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Abstract

Notes for some talks given at the seminar on characteristic classes at NTNU in autumn 2006. In the note a proof
of the existence of a Chern-character from complex K-theory to any cohomology Lie theory with values in graded
Q-algebras equipped with a theory of characteristic classes is given. It respects the Adams and Steenrod operations.
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Introduction

The aim of this note is to give an axiomatic and elementary
treatment of Chern-characters of vectorbundles with values in a
class of cohomology-theories arising in topology and algebra. Given
a theory of Chern-classes for complex vectorbundles with values in
singular cohomology one gets in a natural way a Chern-character from
complex K-theory to singular cohomology using the projective bundle
theorem and the Newton polynomials. The Chern-classes of a complex
vectorbundle may be defined using the notion of an Euler class [1]
and one may prove that a theory of Chern-classes with values in
singular cohomology is unique. In this note it is shown one may relax
the conditions on the theory for Chern-classes and still get a Chern-
character. Hence the Chern-character depends on some choices.

Many cohomology theories which associate to a space a graded
commutative Q-algebra H* satisfy the projective bundle property for
complex vectorbundles. This is true for De Rham-cohomology of a
real compact manifold, singular cohomology of a compact topological
space and complex K-theory. The main aim of this note is to give a self
contained and elementary proof of the fact that any such cohomology
theory will recieve a Chern-character from complex K-theory
respecting the Adams and Steenrod operations.

Complex K-theory for a topological space B is considered, and
characteristic classes in K-theory and operations on K-theory such as
the Adams operations are constructed explicitly, following [2].

The main result of the note is the following (Theorem 4.9):

Theorem 1.1: Let H* be any rational cohomology theory satisfying
the projective bundle property. There is for all k>1 a commutative
diagram.

k k
Ké (B)Chu/ Heven (B)‘//H Ké (B)Ch Heven (B)

Where Ch is the Chern-character for H*, y* is the Adams operation
k. .
and ¥ is the Steenrod operation.

The proof of the result is analogous to the proof of existence of the
Chern-character for singular cohomology.

Euler Classes and Characteristic Classes

In this section we consider axioms ensuring that any cohomology
theory H* satisfying these axioms, recieve a Chern-character for
complex vectorbundles [3]. By a cohomology theory we mean a
contravariant functor.

H" :Top — Q —algebras

from the category of topological spaces to the category of graded
commutative Q-algebras with respect to continuous maps of topological
spaces. We say the theory satisfy the projective bundle property if the
following axioms are satisfied: For any rank n complex continuous
vectorbundle E over a compact space B There is an Euler class.

u.€ H*(P(E)) (1)

Where mP(E)—B is the projective bundle associated to E. This
assignment satisfy the following properties: The Euler class is natural,
i.e for any map of topological spaces f:B'—B it follows:

fup=u s, @)
For E =@ L, where L are linebundles there is an equation:
n
[ e -7 )= 0int* p(ey) 3)
1

i=1
The map 7" induce an injection 7*:H*(B)— H*(P(E)) and there is
an equality,

H (P(E) = H (B){1up,ub, .ul}.

Assume H* satisfy the projective bundle property. There is by
definition an equation,

up = (Eyug ™ 4+ (=1)"¢, (E) =0
in H*(P(E)).

Definition 2.1: The class ¢ (E) e H*(B) is the i’th characteristic class
of E.

Example 2.2: If P(E)—>B is the projective bundle of a complex
vector bundle and u,=e(A(E))e H*(P(E),Z) is the Euler classe of the
tautological linebundle (E) on P(E) in singular cohomology as defined
in Section 14 [1], one verifies the properties above are satisfied [4]. One
gets the Chern-classes c(E) e H*(B,Z) in singular cohomology.
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Definition 2.3: A theory of characteristic classes with values in a
cohomology theory H* is an assignment.

