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Abstract
Notes for some talks given at the seminar on characteristic classes at NTNU in autumn 2006. In the note a proof 

of the existence of a Chern-character from complex K-theory to any cohomology Lie theory with values in graded 
Q-algebras equipped with a theory of characteristic classes is given. It respects the Adams and Steenrod operations.
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Introduction
The aim of this note is to give an axiomatic and elementary 

treatment of Chern-characters of vectorbundles with values in a 
class of cohomology-theories arising in topology and algebra. Given 
a theory of Chern-classes for complex vectorbundles with values in 
singular cohomology one gets in a natural way a Chern-character from 
complex K-theory to singular cohomology using the projective bundle 
theorem and the Newton polynomials. The Chern-classes of a complex 
vectorbundle may be defined using the notion of an Euler class [1] 
and one may prove that a theory of Chern-classes with values in 
singular cohomology is unique. In this note it is shown one may relax 
the conditions on the theory for Chern-classes and still get a Chern-
character. Hence the Chern-character depends on some choices.

Many cohomology theories which associate to a space a graded 
commutative Q-algebra H∗ satisfy the projective bundle property for 
complex vectorbundles. This is true for De Rham-cohomology of a 
real compact manifold, singular cohomology of a compact topological 
space and complex K-theory. The main aim of this note is to give a self 
contained and elementary proof of the fact that any such cohomology 
theory will recieve a Chern-character from complex K-theory 
respecting the Adams and Steenrod operations.

Complex K-theory for a topological space B is considered, and 
characteristic classes in K-theory and operations on K-theory such as 
the Adams operations are constructed explicitly, following [2].

The main result of the note is the following (Theorem 4.9):

Theorem 1.1: Let H∗ be any rational cohomology theory satisfying 
the projective bundle property. There is for all k≥1 a commutative 
diagram.

* *( ) ( ) ( ) ( )
kkCh even Ch evenHK B H B K B H Bψψ

C C

Where Ch is the Chern-character for H∗, ψk is the Adams operation 
and k

Hψ  is the Steenrod operation.

The proof of the result is analogous to the proof of existence of the 
Chern-character for singular cohomology.

Euler Classes and Characteristic Classes
In this section we consider axioms ensuring that any cohomology 

theory H∗ satisfying these axioms, recieve a Chern-character for 
complex vectorbundles [3]. By a cohomology theory we mean a 
contravariant functor.

* :H Top algebras→ −Q

from the category of topological spaces to the category of graded 
commutative Q-algebras with respect to continuous maps of topological 
spaces. We say the theory satisfy the projective bundle property if the 
following axioms are satisfied: For any rank n complex continuous 
vectorbundle E over a compact space B There is an Euler class.

uE∈H2(P(E))	 (1)

Where π:P(E)→B is the projective bundle associated to E. This 
assignment satisfy the following properties: The Euler class is natural, 
i.e for any map of topological spaces f:B′→B it follows:

*
*=E f E

f u u   (2)

For i
n
i LE 1== ⊕  where Li are linebundles there is an equation:

* 2

=1

( ) = 0in ( ( ))
n

n
E Li

i

u u H Eπ−∏ P 			   (3)

The map π∗ induce an injection π∗:H∗(B)→ H∗(P(E)) and there is 
an equality,

* * 2 1( ( )) = ( ){1, , ,.., }.n
E E EH E H B u u u −P

Assume H∗ satisfy the projective bundle property. There is by 
definition an equation,

1
1( ) ( 1) ( ) = 0n n n

E E nu c E u c E−− + + −

in H∗(P(E)).

Definition 2.1: The class ci(E)∈H2i(B) is the i’th characteristic class 
of E.

Example 2.2: If P(E)→B is the projective bundle of a complex 
vector bundle and uE=e(λ(E))∈H2(P(E),Z) is the Euler classe of the 
tautological linebundle (E) on P(E) in singular cohomology as defined 
in Section 14 [1], one verifies the properties above are satisfied [4]. One 
gets the Chern-classes ci(E)∈H2i(B,Z) in singular cohomology.
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Definition 2.3: A theory of characteristic classes with values in a 
cohomology theory H∗ is an assignment.

E→ ci(E)∈H2i(B)

for every complex finite rank vectorbundle E on B satisfying the 
following axioms:

f∗ci(E)=ci(f∗E)	                                                                                      (4)

If E≅F it follows ci(E)=ci(F)                                                                        (5)

=

( ) = ( ) ( ).k i j
i j k

c E F c E c F
+

⊕ ∑  			                 (6)

Note: if φ: H∗→ H∗ is a functorial endomorphism of H which is a 
ring-homomorphism and c is a theory of characteristic classes, it follows 
the assignment ( ) = ( ( ))i iE c E c Eϕ→  is a theory of characteristic 
classes.

