

Open Access

Notes on the Chern-Character

Maakestad H*

Department of Mathematics, NTNU, Trondheim, Norway

Abstract

Notes for some talks given at the seminar on characteristic classes at NTNU in autumn 2006. In the note a proof of the existence of a Chern-character from complex K-theory to any cohomology Lie theory with values in graded Q-algebras equipped with a theory of characteristic classes is given. It respects the Adams and Steenrod operations.

Keywords: Chern-character; Chern-classes; Euler classes; Singular cohomology; De Rham-cohomology; Complex K-theory; Adams operations; Steenrod operations

Introduction

The aim of this note is to give an axiomatic and elementary treatment of Chern-characters of vectorbundles with values in a class of cohomology-theories arising in topology and algebra. Given a theory of Chern-classes for complex vectorbundles with values in singular cohomology one gets in a natural way a Chern-character from complex K-theory to singular cohomology using the projective bundle theorem and the Newton polynomials. The Chern-classes of a complex vectorbundle may be defined using the notion of an Euler class [1] and one may prove that a theory of Chern-classes with values in singular cohomology is unique. In this note it is shown one may relax the conditions on the theory for Chern-classes and still get a Chern-character. Hence the Chern-character depends on some choices.

Many cohomology theories which associate to a space a graded commutative Q-algebra H^* satisfy the projective bundle property for complex vectorbundles. This is true for De Rham-cohomology of a real compact manifold, singular cohomology of a compact topological space and complex K-theory. The main aim of this note is to give a self contained and elementary proof of the fact that any such cohomology theory will recieve a Chern-character from complex K-theory respecting the Adams and Steenrod operations.

Complex K-theory for a topological space B is considered, and characteristic classes in K-theory and operations on K-theory such as the Adams operations are constructed explicitly, following [2].

The main result of the note is the following (Theorem 4.9):

Theorem 1.1: Let H^* be any rational cohomology theory satisfying the projective bundle property. There is for all $k \ge 1$ a commutative diagram.

$$K^*_{\mathbf{C}}(B)^{Ch\psi^k} H^{even}(B)^{\psi^k_H} K^*_{\mathbf{C}}(B)^{Ch} H^{even}(B)$$

Where *Ch* is the Chern-character for H^* , ψ^k is the Adams operation and ψ_H^k is the Steenrod operation.

The proof of the result is analogous to the proof of existence of the Chern-character for singular cohomology.

Euler Classes and Characteristic Classes

In this section we consider axioms ensuring that any cohomology theory H^* satisfying these axioms, recieve a Chern-character for complex vectorbundles [3]. By a cohomology theory we mean a contravariant functor.

$H^*: Top \rightarrow \mathbf{Q} - algebras$

from the category of topological spaces to the category of graded commutative Q-algebras with respect to continuous maps of topological spaces. We say the theory satisfy the projective bundle property if the following axioms are satisfied: For any rank n complex continuous vectorbundle E over a compact space B There is an Euler class.

$$u_{E} \in H^{2}(P(E)) \tag{1}$$

Where $\pi:P(E) \rightarrow B$ is the projective bundle associated to *E*. This assignment satisfy the following properties: The Euler class is natural, i.e for any map of topological spaces $f:B' \rightarrow B$ it follows:

$$f^{*}u_{E} = u_{f^{*}E}$$
(2)

For $E = \bigoplus_{i=1}^{n} L_i$ where L_i are linebundles there is an equation:

$$\prod_{i=1}^{n} (u_E - \pi^* u_{L_i}) = 0 \text{in} H^{2n}(\mathbf{P}(E))$$
(3)

The map π^* induce an injection $\pi^*:H^*(B) \to H^*(\mathbb{P}(E))$ and there is an equality,

 $H^{*}(\mathbf{P}(E)) = H^{*}(B)\{1, u_{E}, u_{E}^{2}, ..., u_{E}^{n-1}\}.$

Assume H^* satisfy the projective bundle property. There is by definition an equation,

$$u_E^n - c_1(E)u_E^{n-1} + \dots + (-1)^n c_n(E) = 0$$

in $H^*(\mathbf{P}(E))$.

Definition 2.1: The class $c_i(E) \in H^{2i}(B)$ is the i'th characteristic class of *E*.