E— c(E)eH*(B)

for every complex finite rank vectorbundle E on B satisfying the
following axioms:

frci(E)=ci(f'E) (4)

If E=F it follows ¢ (E)=c(F) (5)

G(E®F)= Y c(E)e;(F). ®)
i+j=k

Note: if ¢: H*— H* is a functorial endomorphism of H which is a
ring-homomorphism and cis a theory of characteristic classes, it follows
the assignment E — c;i(E)=¢(c;(E)) is a theory of characteristic
classes.

Example 2.4: Let keZ and let % be the ring-endomorphism of
He defined by (//ff[ (x) =k"x where xeH*(B). Given a theory c(E)
satisfying Definition 2.3 it follows ci (E)= l//1k{ (¢;(E)) is a theory
satisfying Definition 2.3.

Note furthermore: Assume yp, is the tautological linebundle on P'.
Since we do not assume c,(y,)=Z where Z is the canonical generator
of H*(P',Z) it does not follow that an assignment E—ci(E) is uniquely

determined by the axioms 4-46. We shall see later that the axioms 4-46
is enough to define a Chern-character [5].

Theorem 2.5: Assume the theory H* satisfy the projective bundle
property. It follows H* has a theory of characteristic classes.

Proof: We verify the axioms for a theory of characteristic classes.
Axiom 4: Assume we have a map of rank » bundles f:.F—E over a map
of topological spaces g:B'—B. We pull back the equation,

up —c(Eyg '+ o+ (1), (E) = 0
in H*(P(E)) to get an equation,

uf = f QB ok (1) f e, (B) = 0
and by unicity we get f'c (E)=c(F). It follows ¢ (E)=c(F) for isomorphic
bundles E and F, hence Axiom 5 is ok. Axiom 6: Assume £ =®;_|L;
is a decomposition into linebundles. There is an equation H(uE _”Lf)
hence we get a polynomial relation.

wl = sy (ug Y+t (<1)"s, ) = 0
in H*"(P(E)). Since ¢,(L;) = —u,_it follows,

TI(e(L,)=TT(1+¢,(L))=c(E)
and this is ok.

Given a compact topological space B. We may consider
the Grothendieck-ring K&(B)  of complex finite-dimensional
vectorbundles. It is defined as the free abelian group on isomorphism-
classes [E] where E is a complex vectorbundle, modulo the subgroup
generated by elements of the type [E®F]—[E]—[F]. It has direct sum as

additive operation and tensor product as multiplication. Assume E is a
complex vectorbundle of rank # and let:

m:P(E)—B

be the associated projective bundle. We have a projective bundle
theorem for complex K-theory:

Theorem 2.6: The group K*(P(E)) is a free K*(B) module of finite

rank with generator u - the euler class of the tautological line-bundle.
The elements {1,u,12,..,u"'} is a free basis.

Proof: See Theorem IV.2.16 in [2].

As in the case of singular cohomology, we may define characteristic
classes for complex bundles with values in complex K-theory using the
projective bundle theorem: The element u” satisfies an equation,

u" = (B + ey (Ey" ™+ (1) e, ((EYu+(=1)"c,(E)=0

in K*(P(E)). One verifies the axioms defined above are satisfied, hence
one gets characteristic classes c(E)e Ké (B) forall i=0,...,n.

Theorem 2.7: The characteristic classes ¢(E) satisfy the following
properties:

fe(E)=c(fE) (7)

G(E®F)= Z c(E)e;(F) 8)
i+j=k

c1(L)=1-Lc(L)=0,i>1 9)

where E is any vectorbundle, and L is a line bundle [6].

Proof: See Theorem IV.2.17 in [2].

Adams Operations and Newton Polynomials

We introduce some cohomology operations in complex K-theory
and Newton-polynomials and prove elementary properties following
the book [2].

Let ®(B) be the abelian monoid of elements of the type 21 [E] with
n20. Consider the bundle A'(E)A'E and the association.

A (E) = Z/V'(E)t"
>0

giving a map.

2y = ®(X) > 1+ K (B[]
One checks,
A(E®F)=A(E)A(F)

hence the map A, is a map of abelian monoids, hence gives rise to
a map,

Jy: Ke(B) = 1+ K¢ (B[]
from the additive abelian group K é( B) to the set of powerseries
with constant term equal to one [7]. Explicitly the map is as follows:

A (n[E]-m[F])= A(E)"A (F)™.

