first selected; paste it in High- Risk (X’s); and 
so on;

-	 Suppose that after the fourth selected variable (out of 10); the other 
six’s ratio decreases significantly.

-	 Let us say that the first four selected measures are X1; X2; X3; and 
X4. Therefore; go to all of the other nodes and split them as follows: 
OR(X1; X2; X3; X4).

-	 Go to the second node (where X1=X2=X3=X4=0 or none of them 
is positive);

-	 Go to step 2.

END
After repeating this procedure several times, we will come up with a 

list of High-Risk (X’s) variables. Suppose that all of the measures (input 
variables) that left have a ratio of <4.

o	Now; select these with a ratio of >3 or >2 and a high volume 
(N=several thousands). Assume that Y is such a measure. 
Therefore; we split Y and go to Step 1, in this way, we search for 
interactions: (Y>0)(Z>0) that have a ratio of ≥ 4.

o	The list of high-risk measures will contain thirty to seventy 
variables and interactions; along with their statistics.

We note that any continuous variable can be transformed into 
several binary variables by dividing it into intervals or following some 
binary code structures. For example; the variable age can be written as 
follows:
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▪▪ Age (0-5) years: (binary); it is equal to 1 if Age belongs to the 
interval (0,5); and 0 otherwise;

▪▪ Age (5-10) years: (binary); it is equal to 1 if Age belongs to the 
interval (5,10); and 0 otherwise;

▪▪ Age (10-25) years: (binary); it is equal to 1 if Age belongs to the 
interval (10,25); and 0 otherwise;

▪▪ Age (25-45) years: (binary); it is equal to 1 if Age belongs to the 
interval (25,45); and 0 otherwise;

▪▪ Age (45-65) years: (binary); it is equal to 1 if Age belongs to the 
interval (45,65); and 0 otherwise;

▪▪ Age (65-100) years: (binary); it is equal to 1 if Age belongs to 
the interval (65,100); and 0 otherwise.

Next, the physicians or case managers revised the obtained list of 
significant variables; and then; the results produced the desired High-
Risk Cluster. The same procedures are performed for the first two 
clusters: (i) Babies; and (ii) Pregnant women. An example is the high 
risk variable for sepsis (High-Risk-Sepsis).

To determine the scoring performance of the new clustering 
paradigm and build a suitable risk score; we calculate all of the 
combinations of size’s two; three; four; and five attributes out of the 

available 199 input attributes; which sums up to 
5

2

199
u u=
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 combinations 

for which each comprise a set of attributes. In reality; this number 
is enormous and would involve expensive computations. The new 
recursive incremental algorithm reduces the time of the computations 
of these combinations to only 0.06% and produces a reasonable number 
for the minimum number of combinations (29+68+112+74); which is 
283 sets of combinations instead of the above enormous number of 
combinations; comprising (630+7140+58,905+376,992)=443,667 sets 
of rules.

For simplicity; we propose only 20 rules out of the obtained list of 
rules in Table 1, using different combinations of at least five predictors 

to empower the classifier; which considers the physician’s point of view 
with the data-driven measures as well. These sets of rules were built 
using the new recursive screening clustering approach. In addition; 
there were other measures that were included in this list, but they were 
correlated with measures that were already selected with higher ratio 
values; for example, two, three, and four predictors within different 
combinations of the risk factor out of the 198 input attributes in high-
dimensional clinical data of congestive heart failure databases; as is 
shown in Table 1. Moreover, the area under the curve (ROC) for the 
average performance of the functional network predictive models that 
are based on the fast Newton-Raphson computational techniques with 
over 1000 runs is presented in the curve in Figure 1; which represents 
the specificity versus sensitivity for the congestive heart failure disease.