Example 2.2: If $P(E) \rightarrow B$ is the projective bundle of a complex vector bundle and $u_E = e(\lambda(E)) \in H^2(P(E),Z)$ is the Euler classe of the tautological linebundle (*E*) on P(*E*) in singular cohomology as defined in Section 14 [1], one verifies the properties above are satisfied [4]. One gets the Chern-classes $c_i(E) \in H^{2i}(B,Z)$ in singular cohomology.

*Corresponding author: Maakestad H, Dept. of Mathematics, NTNU, Trondheim, Norway, Tel: +47 73 59 35 20; E-mail: Helge.Maakestad@math.ntnu.no

Received December 05, 2016; Accepted January 16, 2017; Published February 06, 2017

Citation: Maakestad H (2017) Notes on the Chern-Character. J Generalized Lie Theory Appl 11: 253. doi:10.4172/1736-4337.1000253

Copyright: © 2017 Maakestad H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Definition 2.3: A theory of characteristic classes with values in a cohomology theory H^* is an assignment.

$$E \rightarrow c_i(E) \in H^{2i}(B)$$

for every complex finite rank vectorbundle *E* on *B* satisfying the following axioms:

$$f^*ci(E) = ci(f^*E) \tag{4}$$

If
$$E \cong F$$
 it follows $c_i(E) = c_i(F)$ (5)

$$c_k(E \oplus F) = \sum_{i+i=k} c_i(E)c_j(F).$$
(6)

Note: if φ : $H^* \rightarrow H^*$ is a functorial endomorphism of H which is a ring-homomorphism and c is a theory of characteristic classes, it follows the assignment $E \rightarrow c_i(E) = \varphi(c_i(E))$ is a theory of characteristic classes.

Example 2.4: Let $k \in \mathbb{Z}$ and let ψ_H^k be the ring-endomorphism of H^{even} defined by $\psi_H^k(x) = k^r x$ where $x \in H^{2r}(B)$. Given a theory $c_i(E)$ satisfying Definition 2.3 it follows $\overline{c_i}(E) = \psi_H^k(c_i(E))$ is a theory satisfying Definition 2.3.

Note furthermore: Assume γ_1 is the tautological linebundle on P¹. Since we do not assume $c_1(\gamma_1)=Z$ where Z is the canonical generator of $H^2(\mathbb{P}^1,Z)$ it does not follow that an assignment $E \rightarrow ci(E)$ is uniquely determined by the axioms 4-46. We shall see later that the axioms 4-46 is enough to define a Chern-character [5].

Theorem 2.5: Assume the theory H^* satisfy the projective bundle property. It follows H^* has a theory of characteristic classes.

Proof: We verify the axioms for a theory of characteristic classes. Axiom 4: Assume we have a map of rank *n* bundles $f:F \rightarrow E$ over a map of topological spaces $g:B' \rightarrow B$. We pull back the equation,

$$u_E^n - c_1(E)u_E^{n-1} + \dots + (-1)^n c_n(E) = 0$$

in $H^{2n}(\mathbb{P}(E))$ to get an equation,

$$u_F^n - f^* c_1(E) u_F^{n-1} + \dots + (-1)^n f^* c_n(E) = 0$$

and by unicity we get $f^*c_i(E)=c_i(F)$. It follows $c_i(E)=c_i(F)$ for isomorphic bundles *E* and *F*, hence Axiom 5 is ok. Axiom 6: Assume $E \cong \bigoplus_{i=1} L_i$ is a decomposition into linebundles. There is an equation $\prod (u_E - u_{L_i})$ hence we get a polynomial relation.

$$u_E^n - s_1(u_{L_i})u_E^{n-1} + \dots + (-1)^n s_n(u_{L_i}) = 0$$

in $H^{2n}(\mathbf{P}(E))$. Since $c_1(L_i) = -u_{L_i}$ it follows,

 $\prod (c(L_i)) = \prod (1 + c_1(L_i)) = c(E)$

and this is ok.

Given a compact topological space *B*. We may consider the Grothendieck-ring $K_C^*(B)$ of complex finite-dimensional vectorbundles. It is defined as the free abelian group on isomorphismclasses [*E*] where *E* is a complex vectorbundle, modulo the subgroup generated by elements of the type $[E \oplus F] - [E] - [F]$. It has direct sum as additive operation and tensor product as multiplication. Assume *E* is a complex vectorbundle of rank *n* and let:

 $\pi: \mathbf{P}(E) \rightarrow \mathbf{B}$

be the associated projective bundle. We have a projective bundle theorem for complex K-theory:

Theorem 2.6: The group $K^*(P(E))$ is a free $K^*(B)$ module of finite

rank with generator u - the euler class of the tautological line-bundle. The elements {1,u, u^2 ,..., u^{n-1} } is a free basis.