When 7 denotes the trivial bundle of rank n we get the explicit
formula.

A((E]- m)=A(E) (1+0)".

Let u=t/1-t. We may define the new powerseries,

7(E)= A (E) = D A (B,
It follows. 20

y(E®F)=A (E®F)=A (E)A (F)=y(E)y (F).
We may write formally,

7(E)= /() e KB

k>0
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Hence it follows that,
PHEY= DB E).
i+j=k
We get operations,
; * *
7' 1 Ke(B) > Ke(B)

for all i>1. We next define Newton polynomials using the

elementary symmetric functions. Let U Uyl be independent

variables over the integers Z, and let O =uj +uy +---+ u;’; for k>1.
It follows Q, is invariant under permutations of the variables u: for any
0€S, we have 0Q,= Q, hence we may express Q, as a polynomial in the
elementary symmetric functions o;;

Q=Q0,,0,..0,).
We define,
$,(0)=Q,(0,,0,,..,0,)

to be the k'th Newton polynomial in the variables 050,550, where

0, is the i'th elementary symmetric function. One checks the following:
S,(o)=0,
52(01,05) = of =207,
and s,(07,0,,03) = 0'13 —3010, + 303
and so on.
Let n>1 and consider the polynomial.
p(V)=(1+tu )(1+tw,)...(1+tu )-t'oc +t"'0,_ +...+to,+1
where,
0=0(u...1,)
is the ith elementary symmetric polynomial in the variables u,,u,,..,u,.

Lemma 3.1: There is an equality.

_ .k k k
Oy (o1 (uy,.suy,), 09 (U 51y )5y O (U5 Uty)) = Uy + Uy +oo 1y,

Proof: Trivial.

Assume we have virtual elements x=E-n=@"(L~1) and y=F-
p=@®"(Rj-1) in complex K-theory Kc(B). We seck to define a
cohomology-operation ¢ on complex K-theory using a formal
powerseries.

Sfiw=auta,w’+aw’+...€Z[[u]].
We define the element.
c(x)=a,Q,(y"(x))+a,Q,(y (x),y2(x))+a,Q,(y" (x),y*(x),y*(x))+...

Proposition 3.2: Let L be a linebundle. Then y (L-1)=1+#(L-1)=1—
¢,(L)t. Hence y'(L-1)=L~-1 and (L-1)=0 for i>1.

Proof: We have by definition.
1(E) = 2,(B)= Y 2Ky = 2k (E)e/1- 0.

k>0 k>0
We have that,

y(nE-mF)=A (E)"A (F)™.
We get,
YL-1)=A (DA, (1)

We have,
A(n)=(1+t)"

Hence,

y(m)=A (m)=(1+u)"=(1+t/1-t)"=(1-£)™".
We get:

y(L-D)=y,L)y(1)"=A (L)(1-0)'=
(I+Lu)(1-)'=(1+L(t/t-1))(1-t)'=
1+¢(L-1)

1-¢
And the proposition follows.

(- =1+HL-1)=1-¢/(L).

Note: if x=L—1 we get,
()= O (7' ()7 () () =

k>0

D a0 (7 (60,0,-,0) = D ' ) =

k>1 k>1
k k k
> a @ -nf = D g @),
k>1 k>0
We state a Theorem:

Theorem 3.3: Let E—B be a complex vectorbundle on a compact
topological space B. There is a map :B'—B such that 7°E decompose
into linebundles, and the map n*: H*(B)— H*(B') is injective [8].

Proof: See [2] Theorem IV.2.15.
Note: By [2] Proposition II.1.29 there is a split exact sequence.
0— K¢(B) > Ke(B) > HY(B,Z) -0

hence the group K¢ (B) is generated by elements of the form E-n
where E is a rank n complex vectorbundle.

Proposition 3.4: The operation ¢ is additive, i.e for any
x,yEKZ(B) we have,
c(x+y)=c(x)+c(y).