Breast cancer surveillance consortium (BSCS) imbalanced data: 
To test the performance of the new predictive modeling framework 
on an imbalanced data with less than 10% (positive class or case-
data has only 10% or less of the whole given observations). This can 
be achieved for “Breast Cancer Surveillance Consortium (BCSC) 
data: http://breastscreening.cancer.gov/rfdataset/. The data contains 
approximately; 2.4 million screenings mammograms and associated 
self-administered questionnaires. The primary goal of these studies 
was not readability; but rather highest risk detection performances 
and impact levels of each risk factor: our goal is to provide a risk level 
without making the decision (breast cancer or not) in place of the 
physician. The data originally contained 2,392,998 records of index 
screening mammograms from women included in the Breast Cancer 
Surveillance Consortium (BSCS) [13-14]. Among the 2,392,998 records 
of the database; 9314 cases of invasive breast cancer were diagnosed 
in the first year of follow up. Here; we are facing highly imbalanced 
data with a positive class accounting for only 0.39% of all records. We 
observe that; the BCSC database contains most of the known breast 
cancer personal factors. It is the largest database publicly available that 
includes breast density information.

As pointed out by [14-15] “information and dialog with more 
patient involvement in the decision-making process” are key words in 

Table 1: Congestive heart failure (CHF) data: The 20 rules of combinations of five predictors out of 75 obtained rules.

Different combinations of five attributes P0=G0/n0 P1=G1/n1 P0/P1 P1/P0 Q Y
(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; MI_All) 0.00090 0.00970 0.09 10.63 10.63 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; OldMIOnly) 0.00150 0.01450 0.1 9.57 9.57 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; IschHrtDis) 0.00150 0.01070 0.14 7.02 7.02 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; PulmHrtDis) 0.00150 0.00870 0.17 5.74 5.74 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; Cardmyopty) 0.00360 0.02040 0.18 5.58 5.58 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; CABGprev) 0.00180 0.01450 0.13 7.97 7.97 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; Angina) 0.00300 0.01550 0.2 5.1 5.1 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; AtrialFib) 0.00360 0.01840 0.2 5.05 5.05 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; Arrhythmia) 0.00520 0.03100 0.17 6 6 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; ValveDis) 0.00360 0.02130 0.17 5.85 5.85 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskResp) 0.00580 0.03880 0.15 6.71 6.71 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskMSkel) 0.00150 0.01070 0.14 7.02 7.02 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; Diabetes_All) 0.00730 0.04070 0.18 5.58 5.58 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskDiab) 0.00610 0.03490 0.17 5.74 5.74 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskNeuro) 0.00490 0.02720 0.18 5.58 5.58 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskGILiv) 0.00240 0.01940 0.13 7.97 7.97 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskInfect) 0.00180 0.01260 0.14 6.91 6.91 1

(HighRiskRenal; ChRenF_All; AcuRenF_All; Nephritis; HighRiskBlood) 0.00490 0.03200 0.15 6.58 6.58 1

(ChRenF_All; AcuRenF_All; Nephritis; RenInsuff; MI_All) 0.00090 0.00780 0.12 8.5 8.5 1

(ChRenF_All; AcuRenF_All; Nephritis; RenInsuff; OldMIOnly) 0.00120 0.01070 0.11 8.77 8.77 1

http://breastscreening.cancer.gov/rfdataset/
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dealing with cancer. Therefore a major challenge in the field of medical 
counselling is to assess clinicians and radiologists with adequate tools 
to help them to assess their patients’ breast cancer risk and to show 
easily how risk factors impact global risk. Yet, the risk scores that were 
built upon statistical models were not adopted at bedside regardless 
their accuracy. This is due to the end-users of these tools are neither 
oncologists nor clinicians and underlying too difficult to use during 
a medical consultation. Hence; it is essential to develop a new risk 
score reliable technique to be used within the current medical decision 
process.