Proof: See Theorem IV.2.16 in [2].

As in the case of singular cohomology, we may define characteristic classes for complex bundles with values in complex K-theory using the projective bundle theorem: The element u^n satisfies an equation,

 $u^{n} - c_{1}(E)u^{n-1} + c_{2}(E)u^{n-2} + \dots + (-1)^{n-1}c_{n-1}(E)u + (-1)^{n}c_{n}(E) = 0$

in $K^*(\mathbb{P}(E))$. One verifies the axioms defined above are satisfied, hence one gets characteristic classes $c_i(E) \in K^*_{\mathbb{C}}(B)$ for all i=0,...,n.

Theorem 2.7: The characteristic classes $c_i(E)$ satisfy the following properties:

$$f^{*}c_{i}(E) = c_{i}(f^{*}E) \tag{7}$$

$$c_k(E \oplus F) = \sum_{i+j=k} c_i(E)c_j(F)$$
(8)

$$c1(L)=1-Lc_i(L)=0, i>1$$
 (9)

where *E* is any vector bundle, and *L* is a line bundle [6].

Proof: See Theorem IV.2.17 in [2].

Adams Operations and Newton Polynomials

We introduce some cohomology operations in complex K-theory and Newton-polynomials and prove elementary properties following the book [2].

Let $\Phi(B)$ be the abelian monoid of elements of the type $\sum n_i[E_i]$ with $n \ge 0$. Consider the bundle $\lambda^i(E) \wedge^i E$ and the association.

$$\lambda_{t}(E) = \sum_{i \ge 0} \lambda^{t}(E)t^{i}$$

giving a map.
$$\lambda_{t} = \Phi(X) \rightarrow 1 + tK_{C}^{*}(B)[[t]]$$

One checks,

$$\lambda_t(E \oplus F) = \lambda_t(E) \lambda_t(F)$$

hence the map λ_i is a map of abelian monoids, hence gives rise to a map,

$$\lambda_t : K^*_{\mathbf{C}}(B) \to 1 + tK^*_{\mathbf{C}}(B)[[t]]$$

from the additive abelian group $K_{\mathbb{C}}^*(B)$ to the set of powerseries with constant term equal to one [7]. Explicitly the map is as follows:

$$\lambda_t(n[E]-m[F]) = \lambda_t(E)^n \lambda_t(F)^{-m}.$$

When n denotes the trivial bundle of rank n we get the explicit formula.

$$\lambda_t([E]-n) = \lambda_t(E) \ (1+t)^{-n}.$$

Let u=t/1-t. We may define the new powerseries,

$$\lambda_{t}(E) = \lambda_{u}(E) = \sum_{k \ge 0} \lambda^{i}(E)u^{i}.$$

It follows.

γ

$$\gamma_t(E \oplus F) = \lambda_u(E \oplus F) = \lambda_u(E)\lambda_u(F) = \gamma_t(E)\gamma_t(F).$$

We may write formally,

$$\gamma_t(E) = \sum_{k \ge 0} \gamma^i(E) t^i \in K^*_{\mathbf{C}}(B)[[t]].$$

Hence it follows that,

$$\gamma^k(E) = \sum_{i+j=k} \gamma^i(E) \gamma^j(E).$$

We get operations,

$$\gamma^i: K^*_{\mathbb{C}}(B) \to K^*_{\mathbb{C}}(B)$$

for all $i \ge 1$. We next define Newton polynomials using the elementary symmetric functions. Let $u_1, u_2, u_3, ...$ be independent variables over the integers Z, and let $Q_k = u_1^k + u_2^k + \dots + u_k^k$ for $k \ge 1$. It follows Q_k is invariant under permutations of the variables u_i : for any $\sigma \in S_k$ we have $\sigma Q_k = Q_k$ hence we may express Q_k as a polynomial in the elementary symmetric functions σ_i :

$$Q_k = Q_k(\sigma_1, \sigma_2, ..., \sigma_k).$$

We define,

$$S_k(\sigma) = Q_k(\sigma_1, \sigma_2, ..., \sigma_k)$$

to be the *k'th* Newton polynomial in the variables σ_i , σ_2 ,..., σ_k where σ_i is the *i'th* elementary symmetric function. One checks the following:

$$S_1(\sigma_1) = \sigma_1,$$

$$s_2(\sigma_1, \sigma_2) = \sigma_1^2 - 2\sigma_2,$$

and
$$s_2(\sigma_1, \sigma_2, \sigma_3) = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$$

and so on.