Example 2.4: Let k∈Z and let k
Hψ  be the ring-endomorphism of 

Heven defined by ( ) =k r
H x k xψ  where x∈H2r(B). Given a theory ci(E) 

satisfying Definition 2.3 it follows ( ) = ( ( ))k
i H ic E c Eψ  is a theory 

satisfying Definition 2.3.

Note furthermore: Assume γ1 is the tautological linebundle on P1. 
Since we do not assume c1(γ1)=Z where Z is the canonical generator 
of H2(P1,Z) it does not follow that an assignment E→ci(E) is uniquely 
determined by the axioms 4-46. We shall see later that the axioms 4-46 
is enough to define a Chern-character [5].

Theorem 2.5: Assume the theory H∗ satisfy the projective bundle 
property. It follows H∗ has a theory of characteristic classes.

Proof: We verify the axioms for a theory of characteristic classes. 
Axiom 4: Assume we have a map of rank n bundles f:F→E over a map 
of topological spaces g:B′→B. We pull back the equation,

1
1( ) ( 1) ( ) = 0n n n

E E nu c E u c E−− + + −

in H2n(P(E)) to get an equation,
* 1 *

1( ) ( 1) ( ) = 0n n n
F F nu f c E u f c E−− + + −

and by unicity we get f∗ci(E)=ci(F). It follows ci(E)=ci(F) for isomorphic 
bundles E and F, hence Axiom 5 is ok. Axiom 6: Assume =1i iE L≅ ⊕  
is a decomposition into linebundles. There is an equation ( )E Li

u u−∏  
hence we get a polynomial relation.

1
1( ) ( 1) ( ) = 0n n n

E L E n Li i
u s u u s u−− + + −

in H2n(P(E)). Since 
iLi uLc −=)(1  it follows,

∏(c(Li))=∏(1+c1(Li))=c(E)

and this is ok.

Given a compact topological space B. We may consider 
the Grothendieck-ring * ( )K BC  of complex finite-dimensional 
vectorbundles. It is defined as the free abelian group on isomorphism-
classes [E] where E is a complex vectorbundle, modulo the subgroup 
generated by elements of the type [E⊕F]−[E]−[F]. It has direct sum as 
additive operation and tensor product as multiplication. Assume E is a 
complex vectorbundle of rank n and let:

π:P(E)→B

be the associated projective bundle. We have a projective bundle 
theorem for complex K-theory:

Theorem 2.6: The group K∗(P(E)) is a free K∗(B) module of finite 

rank with generator u - the euler class of the tautological line-bundle. 
The elements {1,u,u2,..,un−1} is a free basis.

Proof: See Theorem IV.2.16 in [2].

As in the case of singular cohomology, we may define characteristic 
classes for complex bundles with values in complex K-theory using the 
projective bundle theorem: The element un satisfies an equation,

1 2 1
1 2 1( ) ( ) ( 1) ( ) ( 1) ( ) = 0n n n n n

n nu c E u c E u c E u c E− − −
−− + + + − + −

in K∗(P(E)). One verifies the axioms defined above are satisfied, hence 
one gets characteristic classes *( ) ( )ic E K B∈ C  for all i=0,…,n.

Theorem 2.7: The characteristic classes ci(E) satisfy the following 
properties:

f∗ci(E)=ci(f∗E)	                                                                                   (7)

=

( ) = ( ) ( )k i j
i j k

c E F c E c F
+

⊕ ∑ 			                   (8)

c1(L)=1−Lci(L)=0,i>1				                   (9)

where E is any vectorbundle, and L is a line bundle [6].

Proof: See Theorem IV.2.17 in [2].

Adams Operations and Newton Polynomials
We introduce some cohomology operations in complex K-theory 

and Newton-polynomials and prove elementary properties following 
the book [2].

Let Φ(B) be the abelian monoid of elements of the type ∑ni[Ei] with 
ni≥0. Consider the bundle λi(E)∧iE and the association.