To build a risk score that helps to detect highest risk profiles among 
general population; the mining algorithms has to provide a risk value 
without labelling a woman profile [14] and therein references. Dealing 
with general population means we are facing highly imbalanced data 
with a breast cancer incidence rate lower than 1000 new cases for 
100,000 women. Dealing with such imbalanced data can be done at both 
algorithmic and data levels. At data level by choosing a different cost 
or rebalancing positives or negatives examples. At algorithmic level; 
it is possible to make a K-nearest-neighbour algorithm more sensitive 
to the minority class by modifying the neighbourhood boundaries or 
by using a class confidence weight to handle imbalanced data during 
the labelling step. The authors in [14] implemented logistic regression; 
neural networks; k-nearest neighbour with different values of k; and 
decision trees risk models were built with 4 to 10 risk factors depending 
on the menopausal status. Comparative studies were carried and they 
reported that the obtained area under ROC curve results were in 
between 0.631and 0.642 for premenopausal/postmenopausal women.

In our study; we have done our best to handle both missing 
values and outliers using different criteria and then overcome the ill-
conditions and collinearity within the attributes in feature-space. In 
addition; we follow different imputation criterion to deal with missing 
data; depending on the percentage of missing values within each 
attributes; for instance; use mean/median of the rest of non-missing 
values within each attribute and we follow the same strategies that were 
shown in [14] by assign a high value when missing; then this will prevent 
a record with a missing value to be integrated in the neighborhood or 
significant of attributes. Therefore, we have cleaning data with 181,903 

observations and 13 sparse attributes (describing various pathological 
and mammography characteristics of the women); while the target 
(indicating diagnosis of breast cancer within one year of the screening 
mammogram). The summary statistics of the entire features of the 
BCSC data are shown in Table 2; where G0+=Summation of non-zero 
values supported “control group”; G0%=G0+/actual total number 
of control group; G1+=Summation of non-zero values supported 
“case group”; G1%=G1+/actual total number of Case group. These 
input variables have been determined to influence a woman’s risk for 
developing breast cancer and will henceforth be referred as risk factors. 
We observe that the given data is a very imbalanced data; where it 
has 175,629 individuals without breast cancer diseases (control data); 
which is 96.55% of the available complete observations; while it has 
only 6,274 individuals with breast cancer diseases (case data); which 
is representing only 3.45% (a very small percentage compare to the 
control subset) of the available complete observations. As it is shown 
in [14]; the goal is to use this breast cancer data (for two cohort groups: 
premenopausal and postmenopausal women) and then develop novel 
predictive models to (i) present the dependencies between breast cancer 
risk factors and then (ii) how to have accurate breast cancer risk score.

The authors in [14] created their own scoring Performances as an 
experiment set that was designed to test how the k-nearest-neighbour 
algorithm perform on the BCSC data (choosing k=5). As one of their 
constraints is to build a readable risk score; they select all combinations 
with a size s of 1 to 6 attributes among n=12 available attributes; meaning 
they have in total 2,509 combinations to test. A first way of assessing 
results of these combinations is to look at the best combinations by size. 
These results are obtained using an Euclidian space using a 2-norm 
Euclidian distance as they are not significantly better; when improved; 
using another p-norm measures. In Gauthier et al.; the authors find that 
the first list of all possible combinations (from 1 to 6 attributes) [14] 
performs better than the two specialized regression models obtained 
on pre- and postmenopausal women by Barlow WE [13] with an AUC 
of 0.642; based on agegrp; density; brstproc; lastmamm combination. In 
addition; they use the domain knowledge expert and they recorded the 
top 15 performance results before and after expert advice.

As before; we run the new algorithm to build a suitable risk score 
to empower the classifier for better prediction; by calculating all of 
the combinations of size: two to 9 attributes out of the available 12 

input attributes, which sums up to 
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each comprise a set of attributes. In reality; this number is enormous 

Figure 1: CHF Data: ROC Curve for functional networks classifier over 1000 
runs.