Proof: The proof follows the proof in [2], Proposition IV.7.11.
We may by the remark above assume x=E-n and y=F-p where
x,y € K&(B) . We may also from Theorem 3.3 assume ¥ = ®”R; and

F=®"R; where L;,R; arelinebundles. We get the following;:

nen =] [n@-] [n® -n=] Ja+m] Ja+mp=

g

1
w(ul,..,un,vl,..,vp)+t"ﬂ’ o

WH(ul,..,un,vl,..,vp)+
...+tal(ul,..,un,vl,..,vp)+1

Hence,

yi(x+y):ai(ul,..,un,vl,..,vp).

We get:
Qk(y‘(x+y),..,yk(x+y)):Qk(al(ui,vj),..,ak(ui,vj))
which by Lemma 3.1 equals,

uf b vl ok = 0 (01,0 ) + O (0100 (v))) =

QUy())+Q(y' ().
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Weeh) = > 0,0,/ (x+ ) =

k=0

D @0 N+ D @O (M =e(x)+e(v)
k>0 k>0
and the claim follows.

We may give an explicit and elementary construction of the
Adams-operations:

Theorem 3.5: Let k>1. There are functorial operations,

" Ke(B)—> Ke(B)

with the properties.

)=y ) +y4(y) (10)
yH(L)=L* (1)
V) =y )y (y) (12)
yi(1)=1 (13)

where L is a line bundle. The operations y* are the only operations that
are ring-homomorphisms - the Adams operations.

Proof: We need:
YA (L-1)= y*(L)- y*(1)=L*-1.
We have in K-theory:
k o
Fo1=@-1+1Df-1= L-Dfi—1=
(L-1+1) ZU( )

i0

k (L-1)+ k (L-1)2 4+ k (L-1)F
1 2 k '

We get the series,

5 (k
c= Z[iju" e Z[[u]].

i=1
The following operator,

k
k A
k _ E 1
v = ~ (l}Ql(y ""57/1)
i=
is an explicit construction of the Adams-operator. One may verify the

properties in the theorem, and the claim follows.

Assume E,F are complex vectorbundles on B and consider the
Chern-polynomial.

c(E®F)=1+c (E®F)t+...+c (E®F)t".

where N=rk(E)+rk(F). Assume there is a decomposition E=®"L,
and F=@'R; into linebundles. We get a decomposition,

c(E®F)=IIc(L)[1c(R)=(1+a,))(1+a,f)...(1+b,1)...(1+b 1)
where ai:cl(Li),bj:cl(Rj). We get thus,
ci(E@F)=0i(a1,..,an,b1,..,bp).
Let,
O =uf +++++uf = 0u(01,.,04)

where o, is the ith elementary symmetric function in the u/s.

Proposition 3.6: The following holds:

Q,(¢(E®F),...c (EDF))=Q,(c(E))+Q,(c(F)).
Proof: We have,
Q,(c(E®F))=Q,(0/a,b))=
af +---ay + b+ = O (c;(E)) + Oy (¢,(F))
and the claim follows.
The Chern-Character and Cohomology Operations

We construct a Chern-character with values in singular
cohomology, using Newton-polynomials and characteristic classes
following [2]. The k'th Newton-classe s (E) of a complex vectorbundle
will be defined using characteristic classes of E: ¢ (E),...c,(E) and the
k'th Newton-polynomial Sk(01>">‘7k)- We us this construction to define
the Chern-character Ch(E) of the vectorbundle E.

We first define Newton polynomials using the elementary
symmetric functions. Let Uy Uyl be independent variables over the

integers Z, and let Oy :ulk +u£c +---+u,l{C for kx1. It follows Q, is
invariant under permutations of the variables u: for any ¢€S, we have
0Q,=Q, hence we may express Q, as a polynomial in the elementary
symmetric functions o;:

Q,=Q(0,,0,...,0,).
We define,
S(0=Q(0,,0,..,0,)

to be the k'th Newton polynomial in the variables (0,,0,,..,0,) where
0, is the i'th elementary symmetric function. One checks the following:

s,(0))=0,,
— 2
s,(0,,0,)=0; —20,,
and,
_ 3
s,(0,,0,,0;)=0; =30,0, + 30,
and so on.