0

( ) = ( )i i
t

i

E E tλ λ
≥
∑

giving a map.
*= ( ) 1 ( )[[ ]]t X tK B tλ Φ → + C

One checks,

λt(E⊕F)=λt(E)λt(F)

hence the map λt is a map of abelian monoids, hence gives rise to 
a map,

* *: ( ) 1 ( )[[ ]]t K B tK B tλ → +C C

from the additive abelian group * ( )K BC  to the set of powerseries 
with constant term equal to one [7]. Explicitly the map is as follows:

λt(n[E]−m[F])= λt(E)nλt(F)−m.

When n denotes the trivial bundle of rank n we get the explicit 
formula.

λt([E]− n)= λt(E) (1+t)−n.

Let u=t/1−t. We may define the new powerseries,

0

( ) = ( ) = ( ) .i i
t u

k

E E E uγ λ λ
≥
∑

It follows.

γt(E⊕F)=λu(E⊕F)=λu(E)λu(F)=yt(E)γt(F).

We may write formally,
*

0

( ) = ( ) ( )[[ ]]i i
t

k

E E t K B tγ γ
≥

∈∑ C .
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Hence it follows that,

=

( ) = ( ) ( ).k i j

i j k

E E Eγ γ γ
+
∑

We get operations,

* *: ( ) ( )i K B K Bγ →C C

for all i≥1. We next define Newton polynomials using the 
elementary symmetric functions. Let u1,u2,u3,.. be independent 
variables over the integers Z, and let 1 2= k k k

k kQ u u u+ + +  for k≥1. 
It follows Qk is invariant under permutations of the variables ui: for any 
σ∈Sk we have σQk= Qk hence we may express Qk as a polynomial in the 
elementary symmetric functions σi:

Qk= Qk(σ1,σ2,..,σk).

We define,

Sk(σ)=Qk(σ1,σ2,..,σk)

to be the k′th Newton polynomial in the variables σ1,σ2,..,σk where 
σi is the i′th elementary symmetric function. One checks the following:

S1(σ1)=σ1,
2

2 1 2 1 2( , ) = 2 ,s σ σ σ σ−

and  3
2 1 2 3 1 1 2 3( , , ) = 3 3s σ σ σ σ σ σ σ− +

and so on.

Let n≥1 and consider the polynomial.

p(1)=(1+tu1)(1+tu2)…(1+tun)-tnσn+tn−1σn−1+…+tσ1+1

where,

σi=σi(u1,..,un)

is the ith elementary symmetric polynomial in the variables u1,u2,..,un.

Lemma 3.1: There is an equality.

1 1 2 1 1 1 2( ( ,.., ), ( ,.., ),.., ( ,.., )) = .k k k
k n n k n nQ u u u u u u u u uσ σ σ + + +

Proof: Trivial.

Assume we have virtual elements x=E−n=⊕n(Li−1) and y=F−
p=⊕p(Rj−1) in complex K-theory * ( )K BC . We seek to define a 
cohomology-operation c on complex K-theory using a formal 
powerseries.

f(u)=a1u+a2u
2+a3u

3+…∈Z[[u]].

We define the element.

c(x)=a1Q1(γ1(x))+a2Q2(γ1(x),γ2(x))+a3Q3(y1(x),γ2(x),γ3(x))+…

Proposition 3.2: Let L be a linebundle. Then γt(L−1)=1+t(L−1)=1−
c1(L)t. Hence γ1(L−1)=L−1 and i(L−1)=0 for i>1.

Proof: We have by definition.

0 0

( ) = ( ) = ( ) = ( )( / 1 ) .k k k k
t u

k k

E E E u E t tγ λ λ λ
≥ ≥

−∑ ∑
We have that,

γt(nE−mF)=λu(E)nλu(F)−m.

We get,

γt(L−1)=λu(L)λu(1)−1.

We have,

λt(n)=(1+t)n

Hence,

γt(n)=λu(n)=(1+u)n=(1+t/1−t)n=(1−t)−n.

We get:

γt(L−1)=γt(L)γt(1)−1=λu(L)(1−t)−1=

(1+Lu)(1−t)−1=(1+L(t/t−1))(1−t)−1=

1
1 ( 1) (1 ) = 1 ( 1) = 1 ( ) .

1
t L t t L c L t

t
+ −

− + − −
−

And the proposition follows.

Note: if x=L−1 we get,
1 2

0

( ) = ( ( ), ( ),.., ( )) =k
k k

k

c x a Q x x xγ γ γ
≥
∑

1 1

1 1

( ( ),0,...,0) = ( ) =k
k k k

k k

a Q x a xγ γ
≥ ≥
∑ ∑

1
1 0

( 1) = ( 1) ( ) .k k k
k k

k k

a L a c L
≥ ≥

− −∑ ∑
We state a Theorem:

Theorem 3.3: Let E→B be a complex vectorbundle on a compact 
topological space B. There is a map :B′→B such that π∗E decompose 
into linebundles, and the map π∗: H∗(B)→ H∗(B′) is injective [8].