Table 2: Diagnosis of invasive carcinoma in situ breast cancer within one year of 
the index screening mammogram

Index Variable name G0+ G1+ G0% G1% Ratio
1 menopaus 147125 5236 83.77 83.46 1
2 agegrp 175629 6274 100 100 1
3 density 175629 6274 100 100 1
4 race 175629 6274 100 100 1
5 Hispanic 77106 1727 43.9 27.53 0.63
6 bmi 175629 6274 100 100 1
7 nrelbc 66595 2073 37.92 33.04 0.87
8 brstproc 68697 2220 39.11 35.38 0.9
9 lastmamm 76854 2564 43.76 40.87 0.93

10 surgmeno 119062 4061 67.79 64.73 0.95
11 hrt 112720 4147 64.18 66.1 1.03
12 invasive 0 4912 0 78.29 25
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and would involve expensive computations. The new recursive 
incremental algorithm reduces the time of the computations of these 
combinations and produces a reasonable number for the minimum 
number of combinations (3+8+11+14+9+12+10+5); which is 72 sets 
of combinations that can be easily interpreted by physicians and use it 
to empower the desire classifier; then build a proper clinical decision 
system. These set of rules are very easy to interpret and smaller than the 
actual rules and it can be instead of (66+220+495+792+924+495+220)
=4,004 comprising sets of rules. For the sake of space and simplicity; we 
are shown we are shown in Table 3; the top 5 rules of the combinations 
of 7 and 9 attributes with its corresponding AUC values.

We observe that the new framework for sure will outperform 
logistic regression; neural networks; and decision trees according to 
the published results within both [13-14]. In addition; the ROC/AUC 
show improvement around 24%; which means that, we may save lives 
of 1,506 patients from those 6,274 patients. Therefore; if each one of 
these individuals is spending $50,000 a year; then; we reduce the total 
cost of more than $75 million a year. In addition; minimize their future 
complications; minimize their LOS; ICU; and minimize both lengths 
of stay and/or emergency room visits with Readmission rates. In 
addition; the area under the curve (ROC)/AUC is 0.795 for the average 
performance of the novel method over 1000 runs is presented in the 
curve in Figure 2, which represents the specificity versus sensitivity for 
the congestive heart failure disease. Furthermore, we can develop novel 
large-scale predictive models to present the dependencies between 
breast cancer risk factors and have accurate breast cancer risk score 
that is easy to be used by physicians or case managers.

SNP selection and Genomic Wide Association Study Data in 
Identifying Children Asthma Exacerbation: By utilizing the real-life 
genomic wide association study (GWAS) data from [16] to forecast 
asthma exacerbations in children using random forests classifiers. 
According to the National Institute of Allergy and Infectious Disease 
report in (2015): https://www.aafa.org/display.cfm?sub=42&id=8; 
it is known that asthma is a complex disease known to be influenced 
by genetic; clinic; and environmental factors: There are 26.7 million 
individuals or about 9.7% of the U.S. populations have had asthma 
during their lifetime. In the year 2000, asthma exacerbations resulted 

in 1,499 deaths; 1.1 million hospital days, and $2.9 billion in direct 
expenditures in the U.S. There are more than 3,600 deaths due to 
asthma each year, many of which are avoidable with proper treatment 
and care. It is the leading chronic disease among children and it is the 
third-ranking cause of hospitalization in children. Approximately 25.9 
million Americans suffer from asthma (8% of adults; 10% of children); 
women account for almost 65% of asthma deaths; and asthma affects 
over 230 million people worldwide. The prevalence of asthma has been 
increasing since the early 1980s across all age; sex and racial groups. 
Each year; asthma accounts for more than 14 million doctor visits; 
almost 2 million emergency room visits; 439,000 hospitalizations 
(average length of stay (LOS) for asthma is 3.6 days); and more than 
3,600 deaths. The annual cost of asthma is estimated to be $56 billion. 
The direct costs accounted for nearly $50.1 billion (hospitalizations the 
single largest portion of direct cost) and indirect costs of $5.9 billion 
(lost earnings due to illness or death).