Let $n \ge 1$ and consider the polynomial.

 $p(1) = (1+tu_1)(1+tu_2)\dots(1+tu_n) - t^n \sigma_n + t^{n-1} \sigma_{n-1} + \dots + t\sigma_1 + 1$ where,

 $\sigma_i = \sigma_i(u_1, \dots, u_n)$

is the ith elementary symmetric polynomial in the variables $u_1, u_2, ..., u_n$.

Lemma 3.1: There is an equality.

$$Q_k(\sigma_1(u_1,..,u_n),\sigma_2(u_1,..,u_n),..,\sigma_k(u_1,..,u_n)) = u_1^k + u_2^k + \dots + u_n^k.$$

Proof: Trivial.

Assume we have virtual elements $x=E-n=\bigoplus^n(L_i-1)$ and $y=F-p=\bigoplus^p(Rj-1)$ in complex K-theory $K_C^*(B)$. We seek to define a cohomology-operation c on complex K-theory using a formal powerseries.

 $f(u) = a_1 u + a_2 u^2 + a_3 u^3 + \ldots \in \mathbb{Z}[[u]].$

We define the element.

$$c(x) = a_1 Q_1(\gamma^1(x)) + a_2 Q_2(\gamma^1(x), \gamma^2(x)) + a_3 Q_3(\gamma^1(x), \gamma^2(x), \gamma^3(x)) + \dots$$

Proposition 3.2: Let *L* be a linebundle. Then $\gamma_t(L-1)=1+t(L-1)=1-c_1(L)t$. Hence $\gamma^1(L-1)=L-1$ and i(L-1)=0 for i>1.

Proof: We have by definition.

$$\begin{split} \gamma_t(E) &= \lambda_u(E) = \sum_{k \ge 0} \lambda^k(E) u^k = \sum_{k \ge 0} \lambda^k(E) (t/1-t)^k. \\ \text{We have that,} \\ \gamma_t(nE-mF) &= \lambda_u(E)^n \lambda_u(F)^{-m}. \\ \text{We get,} \\ \gamma_t(L-1) &= \lambda_u(L) \lambda_u(1)^{-1}. \end{split}$$

We have,

```
\lambda_t(n) = (1+t)^n
```

Hence,

 $\gamma_t(n) = \lambda_u(n) = (1+u)^n = (1+t/1-t)^n = (1-t)^{-n}.$

We get:

$$\gamma_t(L-1) = \gamma_t(L)\gamma_t(1)^{-1} = \lambda_u(L)(1-t)^{-1} = (1+Lu)(1-t)^{-1} = (1+L(t/t-1))(1-t)^{-1} = 0$$

$$\frac{1+t(L-1)}{1-t}(1-t) = 1+t(L-1) = 1-c_1(L)t.$$

And the proposition follows.

Note: if x=L-1 we get,

$$c(x) = \sum_{k \ge 0} a_k Q_k(\gamma^1(x), \gamma^2(x), ..., \gamma^k(x)) =$$
$$\sum_{k \ge 1} a_k Q_k(\gamma^1(x), 0, ..., 0) = \sum_{k \ge 1} a_k \gamma^1(x)^k =$$
$$\sum_{k \ge 1} a_k (L-1)^k = \sum_{k \ge 0} (-1)^k a_k c_1(L)^k.$$

We state a Theorem:

Theorem 3.3: Let $E \rightarrow B$ be a complex vectorbundle on a compact topological space *B*. There is a map $:B' \rightarrow B$ such that π^*E decompose into linebundles, and the map $\pi^*: H^*(B) \rightarrow H^*(B')$ is injective [8].

Proof: See [2] Theorem IV.2.15.

Note: By [2] Proposition II.1.29 there is a split exact sequence.

$$0 \to K'_{\mathbf{C}}(B) \to K^*_{\mathbf{C}}(B) \to H^0(B, \mathbf{Z}) \to 0$$

hence the group $K'_{\mathbb{C}}(B)$ is generated by elements of the form E-n where E is a rank n complex vectorbundle.