Proof: See [2] Theorem IV.2.15.

Note: By [2] Proposition II.1.29 there is a split exact sequence.
* 00 ( ) ( ) ( , ) 0K B K B H B′→ → → →C C Z

hence the group ( )K B′C  is generated by elements of the form E−n 
where E is a rank n complex vectorbundle.

Proposition 3.4: The operation c is additive, i.e for any 
*, ( )x y K B∈ C  we have,

c(x+y)=c(x)+c(y).

Proof: The proof follows the proof in [2], Proposition IV.7.11. 
We may by the remark above assume x=E−n and y=F−p where 

, ( )x y K B′∈ C . We may also from Theorem 3.3 assume = p
jF R⊕  and 

= p
jF R⊕  where ,i jL R  are linebundles. We get the following:

( ) = ( 1) ( 1) = (1 ) (1 ) =t t i t j i jx y L R tu tvγ γ γ+ − − + +∏ ∏ ∏ ∏
tn+pσn+p(u1,..,un,v1,..,vp)+tn+p1σn+p−1(u1,..,un,v1,..,vp)+

…+tσ1(u1,..,un,v1,..,vp)+1

Hence,

γi(x+y)=σi(u1,..,un,v1,..,vp).

We get:

Qk(γ1(x+y),..,γk(x+y))=Qk(σ1(ui,vj),..,σk(ui,vj))

which by Lemma 3.1 equals,

1 1 1 1= ( ( ),.., ( )) ( ( ),.., ( )) =k k k k
n p k i k i k j k ju u v v Q u u Q v vσ σ σ σ+ + + + 

Qk(γi(x))+Qk(γi(y)).
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We get:
0

( ) = ( ( )) =i
k k

k

c x y a Q x yγ
≥

+ +∑

0 0

( ( )) ( ( )) = ( ) ( )i i
k k k k

k k

a Q x a Q y c x c yγ γ
≥ ≥

+ +∑ ∑
and the claim follows.

We may give an explicit and elementary construction of the 
Adams-operations:

Theorem 3.5: Let k≥1. There are functorial operations,
* *: ( ) ( )k K B K Bψ →C C

with the properties.
k(x+y)=ψk(x)+ψk(y)                                                                                 (10)

ψk(L)=Lk                                                                                                                                                                 (11)

ψk(xy)=ψk(x)ψk(y)                                                                                  (12)

ψk(1)=1	                                                                                   (13)

where L is a line bundle. The operations ψk are the only operations that 
are ring-homomorphisms - the Adams operations.

Proof: We need:

ψk(L−1)= ψk(L)− ψk(1)=Lk−1.

We have in K-theory:

0

1 = ( 1 1) 1 = ( 1) 1 1 =k k k i i

i

k
L L L

i
−

≥

 
− − + − − − 

 ∑
2( 1) ( 1) ( 1) .

1 2
kk k k

L L L
k

     
− + − + + −     

     


We get the series,

=1

= [[ ]].
k

k

i

k
c u u

i
 

∈ 
 ∑ Z

The following operator,

1

=1

= ( ,..., )
k

k i
i

i

k
Q

i
ψ γ γ

 
 
 ∑

is an explicit construction of the Adams-operator. One may verify the 
properties in the theorem, and the claim follows.

Assume E,F are complex vectorbundles on B and consider the 
Chern-polynomial.

ct(E⊕F)=1+c1(E⊕F)t+…+cN(E⊕F)tN.

where N=rk(E)+rk(F). Assume there is a decomposition E=⊕nLi 
and F=⊕pRj into linebundles. We get a decomposition,

ct(E⊕F)=∏ct(Li)∏ct(Rj)=(1+a1t)(1+a2t)…(1+b1t)…(1+bpt)

where ai=c1(Li),bj=c1(Rj). We get thus,

ci(E⊕F)=σi(a1,..,an,b1,..,bp).

Let,

1 1= = ( ,.., )k k
k k k kQ u u Q σ σ+ +

where σi is the ith elementary symmetric function in the ui’s.

Proposition 3.6: The following holds:

Qk(c1(E⊕F),..,ck(E⊕F))=QK(ci(E))+Qk(ci(F)).