Assume we have a cohomology theory H* satisfying the projective
bundle property. One gets characteristic classes ¢,(E) for a complex
vectorbundle E on B:

¢(E)eH¥(B).

Let the class Sk(E)zsk(cl(E),CZ(E),..,ck(E))eWk(B) be the k'th
Newton-class of the bundle E. One gets:

5,(0,,0,..,0)=of

for all k>1. Assume E,F linebundles. We see that,
S,(E®@F)=c,(E®F)*-2c,(E®F)=

(c,(E)+c,(F))*-2(c,(E)+c,(E)c (F)+c,(F))=
cl(E)2+2c1(E)c1(F)+c1(F)Z—Zcz(E)—ch(E)cl(F)—ZCZ(F):
¢,(E)*=2c,(E)+c,(F)*=2c,(F)=S,(E)+S,(F).

This holds in general:

Proposition 4.1: For any vectorbundles E,F we have the formula,
S,(E®F)=S (E)+S,(P).

Proof: This follows from 3.6.

Let K¢(B) be the Grothendieck-group of complex vectorbundles on
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B,i.ethefreeabelian group modulo exactsequences X, E (B)=@®Z[E]/U
where U is the subgroup generated by elements [E®F]—[E]—[F].

Definition 4.2: The class,

— 1 even
Ch(E) = Z;!Sk(E) e H*"(B)
k>0
is the Chern-character of E.

Lemma 4.3: The Chern-character defines a group-homomorphism,
Ch:K¢(B) — H®(B)

between the Grothendieck group K¢(B) and the even cohomology
of B with rational coefficients.

Proof: By Proposition 4.1 we get the following: For any E,F we
have,

CHE®F)= Z%sk(E ®F)= Z%(sk(E)+sk(F)) =

k>0 k>0

;;sk(E) + kz;sk (F) = Ch(E) + Ch(F).
>0 >0

We get,
Ch([E®F]—[E]-[F])=Ch(E®F)—-Ch(E)-Ch(F)=0
and the Lemma follows.

Example 4.4: Given a real continuous vectorbundle F on B there
exist Stiefel-Whitney classes w(F)eH'(B,Z/2) (see [1]) satisfying the
necessary conditions, and we may define a “Chern-character”

Ch:Kg(B)— H (B,Z/2)

by

Ch(F) = Y O (Wi (F),... w (F).
k>0

This gives a well-defined homomorphism of abelian groups
because of the universal properties of the Newton-polynomials and
the fact H*(B,Z/2) is commutative. The formal properties of the Stiefel-
Whitney classes w, ensures that for real bundles E,F Proposition 3.6 still
holds: We have the formula,

QW (E®F)= Q,(w(E))+ Q,(w(P)).
Since Sk(gl,(),,,,,O):glk we get the following: When E,F are
linebundles we have:

S (E®F)=S,(c,(E®F),0,..0)=(c,(E®F))*=(c,(E)+c,(F))*=

> ( v jcl(E)"cl(F)f =y [ Y jsi(E)Sj(F).

i+j=k i+j=k
This property holds for general E,F:

Proposition 4.5: Let E,F be complex vectorbundles on a compact
topological space B. Then the following formulas hold:

i+j
Si(E®F)= Z[ . jsi(E)Sj(E) (14)
i
i+j=k
Proof: We prove this using the splitting-principle and Proposition
4.1. Assume E,F are complex vectorbundles on B and f:B'—B is a map
of topological spaces such that f'E=®L,f"F=® M, where L,M, are

linebundles and the pull-back map f:H*(B)—>H"(B’) is injective. We
get the following calculation:

£8,(E®F)=S,(fEOF)=S (DLOM)

hence by Lemma 4.1 we get,

ZSk(L,‘ ®Mj) = Z(Zsk(lﬁ ®Mj)) _
+ P
Zz z Eu:VjSu(L,-)SV(Mj)

i j u+v=k

Z z (u:v]su(Li)Sv(@Mj) =

i ut+v=k

u-+v
> [ ]Su@L,-)Sv(@M,-)
) |

u+v=k
Ch:KG(B)— H"(B).
and the result follows since f* is injective.
Theorem 4.6: The Chern-character defines a ring-homomorphism.
Ch:K¢(B) — HY"(B).
Proof: From Proposition 4.5 we get:

Ch(E® F)= Z%Sk(E@)F) =
k>0

>y [itjjsi(E)Sj<F)

k>0 it j=k

O L SHENY Sy (F) = CHEICH(F)

k=0 k=0 "
and the Theorem is proved.

Example4.7: For complex K-theory K¢(B) we have for any complex
*
vectorbundle E characteristic classes c;(E) € Kc(B) satisfying the
neccessary conditions, hence we get a group-homomorphism.

Chy, : K¢&(B) = K¢(B)
defined by,
Chy(E) = EQk (1 (E),..cp (E)).

k20
If we tensor with the rationals, we get a ring-homomorphism.

Cho : K¢(B) = Ko (B)®Q

defined by,
CHE)= Y 0By (B,
k20

Theorem 4.8: Let B be a compact topological space. The Chern-
character,

ChQ : K (B)®Q — H™"(B,Q)

is an isomorphism. Here H*(B,Q) denotes singular cohomology with
rational coefficients.

Proof: See [2].

The Chern-character is related to the Adams-operations in the
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following sense: There is a ring-homomorphism.
‘//]IEI . geven (B) > Heven(B)
defined by,
wh(x)=kx

when xeH¥(B). The Chern-character respects these cohomology
operations in the following sense:

Theorem 4.9: There is for all k>1 a innovative diagram.

k k
KZ‘: (B)Chl// Hever (B)WH K(*: (B)Ch Hever (B)
where y* is the Adams operation defined in the previous section.

Proof: The proof follows Theorem V.3.27 in [2]: We may assume
L is a linebundle and we get the following calculation: y*(L)=L* and
¢,(L¥=kc (L) hence,

Chiy* (L) = explhy(L) = Y~ Key(L' =

i20

v (exp(c (L) = v (Ch(L)
and the claim follows.
Hence the Chern-character is a morphism of cohomology-theories

respecting the additional structure given by the Adams and Steenrod-
operations.

References
1. Milnor J (1966) Characteristic Classes. Princeton University Press.
2. Karoubi M (1978) K-theory - an introduction. Grundlehren Math Wiss.

3. Dupont J (1978) Curvature and characteristic classes, Lecture Notes in
Mathematics. Springer Verlag V: 640.

4. Fulton W, Lang S (1985) Riemann-Roch algebra. Grundlehren Math Wiss
No: 277.

5. Grothendieck A (1958) Theorie des classes de Chern. Bull Soc Math France
86: 137-154.

6. Husemoeller D (1979) Fibre bundles. GTM.
7. Steenrod N (1962) Cohomology operations. Princeton University Press.

8. End W (1969) Uber Adams-operationen. Invent Math 9: 45.

J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Volume 11 « Issue 1+ 1000253


http://press.princeton.edu/titles/1571.html
http://www.springer.com/gp/book/9783540798897
http://link.springer.com/book/10.1007%2FBFb0065364
http://link.springer.com/book/10.1007%2FBFb0065364
http://link.springer.com/book/10.1007%2F978-1-4757-1858-4
http://link.springer.com/book/10.1007%2F978-1-4757-1858-4
https://eudml.org/doc/86933
https://eudml.org/doc/86933
https://books.google.co.in/books/about/Fibre_Bundles.html?id=DPr_BSH89cAC&redir_esc=y
https://books.google.co.in/books?id=CF3bt4oYZ2oC&redir_esc=y
http://dx.doi.org/10.1007/BF01389888

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Euler Classes and Characteristic Classes 
	Adams Operations and Newton Polynomials 
	The Chern-Character and Cohomology Operations 
	References 