Proposition 3.4: The operation *c* is additive, i.e for any $x, y \in K^*_{\mathbb{C}}(B)$ we have,

$$c(x+y)=c(x)+c(y).$$

Proof: The proof follows the proof in [2], Proposition IV.7.11. We may by the remark above assume x=E-n and y=F-p where $x, y \in K'_{\mathbb{C}}(B)$. We may also from Theorem 3.3 assume $F = \bigoplus^{p} R_{j}$ and

 $F = \bigoplus^{p} R_{j}$ where L_{i}, R_{j} are linebundles. We get the following:

$$\begin{split} \gamma_{t}(x+y) &= \prod [\gamma_{t}(L_{i}-1)] \prod [\gamma_{t}(R_{j}-1) = \prod (1+tu_{i})] \prod (1+tv_{j}) = \\ t^{n+p}\sigma_{n+p}(u_{1},...,u_{n},v_{1},...,v_{p}) + t^{n+p1}\sigma_{n+p-1}(u_{1},...,u_{n},v_{1},...,v_{p}) + \\ \dots + t\sigma_{1}(u_{1},...,u_{n},v_{1},...,v_{p}) + 1 \\ \text{Hence,} \\ \gamma^{i}(x+y) &= \sigma_{i}(u_{1},...,u_{n},v_{1},...,v_{p}). \\ \text{We get:} \\ Q_{k}(\gamma^{1}(x+y),...,\gamma^{k}(x+y)) &= Q_{k}(\sigma_{1}(u_{i},v_{j}),...,\sigma_{k}(u_{i},v_{j})) \\ \text{which by Lemma 3.1 equals,} \\ u_{1}^{k} + \cdots u_{n}^{k} + v_{1}^{k} + \cdots v_{p}^{k} &= Q_{k}(\sigma_{1}(u_{i}),...,\sigma_{k}(u_{i})) + Q_{k}(\sigma_{1}(v_{j}),...,\sigma_{k}(v_{j})) = \\ Q_{\iota}(\gamma^{i}(x)) + Q_{\iota}(\gamma^{i}(y)). \end{split}$$

J Generalized Lie Theory Appl, an open access journal ISSN: 1736-4337

$$W(\mathfrak{s} \operatorname{get}) = \sum_{k \ge 0} a_k Q_k(\gamma^i(x+y)) =$$
$$\sum_{k \ge 0} a_k Q_k(\gamma^i(x)) + \sum_{k \ge 0} a_k Q_k(\gamma^i(y)) = c(x) + c(y)$$

and the claim follows.

We may give an explicit and elementary construction of the Adams-operations:

Theorem 3.5: Let $k \ge 1$. There are functorial operations,

 $\psi^k : K^*_{\mathbf{C}}(B) \to K^*_{\mathbf{C}}(B)$ with the properties.

 ${}^{k}(x+y) = \psi^{k}(x) + \psi^{k}(y) \tag{10}$

 $\psi^k(L) = L^k \tag{11}$

 $\psi^k(xy) = \psi^k(x)\psi^k(y) \tag{12}$

$$\psi^k(1)=1\tag{13}$$

where L is a line bundle. The operations ψ^k are the only operations that are ring-homomorphisms - the Adams operations.

Proof: We need:

$$\psi^{k}(L-1) = \psi^{k}(L) - \psi^{k}(1) = L^{k} - 1$$

We have in K-theory:

$$L^{k} - 1 = (L - 1 + 1)^{k} - 1 = \sum_{i \ge 0} {k \choose i} (L - 1)^{k - i} 1^{i} - 1 = {\binom{k}{1}} (L - 1) + {\binom{k}{2}} (L - 1)^{2} + \dots + {\binom{k}{k}} (L - 1)^{k}.$$

We get the series,

$$c = \sum_{i=1}^{k} \binom{k}{i} u^{k} \in \mathbf{Z}[[u]]$$

The following operator,

$$\psi^{k} = \sum_{i=1}^{k} \binom{k}{i} Q_{i}(\gamma^{1}, ..., \gamma^{i})$$

is an explicit construction of the Adams-operator. One may verify the properties in the theorem, and the claim follows.

Assume *E*,*F* are complex vectorbundles on B and consider the Chern-polynomial.