Proof: We have,

Qk(ci(E⊕F))=Qk(σi(ai,bj))=

1 1 = ( ( )) ( ( ))k k k k
n p k i k ia a b b Q c E Q c F+ + + + 

and the claim follows.

The Chern-Character and Cohomology Operations
We construct a Chern-character with values in singular 

cohomology, using Newton-polynomials and characteristic classes 
following [2]. The k′th Newton-classe sk(E) of a complex vectorbundle 
will be defined using characteristic classes of E: c1(E),..,ck(E) and the 
k′th Newton-polynomial sk(σ1,..,σk). We us this construction to define 
the Chern-character Ch(E) of the vectorbundle E.

We first define Newton polynomials using the elementary 
symmetric functions. Let u1,u2,u3,.. be independent variables over the 
integers Z, and let 1 2= k k k

k kQ u u u+ + +  for k≥1. It follows Qk is 
invariant under permutations of the variables ui: for any σ∈Sk we have 
σQk=Qk hence we may express Qk as a polynomial in the elementary 
symmetric functions σi:

Qk=Qk(σ1,σ2,..,σk).

We define,

Sk(σ)=Qk(σ1,σ2,..,σk)

to be the k′th Newton polynomial in the variables (σ1,σ2,..,σk) where 
σi is the i′th elementary symmetric function. One checks the following:

s1(σ1)=σ1,

,2=),( 2
2
1212 σσσσ −s

and,

321
3
13212 33=),,( σσσσσσσ +−s

and so on.

Assume we have a cohomology theory H∗ satisfying the projective 
bundle property. One gets characteristic classes ci(E) for a complex 
vectorbundle E on B:

ci(E)∈H2i(B).

Let the class Sk(E)=sk(c1(E),c2(E),..,ck(E))∈H2k(B) be the k′th 
Newton-class of the bundle E. One gets:

k
ks 11 =,0,..,0)( σσ

for all k≥1. Assume E,F linebundles. We see that,

S2(E⊕F)=c1(E⊕F)2−2c2(E⊕F)=

(c1(E)+c1(F))2-2(c2(E)+c1(E)c1(F)+c2(F))=

c1(E)2+2c1(E)c1(F)+c1(F)2−2c2(E)−2c1(E)c1(F)−2c2(F)=

c1(E)2−2c2(E)+c1(F)2−2c2(F)=S2(E)+S2(F).

This holds in general:

Proposition 4.1: For any vectorbundles E,F we have the formula,

Sk(E⊕F)=Sk(E)+Sk(F).

Proof: This follows from 3.6.

Let * ( )K BC  be the Grothendieck-group of complex vectorbundles on 
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B, i.e the free abelian group modulo exact sequences * ( ) = [ ] /K B E U⊕C Z  
where U is the subgroup generated by elements [E⊕F]−[E]−[F].

Definition 4.2: The class,

0

1( ) = ( ) ( )
!

even
k

k

Ch E S E H B
k

≥

∈∑
is the Chern-character of E.

Lemma 4.3: The Chern-character defines a group-homomorphism,
*: ( ) ( )evenCh K B H B→C

between the Grothendieck group * ( )K BC  and the even cohomology 
of B with rational coefficients.

Proof: By Proposition 4.1 we get the following: For any E,F we 
have,

0 0

1 1( ) = ( ) = ( ( ) ( )) =
! !k k k

k k

Ch E F s E F s E s F
k k

≥ ≥

⊕ ⊕ +∑ ∑

0 0

1 1( ) ( ) = ( ) ( ).
! !k k

k k

s E s F Ch E Ch F
k k

≥ ≥

+ +∑ ∑
We get,

Ch([E⊕F]−[E]−[F])=Ch(E⊕F)−Ch(E)−Ch(F)=0

and the Lemma follows.

Example 4.4: Given a real continuous vectorbundle F on B there 
exist Stiefel-Whitney classes wi(F)∈Hi(B,Z/2) (see [1]) satisfying the 
necessary conditions, and we may define a “Chern-character”

* *: ( ) ( , / 2)Ch K B H B→R Z

by

1
0

( ) = ( ( ),.., ( )).k k
k

Ch F Q w F w F
≥
∑

This gives a well-defined homomorphism of abelian groups 
because of the universal properties of the Newton-polynomials and 
the fact H∗(B,Z/2) is commutative. The formal properties of the Stiefel-
Whitney classes wi ensures that for real bundles E,F Proposition 3.6 still 
holds: We have the formula,

Qk(wi(E⊕F))= Qk(wi(E))+ Qk(wi(F)).