Recently; the authors in [16] predicted the children severe asthma 
exacerbations using ensemble learning based on “Random Forests” 
(RF), Bagging and Boosting algorithm using several clinical factors 
including the forced expiratory volume in one second as a percent of 
predicted (FEV 1%); oral corticosteroid usage; age; and gender (sex). 
However; these factors by themselves are limited in their ability to 
successfully predict severe asthma exacerbations. Therefore; they 
explore the potential power of a multi-single nucleotide polymorphism 
(SNP) model and GWAS data as incorporated into RF together 
with clinical relevant risk factors to effectively predict such complex 
diseases; this algorithm is applied to the prediction of exacerbations in 
a population of childhood asthmatics participating in the Childhood 
Asthma Management Program (CAMP): Stage 1 (population of 127 
exacerbation cases and 290 non-exacerbation controls) and Stage 
2 (population of 50 exacerbation cases and 114 non-exacerbation 
controls). However; the accuracy limitations; sparse attributes; and 
the selection of the significant SNP mutations and find both similarity 
and associations with complex diseases are still challenges. Therefore, 
to meet these challenges and be able to provide proper personalized 
medicine for every individual, it is essential to use the state-of-the-
art-of large-scale machine learning predictive modeling with big 
data analytics to predict the children severe asthma exacerbations 
using integrated genomic-clinic and environmental big biomedical 
factors. This kind of prediction would therefore have direct prognostic 
significance and might form the basis for the development of novel 
therapeutic interventions.

According to the SNP data from genome-wide scans that are 
available through the National Institutes of Health (NIH) database of 
Genotypes and Phenotypes (dbGaP) and CAMP parents participations 
as it is shown in [16] the data acquisition and the primary outcomes of 
the problem-in-hand can be summarized as follows:

•	 Clinical covariates: Age; gender; pre-bronchodilator FEV 1%; 
and treatment group (clinical traits) are known to be associated with 
asthma exacerbations: Age and pre-bronchodilator FEV 1%; are coded 
as numeric variables; gender/sex is coded as 1 for male; 2 for female; 
treatment group is coded as 1; 2; 3 for three different treatments.

•	 Primary outcome: The occurrence of either an emergency room 
visit or a hospitalization for asthma symptoms at any time during the 
clinical trial period was used to define a severe asthma exacerbation.

GWAS data: Of the CAMP participants; 417 Caucasian parent-
trios-children were genotyped using the Infinium II HumanHap550v3 

Figure 2: CBSC Data: ROC Curve for increment recursive functional 
networks classifier over 1000 runs.

https://www.aafa.org/display.cfm?sub=42&amp;id=8
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Genotyping BeadChip, and 164 Caucasian non-trio cohort children 
were subsequently genotyped using the Human660W-Quad BeadChip. 
Over 500,000 SNPs were successfully genotyped in the CAMP trios; 
with a reproducibility of >99.99%. Reproducibility is based on 4 samples 
that were each genotyped 15 times in the experiment. According to the 
explanations within [16] the Genotype quality is validated using the 
Mendel option of PLINK v0.99r http://pngu.mgh.harvard.edu/purcell/
plink;  [17] verifying allele calls against Ref-Seq to ensure correct 
orientation; and testing for extreme departures from Hardy Weinburg 
equilbrium in the parents.

Selection of SNPs: Focusing on the trio probands as their initial test 
population; they used RF importance scores to rank and select SNPs in 
two steps. At each step; they used SNPs as predictors to predict asthma 
exacerbations with RF; and obtained the RF importance score of each 
of the SNPs. At the first step; the computed RF importance scores for 
all SNPs genome-wide; 4,000 at a time; in chromosomal order. At the 
second step; they ranked all SNPs based on their RF importance scores; 
selected the top 4,000 SNPs; and re-run RF with these selected SNPs to 
re-rank them.

Prediction model building with RF: The 417 Caucasian trio 
samples (Stage 1 samples) were genotyped before the 164 cohort 
samples (Stage 2 samples), and were used to build and train the RF 
models to predict asthma exacerbations. The R package random 
forest version 4.5-25 was used to build RF models in this study: http://
cran.r- project.org/web/packages/randomForest/index.html. The RF 
predicted score is the percentage of trees voting for “yes”. During this 
step and the steps described in “selection of SNPs” above; RF parameter 
“ntree” (number of trees to grow) were set to be 1,500 - a relatively large 
number to ensure stable prediction results, and all other parameters, 
including mtry, were set to use the default values.