 $c_{L}(E \oplus F) = 1 + c_{1}(E \oplus F)t + \ldots + c_{N}(E \oplus F)t^{N}.$

where N=rk(E)+rk(F). Assume there is a decomposition $E=\bigoplus^{n}L_{i}$ and $F=\bigoplus^{n}R_{i}$ into linebundles. We get a decomposition,

$$c_t(E \oplus F) = \prod c_t(L_i) \prod c_t(R_i) = (1+a_1t)(1+a_2t)\dots(1+b_1t)\dots(1+b_pt)$$

where
$$a_i = c_1(L_i), b_j = c_1(R_j)$$
. We get thus,

 $c_i(E \oplus F) = \sigma_i(a_1, \dots, a_n, b_1, \dots, b_n).$

Let,

$$Q_k = u_1^k + \dots + u_k^k = Q_k(\sigma_1, \dots, \sigma_k)$$

where σ_i is the ith elementary symmetric function in the u_i 's.

Proposition 3.6: The following holds:

 $\boldsymbol{Q}_{k}(\boldsymbol{c}_{1}(E \oplus F),...,\boldsymbol{c}_{k}(E \oplus F)) = \boldsymbol{Q}_{K}(\boldsymbol{c}_{i}(E)) + \boldsymbol{Q}_{k}(\boldsymbol{c}_{i}(F)).$

Proof: We have,

$$Q_k(c_i(E \oplus F)) = Q_k(\sigma_i(a_i, b_j)) =$$

$$a_1^k + \cdots a_n^k + b_1^k + \cdots b_p^k = Q_k(c_i(E)) + Q_k(c_i(F))$$

and the claim follows.

The Chern-Character and Cohomology Operations

We construct a Chern-character with values in singular cohomology, using Newton-polynomials and characteristic classes following [2]. The *k'th* Newton-classe $s_k(E)$ of a complex vector bundle will be defined using characteristic classes of $E: c_1(E),..,c_k(E)$ and the *k'th* Newton-polynomial $s_k(\sigma_1,..,\sigma_k)$. We us this construction to define the Chern-character Ch(E) of the vector bundle E.

We first define Newton polynomials using the elementary symmetric functions. Let $u_1, u_2, u_3, ...$ be independent variables over the integers Z, and let $Q_k = u_1^k + u_2^k + \cdots + u_k^k$ for $k \ge 1$. It follows Q_k is invariant under permutations of the variables u_i : for any $\sigma \in S_k$ we have $\sigma Q_k = Q_k$ hence we may express Q_k as a polynomial in the elementary symmetric functions σ_i :

$$Q_k = Q_k(\sigma_1, \sigma_2, ..., \sigma_k).$$

We define,

$$S_k(\sigma) = Q_k(\sigma_1, \sigma_2, ..., \sigma_k)$$

to be the *k'th* Newton polynomial in the variables $(\sigma_1, \sigma_2, ..., \sigma_k)$ where σ_i is the *i'th* elementary symmetric function. One checks the following:

$$s_{1}(\sigma_{1}) = \sigma_{1},$$

$$s_{2}(\sigma_{1}, \sigma_{2}) = \sigma_{1}^{2} - 2\sigma_{2},$$
and,
$$s_{2}(\sigma_{1}, \sigma_{2}, \sigma_{3}) = \sigma_{1}^{3} - 3\sigma_{1}\sigma_{2} + 3\sigma_{3}$$
and so on.

Assume we have a cohomology theory H^* satisfying the projective bundle property. One gets characteristic classes $c_i(E)$ for a complex vectorbundle E on B:

$c_i(E) \in H^{2i}(B).$

Let the class $S_k(E)=s_k(c_1(E),c_2(E),..,c_k(E))\in H^{2k}(B)$ be the k'thNewton-class of the bundle *E*. One gets:

$$s_k(\sigma_1, 0, ..., 0) = \sigma_1^k$$

for all $k \ge 1$. Assume *E*,*F* linebundles. We see that,

$$S_2(E \oplus F) = c_1(E \oplus F)^2 - 2c_2(E \oplus F) =$$

$$(c_1(E)+c_1(F))^2-2(c_2(E)+c_1(E)c_1(F)+c_2(F))=$$

$$c_1(E)^2 + 2c_1(E)c_1(F) + c_1(F)^2 - 2c_2(E) - 2c_1(E)c_1(F) - 2c_2(F) =$$

$$c_1(E)^2 - 2c_2(E) + c_1(F)^2 - 2c_2(F) = S_2(E) + S_2(F).$$

This holds in general:

Proposition 4.1: For any vectorbundles *E*,*F* we have the formula,

 $S_k(E \oplus F) = S_k(E) + S_k(F).$

Proof: This follows from 3.6.