Since 1 1( ,0,...,0) = k
kS σ σ  we get the following: When E,F are 

linebundles we have:

Sk(E⊗F)=Sk(c1(E⊗F),0,..,0)=(c1(E⊗F))k=(c1(E)+c1(F))k=

1 1
= =

( ) ( ) = ( ) ( ).i j
i j

i j k i j k

i j i j
c E c F S E S F

i i
+ +

+ +   
   
   ∑ ∑

This property holds for general E,F:

Proposition 4.5: Let E,F be complex vectorbundles on a compact 
topological space B. Then the following formulas hold:

=

( ) = ( ) ( )k i j
i j k

i j
S E F S E S E

i
+

+ 
⊗  

 ∑ 		              (14)

Proof: We prove this using the splitting-principle and Proposition 
4.1. Assume E,F are complex vectorbundles on B and f:B′→B is a map 
of topological spaces such that f∗E=⊕iLi,f

∗F=⊕jMj where Li,Mj are 

linebundles and the pull-back map f∗:H∗(B)→H∗(B′) is injective. We 
get the following calculation:

f∗Sk(E⊗F)=Sk(f∗E⊗F)=Sk(⊕Li⊗Mj)

hence by Lemma 4.1 we get,

,

( ) = ( ( )) =k i j k i j
i j i j

S L M S L M⊗ ⊗∑ ∑∑

=

( ) ( ) =u i v j
i j u v k

u v
S L S M

u
+

+ 
 
 ∑∑ ∑

=

( ) ( ) =u i v j
i u v k

u v
S L S M

u
+

+ 
⊕ 

 ∑ ∑

=

( ) ( ) =u i v j
u v k

u v
S L S M

u
+

+ 
⊕ ⊕ 

 ∑
*: ( ) ( ).evenCh K B H B→C

and the result follows since f∗ is injective.

Theorem 4.6: The Chern-character defines a ring-homomorphism.
*: ( ) ( ).evenCh K B H B→C

Proof: From Proposition 4.5 we get:

0

1( ) = ( ) =
! k

k

Ch E F S E F
k

≥

⊗ ⊗∑

0 =

1 ( ) ( ) =
! i j

k i j k

i j
S E S F

ik
≥ +

+ 
 
 ∑ ∑

0 0

1 1( ( ))( ( ) = ( ) ( )
! !k k

k k

S E S F Ch E Ch F
k k

≥ ≥
∑ ∑

and the Theorem is proved.

Example 4.7: For complex K-theory * ( )K BC  we have for any complex 
vectorbundle E characteristic classes *( ) ( )ic E K B∈ C  satisfying the 
neccessary conditions, hence we get a group-homomorphism.

* *: ( ) ( )Ch K B K B→Z C C

defined by,

1
0

( ) = ( ( ),.., ( )).k k
k

Ch E Q c E c E
≥
∑Z

If we tensor with the rationals, we get a ring-homomorphism.
* *: ( ) ( )Ch K B K B→ ⊗Q C C Q

defined by,

1
0

1( ) = ( ( ),.., ( )).
! k k

k

Ch E Q c E c E
k

≥
∑

Theorem 4.8: Let B be a compact topological space. The Chern-
character,

*: ( ) ( , )evenCh K B H B⊗ →Q
C Q Q

is an isomorphism. Here H∗(B,Q) denotes singular cohomology with 
rational coefficients.

Proof: See [2].

The Chern-character is related to the Adams-operations in the 
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following sense: There is a ring-homomorphism.

: ( ) ( )k even even
H H B H Bψ →

defined by,

( ) =k r
H x k xψ

when x∈H2r(B). The Chern-character respects these cohomology 
operations in the following sense:

Theorem 4.9: There is for all k≥1 a innovative diagram.

* *( ) ( ) ( ) ( )
kkCh even Ch evenHK B H B K B H Bψψ

C C

where ψk is the Adams operation defined in the previous section.

Proof: The proof follows Theorem V.3.27 in [2]: We may assume 
L is a linebundle and we get the following calculation: ψk(L)=Lk and 
c1(Lk)=kc1(L) hence,

1 1
0

1( ( )) = ( ( )) = ( ) =
!

k i i

i

Ch L exp kc L k c L
i

ψ
≥
∑

1( ( ( ))) = ( ( )k k
H Hexp c L Ch Lψ ψ

and the claim follows.

Hence the Chern-character is a morphism of cohomology-theories 
respecting the additional structure given by the Adams and Steenrod-
operations.
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