The authors in [16] used emergency room visits or hospitalizations 
as the definition of a severe asthma exacerbation; they first identified a 
list of top GWAS-SNPs ranked by Random Forests importance score 
for the CAMP of 127 exacerbation cases and 290 non-exacerbation 
controls. They predict severe asthma exacerbations using the top 10 
to 320 SNPs together with age; gender; pre-bronchodilator FEV 1 
percentage predicted; and treatment group. The authors in [16] found 
that the Area Under the Curve (AUC) score of 0.54 using the clinical 
traits alone; suggesting the phenotype is affected by genetic as well 
as environmental factors. On the other hand; they test/validate the 
predictions in an independent set of the CAMP population shows that 
severe asthma exacerbations can be predicted with an AUC=0.66 with 
160-320 SNPs in comparison to an AUC score of 0.57 with 10 SNPs. 
Their study shows that a random forests algorithm can effectively 
extract and use the information contained in a small number of 
samples. In addition; random forests; and other machine learning 
tools, can be used with GWAS studies to integrate large numbers of 
predictors simultaneously.

We follow the same procedures as of [16] in order to assess the 
performance of the new classifier based on the integrated phenotypic 
and omics data with the environmental factors (417 CAMP asthmatic 
family-trio children genotyped and 164 CAMP asthmatic family-
trio children genotyped) using stratified sampling methodology of 
random partition 70% (training) and 30% (testing) with the repetition 
of computations for 1000 times and one of the common benchmark 
stopping criterion. In addition; we use the selected clinical traits and 
SNPs as predictors with the two types of controls (i) permutation 
control; (ii) other random SNP control; and (iii) the black demarcation 
separates the top 4,000 SNPs (important and significant towards the 

target) from the rest (not significant towards the target). The entire 
population stages were utilized for both training and validation of the 
new parallelized functional networks classifier to identify the children 
severe asthma exacerbations and compute the common statistical 
quality measures; namely; sensitivity and specificity; with the Receiver 
Operating Characteristic curve (ROC curve) and the Area under the 
ROC Curve (AUC).

To gain the usefulness of random-forest ensemble learning with 
the new classifier; we note that the importance of random forest score 
measures the relative contribution of a predictor to the desire target; 
which is similar to our set of combinations of rules and apply the 
propensity score of each of the SNPs and plot it in chromosomal order. 
By drawing the demarcation separates to identify the top 4000 SNPs 
with the highest significant score to the target.

To compare the performance of the new classifier with the ensemble 
learning random forest classifier; we implement both incremental 
clustering-set of combination rules and parallelized functional 
networks classifier using the following schemas: (i) The clinical data 
(age, gender, pre-bronchodilator FEV 1%, and treatment group) alone; 
and then (ii) similar to [16] we use the integrated repository data (age; 
gender; pre-bronchodilator FEV 1%, and treatment group; different 
numbers of SNPs selected based on the propensity score based on the 
significant SNPs predictors; then at the end we are able to empower the 
parallelized functional networks classifier to identify the children severe 
asthma exacerbations with varying degrees of success. We carried over 
during the implementation processes; the minimum description length 
criterion that take care of both outliers/missing values and handle 
collinearity among attributes, then the RSVD methodology can work 
fast with no obstacles.