Let $K^*_{\mathbf{C}}(B)$ be the Grothendieck-group of complex vector bundles on

Definition 4.2: The class,

$$Ch(E) = \sum_{k \ge 0} \frac{1}{k!} S_k(E) \in H^{even}(B)$$

is the Chern-character of E.

Lemma 4.3: The Chern-character defines a group-homomorphism,

$$Ch: K^*_{\mathbf{C}}(B) \to H^{even}(B)$$

between the Grothendieck group $K^*_{\mathbb{C}}(B)$ and the even cohomology of *B* with rational coefficients.

Proof: By Proposition 4.1 we get the following: For any E,F we have,

$$Ch(E \oplus F) = \sum_{k \ge 0} \frac{1}{k!} s_k(E \oplus F) = \sum_{k \ge 0} \frac{1}{k!} (s_k(E) + s_k(F)) = \sum_{k \ge 0} \frac{1}{k!} s_k(E) + \sum_{k \ge 0} \frac{1}{k!} s_k(F) = Ch(E) + Ch(F).$$
We get

We get,

$$Ch([E \oplus F] - [E] - [F]) = Ch(E \oplus F) - Ch(E) - Ch(F) = 0$$

and the Lemma follows.

Example 4.4: Given a real continuous vector bundle *F* on *B* there exist Stiefel-Whitney classes $w_i(F) \in H^i(B, Z/2)$ (see [1]) satisfying the necessary conditions, and we may define a "Chern-character"

$$Ch: K_{\mathbf{R}}^{*}(B) \to H^{*}(B, \mathbf{Z}/2)$$

by
$$Ch(F) = \sum_{k>0} Q_{k}(w_{1}(F), ..., w_{k}(F)).$$

4

This gives a well-defined homomorphism of abelian groups because of the universal properties of the Newton-polynomials and the fact $H^*(B,Z/2)$ is commutative. The formal properties of the Stiefel-Whitney classes w_i ensures that for real bundles E,F Proposition 3.6 still holds: We have the formula,

$$\boldsymbol{Q}_{k}(\boldsymbol{w}_{i}(E \oplus F)) = \boldsymbol{Q}_{k}(\boldsymbol{w}_{i}(E)) + \boldsymbol{Q}_{k}(\boldsymbol{w}_{i}(F)).$$

Since $S_k(\sigma_1, 0, ..., 0) = \sigma_1^k$ we get the following: When *E*,*F* are linebundles we have:

$$S_{k}(E \otimes F) = S_{k}(c_{1}(E \otimes F), 0, ..., 0) = (c_{1}(E \otimes F))^{k} = (c_{1}(E) + c_{1}(F))^{k} = \sum_{i+j=k} {i \choose i} c_{1}(E)^{i} c_{1}(F)^{j} = \sum_{i+j=k} {i \choose i} S_{i}(E) S_{j}(F).$$

This property holds for general *E*,*F*:

Proposition 4.5: Let *E*,*F* be complex vectorbundles on a compact topological space *B*. Then the following formulas hold:

$$S_k(E \otimes F) = \sum_{i+j=k} {i+j \choose i} S_i(E) S_j(E)$$
(14)

Proof: We prove this using the splitting-principle and Proposition 4.1. Assume E,F are complex vectorbundles on B and $f:B' \rightarrow B$ is a map of topological spaces such that $f^*E=\bigoplus_i L_i f^*F=\bigoplus_i M_i$ where $L_i M_i$ are

linebundles and the pull-back map $f:H^*(B) \rightarrow H^*(B')$ is injective. We get the following calculation:

$$f^*S_k(E \otimes F) = S_k(f^*E \otimes F) = S_k(\bigoplus L_i \otimes M_j)$$

hence by Lemma 4.1 we get,

$$\sum_{i,j} S_k(L_i \otimes M_j) = \sum_i (\sum_j S_k(L_i \otimes M_j)) =$$
$$\sum_i \sum_j \sum_{u+v=k} {u+v \choose u} S_u(L_i) S_v(M_j) =$$
$$\sum_i \sum_{u+v=k} {u+v \choose u} S_u(L_i) S_v(\oplus M_j) =$$
$$\sum_{u+v=k} {u+v \choose u} S_u(\oplus L_i) S_v(\oplus M_j) =$$
$$Ch: K^*_{\mathbf{C}}(B) \to H^{even}(B).$$

and the result follows since f^* is injective.

Theorem 4.6: The Chern-character defines a ring-homomorphism.

$$Ch: K_{\mathbf{C}}^{*}(B) \to H^{even}(B).$$
Proof: From Proposition 4.5 we get:

$$Ch(E \otimes F) = \sum_{k \ge 0} \frac{1}{k!} S_{k}(E \otimes F) =$$

$$\sum_{k \ge 0} \frac{1}{k!} \sum_{i+j=k} {i+j \choose i} S_{i}(E) S_{j}(F) =$$

$$(\sum_{k \ge 0} \frac{1}{k!} S_{k}(E)) (\sum_{k \ge 0} \frac{1}{k!} S_{k}(F) = Ch(E) Ch(F))$$

and the Theorem is proved.

Example 4.7: For complex K-theory $K^*_{\mathbf{C}}(B)$ we have for any complex vectorbundle *E* characteristic classes $c_i(E) \in K^*_{\mathbf{C}}(B)$ satisfying the neccessary conditions, hence we get a group-homomorphism.

$$Ch_{\mathbf{Z}}: K^*_{\mathbf{C}}(B) \to K^*_{\mathbf{C}}(B)$$

defined by,

$$Ch_{\mathbf{Z}}(E) = \sum_{k \ge 0} Q_k(c_1(E), ..., c_k(E)).$$

If we tensor with the rationals, we get a ring-homomorphism.

$$Ch_{\mathbf{Q}}: K^*_{\mathbf{C}}(B) \to K^*_{\mathbf{C}}(B) \otimes \mathbf{Q}$$

defined by,

$$Ch(E) = \sum_{k \ge 0} \frac{1}{k!} Q_k(c_1(E), ..., c_k(E)).$$

Theorem 4.8: Let *B* be a compact topological space. The Cherncharacter,

$$Ch^{\mathbf{Q}}: K^*_{\mathbf{C}}(B) \otimes \mathbf{Q} \to H^{even}(B, \mathbf{Q})$$

is an isomorphism. Here $H^*(B,Q)$ denotes singular cohomology with rational coefficients.

Proof: See [2].

The Chern-character is related to the Adams-operations in the

J Generalized Lie Theory Appl, an open access journal ISSN: 1736-4337

following sense: There is a ring-homomorphism.

$$\psi_{H}^{k}: H^{even}(B) \to H^{even}(B)$$

defined by,

 $\psi_H^k(x) = k^r x$

when $x \in H^{2r}(B)$. The Chern-character respects these cohomology operations in the following sense:

Theorem 4.9: There is for all $k \ge 1$ a innovative diagram.

$$K_{\mathbf{C}}^{*}(B)^{Ch\psi^{k}}H^{even}(B)^{\psi^{k}_{H}}K_{\mathbf{C}}^{*}(B)^{Ch}H^{even}(B)$$

where ψ^k is the Adams operation defined in the previous section.

Proof: The proof follows Theorem V.3.27 in [2]: We may assume *L* is a linebundle and we get the following calculation: $\psi^k(L)=L^k$ and $c_1(L^k)=kc_1(L)$ hence,

$$Ch(\psi^{k}(L)) = exp(kc_{1}(L)) = \sum_{i\geq 0} \frac{1}{i!} k^{i} c_{1}(L)^{i} =$$

$$\psi_H^k(exp(c_1(L))) = \psi_H^k(Ch(L))$$

and the claim follows.

Hence the Chern-character is a morphism of cohomology-theories respecting the additional structure given by the Adams and Steenrod-operations.

References

- 1. Milnor J (1966) Characteristic Classes. Princeton University Press.
- 2. Karoubi M (1978) K-theory an introduction. Grundlehren Math Wiss.
- Dupont J (1978) Curvature and characteristic classes, Lecture Notes in Mathematics. Springer Verlag V: 640.
- Fulton W, Lang S (1985) Riemann-Roch algebra. Grundlehren Math Wiss No: 277.
- Grothendieck A (1958) Theorie des classes de Chern. Bull Soc Math France 86: 137-154.
- 6. Husemoeller D (1979) Fibre bundles. GTM.
- 7. Steenrod N (1962) Cohomology operations. Princeton University Press.
- 8. End W (1969) Über Adams-operationen. Invent Math 9: 45.