We concluded that the new classifier with the support of the set 
of combined rules add trust and reliable to the classifier and increase 
its AUC values based on the nonlinear relationship with the available 
phenotypic attributes with demographic predictors is 0.62, which is 
better than the corresponding values in the existing RF values. On the 
other hand, by adding of the 10 significant SNPs as it was done in the 
case of RF, we found that the exacerbations increased the AUC to 0.65, 
which is better than 0.57. Furthermore; by adding more important 
SNPs columns to increase the predictability of asthma exacerbations; 
we got the independently replicated AUC values of of 0.67, 0.71, 
and 0.71 for 40, 160 and 320 SNPs, which is 7.5% improvement, 
respectively compared to the RF values within [16]. We conclude that 
the new parallelized functional networks classifier empowered through 
the novel criterion of set of combination rules according to propensity 
score for the important SNPs and we are able to identify the children 
asthma exacerbations through the use of hundreds of significant SNPs 
in a novel large-scale machine learning predictive modeling based on 
functional networks and minimum description length. The comparative 
studies versus the achieved ensemble learning and random forests 
model by [16] were reasonable and improve the classification accuracy, 
which has impact on each individuals treatment cost. In addition, it 
will improve the healthcare outcomes, for instance, minimize the 
length of stay, minimize re-admission and emergency room visits; 
and can be used for disease intervention profiling. Furthermore, as it 
was expressed in [16], “the new classification model” can increase our 
understanding of the biologic mechanisms behind why only certain 
individuals with asthma are at risk for exacerbations; as well as the basis 
for the epistatic (gene-gene) interactions underlying asthma severity; 
providing insight into novel preventative and therapeutic strategies”.

Simulated mixture data: Classification and time of the 

http://pngu.mgh.harvard.edu/purcell/plink
http://pngu.mgh.harvard.edu/purcell/plink
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
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computations: Investigating the strengths and capabilities of the new 
technique requires both real-life data and simulation studies using 
a 32- core machine. The simulated data are from mixture bivariate 
predictors and the binomial response of two groups; where each group 
consists of a mixture of two subclasses (groups); C1 and C2, as follows:

( ) ( ){ }
( ) ( ){ }

1 11 11 12 12

2 21 21 22 22

C : , , ;

C : , , ;

x x N N

x x N N

µ µ

µ µ

= ∈ ∑ ∪ ∑

= ∈ ∑ ∪ ∑
Where,

11 12

21 22

[3,3]; [5,5];
[5,3]; [3,5];

µ µ
µ µ

= =
= =

and 
1 0.5

; , 1, 2
0.5 1ij for i j

± 
∑ = = ± 

Figure 3 shows the scatter plot; and there is overlap between the 
two classes; C1 and C2. A mixture of the two normal distributions for 
each class is supposed to make the decision boundary more complex.

We consider different training sets and different testing sets 
according to the two-tenth-fold stratified criterion to measure the 
performance of many classifiers; including functional networks 
(FunNets), with a maximum likelihood (MLE) based on the iterative 
Newton-Raphson’s method. We summarized the results in the tables 
and graphs in Figure 4 and Table 3.

Based on the obtained results; we conclude that the comparative 
studies among these classifiers over the 1000 runs can assess in 
identifying the desire target in a proper stable decision. We find that the 
new functional networks classifier with the empowering combination 
sets of rules is having the lowest time of execution with the highest 
average correct classification rate, and the lowest misclassification 
error. On the other hand; the support vector machine is the second 
highest in both correct classification rate classifier and misclassification 
error; but it has execution time more than logistic regression, this is 
because kernel function and high-dimensional input-space. Moreover, 
the neural networks have the highest execution time; due to its trial 
and errors and randomly chosen initial weights and its architecture is 
very complex; but it has reasonable performance with the third place in 
accuracy. The logistic regression in this simulated study has the worst 
performance with reasonable execution time because its fast linear 

approximations that leads to less reliable performance. Therefore, 
overall the new functional network outperforms the most common 
techniques, namely; logistic regression, neural networks, and support 
vector machines; it is faster than all classifiers and has reliable and 
efficient performance (Table 4).

Conclusions and Future Outlook
The new algorithm is optimal due to the use of the genetic 

algorithm and minimum description length, which leads to fast local 
optima, unlike the ID3 method, which is not optimal, due to its use 
of expected entropy reduction. In addition, the new algorithm does 
not suffer from any problems when we build rules; unlike the decision 
trees, which suffer from the problem of errors propagating throughout 
the tree, which is a very serious problem as the number of classes’ 
increases. Moreover, the propensity score handled the imbalance, 
which empowers the functional network classifiers.

As is shown from the empirical simulated data; we observed 
that the randomized singular value decomposition out-performs the 
regular singular value decomposition for computing matrixes within 
multi-processors and big biomedical data and rapidly reduces the time 
of the computations with an almost 1000-times reduction; and the 
information is gathered at an even faster pace.

▪▪ We observe that the benefit of having the Newton-Raphson 
iterative matrix computation was in expediting the quality and 
performance of the recursive and modeling processes using 
the HPC and scalable HDFS MapReduce and Spark MLlib. The 
implementation processes are initialized at zero with a starting 
approximation and then use the concave shape properties of 

Figure 3: Simulated binary data from the mixed binomial categories in 2D 
with ρ ± 0.5.

Figure 4: Time of Computations within 1000 runs.

Table 3: BCSC data: The Top 5 rules of combinations of five predictors out of 72 
obtained rules.

Different combinations of five attributes AUC

agegrp; density; bmi; race; nrelbc; lastmamm; hispanic; brstproc; 
surgmeno; hrt 0.795

agegrp; density; bmi; nrelbc; lastmamm; hispanic; brstproc; surgmeno; hrt 0.77

agegrp; density; race; bmi; nrelbc; lastmamm; brstproc; surgmeno; hrt 0.74

agegrp; density; bmi; nrelbc; lastmamm; brstproc; surgmeno; hrt 0.705

agegrp; surgmeno; lastmamm; density; brstproc; hrt; bmi 0.695
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Table 4: Average over 1000 runs of four classifiers.

Classifier Avg. Exec. Time Avg. CCR Avg. ASCE
LogReg. 3.519 0.502 23.591

SVM 18.392 0.719 8.821
FFN 45.151 0.684 13.019

FunNets 1.204 0.815 3.281

MLE; the convergence is guaranteed, which determines the 
computations for only the matrix multiplications, transpose, and 
inverse. Furthermore, the new recursive incremental algorithm 
reduced the times of the computations of these combinations to 
only 0.06% and produces a reasonable number for the minimum 
number of combinations, which are 283 sets of combinations 
instead of 443,667 sets of rules. These small numbers for the 
number of sets of rules will be easy to retrieve or investigate by 
either physicians or case managers for specific patients and fast 
to use in clinical practice at the bedside.

▪ For the imbalanced breast cancer data, we observe that the ROC/
AUC show improvement around 24%, which means that; we may 
save lives of 1,506 patients from those 6,274 patients. Therefore,
if each one of these individuals is spending $50,000 a year, then;
we reduce the total cost of more than $75 million a year. In
addition, minimize their future complications, minimize their
LOS, ICU, and minimize both lengths of stay and/or emergency
room visits with read mission rates. Furthermore; we can develop 
novel large-scale predictive models to present the dependencies
between breast cancer risk factors and have accurate breast cancer 
risk score that is easy to be used by physicians or case managers.

▪ Based on the two utilized biomedical applications that are used
for the cases of breast cancer and congestive heart failure, the
results show that the new frameworks have a reliable performance 
with a high impact on empowering the classifier and building a
minimum number of rules that is easy to be revised by physicians 
and fast to use in clinical practice. We recommend future work to 
be conducted using simulated and real-life data to compare the
performance of the new paradigm with the existing techniques.

▪ We investigate the strength and capabilities of the new classifier
on imbalanced biomedical big SNP selection and genomic wide
association study data, we conclude that the new classifier with
the support of the set of combined rules add trust and reliable
to the classifier and increase its AUC values based on the
nonlinear relationship with the available phenotypic attributes
with demographic predictors. In addition, we find that the
exacerbations increased the AUC to 0.65. Furthermore; by adding 
more important SNPs columns to increase the predictability of
asthma exacerbations; we got the independently replicated AUC
values of 0.67, 0.71 and 0.71 for 40, 160 and 320 SNPs; which is
7.5% improvement better than the existing quality measures in
literature. Therefore; we recommend the new classification model 
for more complex biomedical data to increase our understanding 
of the biologic mechanisms behind why only certain individuals
have specific complex disease, as well as the basis for the epistatic 
(gene-gene) interactions underlying asthma severity; providing
insight into novel preventative and therapeutic strategies”.
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