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Abstract
The Lie algebra of isometries of dimension superior than or equal to three is semi-simple if and only if the horizontal nullity space of the Nijenhuis tensor of the 
canonical connection is reduced to zero and the derivative ideal coincides with algebra.
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Introduction

This paper is the complement of our study in [1], the notations and 
notions are those of [1]. Let M be a paracompact manifold of dimension n 
(n≥2) and of class ∞ , TM the tangent bundle to M. On an open set U of M,

', {1,...,n}
(x , y )i j

i j∈  the natural coordinate system of TU, the energy function E 
is written:

11 ( ,..., )
2

n i j
ijE g x x y y=

Where gij(x
1,…, xn ) are positive functions such that the symmetric matrix 

(gij (x
1 ,…, xn)) is invertible. The function E defines a symplectic scalar 2-form 

Ω=ddJE which gives a vertical metric on the tangent bundle to M, with dJ=[iJ, d], 
J being the natural tangent structure to M. The canonical spray S is defined by:

.S Ji dd E dE=−

iS being the inner product with respect to S and, the canonical 

connection is [ , ]J SΓ = . If χ (M) denotes the set of vector fields on M, 

( )Mχ the complete lift of and (M),χ { (M) 0}XA X suchthat LχΓ = ∈ Γ =

{ ( ) 0}g XA X M suchthat Lχ= ∈ Ω= , 
XL   being the Lie derivative with 

respect to X . 

Case of the Commutative Ideal of gA

Example 2 of [1] show that the commutative ideal of AΓ  come from the 

horizontal nullity space of the curvature of  and 
3x

∂
∂

such that
3 0E

x
∂

=
∂

.

If 0i

E
x
∂

=
∂

 for all {1,..., }i n∈ .This means that the function E is independent 

of , {1,..., }ix i n∈ . In this case, the curvature R of G is zero and the horizontal 
nullity space of the curvature R of AΓ  provides a commutative ideal of AΓ , 
hence an commutative ideal of gA .

We assume that 1 ( ),i p p n≤ ≤ < coordinates such that 0i

E
x
∂

≠
∂

. By 

Proposition 19 of [1], 1 , gii p A
x
∂

≤ ≤ ∉
∂

 and 1 ,..., gp n A
x x+

∂ ∂
∈

∂ ∂
. We will study 

the case where the Lie subalgebra generated by 1 ,...,p nx x+

∂ ∂ 
 ∂ ∂ 

noted I forms 

a commutative ideal of gA . An element ( )X Mχ∈ is written:

1 , .
i

i j
i j i

XX X y i j n
x x y
∂ ∂ ∂

= + ≤ ≤
∂ ∂ ∂

                                                        

1 1
,1

l rp n
l j r j

l j l r j r
l r p

X XX y X y j n
x x y x x y= = +

∂ ∂ ∂ ∂ ∂ ∂
= + + + ≤ ≤

∂ ∂ ∂ ∂ ∂ ∂∑ ∑

For I to be an ideal, we must have ,k X I
x
∂ ∈ ∂ 

 
for all, , 1 .k p k n+ ≤ ≤

This is explained by:

1

0, 1 1 ,

X , 1 , , ,

k

r r j r r r
j j

X for all l suchthat l p and for all k suchthat p k n
x

a x b p r j n a b

∂
= ≤ ≤ + ≤ ≤ ∂

 = + + ≤ ≤

are constants

By asking 

1
1

,1
lp

l j
l j l

l

XX X y j p
x x y=

∂ ∂ ∂
= + ≤ ≤

∂ ∂ ∂∑

2
1
( ) , 1 , ,

n
r k r r k r r
k k kr r

r p
X a x b a y p k n a b

x y= +

∂ ∂
= + + + ≤ ≤

∂ ∂∑
 

are constants

and 1 2X X X= + , we have 1 2[ , ] 0X X = . To get gX A∈ , it is 

necessary and sufficient that 0XL E = or even
1 2

0X XL E L E+ = . Such a 

decomposition of gX A∈ clearly indicates that the derivative ideal from gA  

cannot coincide with gA  if 2 0X ≠ . It is the same if 2X  is an expression of a 
non-zero part of I .

In  the  case  where  the  indices  are  not  ordered,  in  this  way,  we  take,

1, 2 1 2,..., ... i 0,1 .
q

j

i i i q
i

Ex x x i i suchthat j q
x
∂

< < < = ≤ ≤
∂

We arrive at the 

same result. Taking into account the studies made in [1], we then have:

Theorem

The Lie algebra gA  of the Killing fields contained in AΓ
 of dimension 

superior than or equal to three is semi-simple if and only if the horizontal nullity 
space of the Nijenhuis tensor of Γ  is reduced to zero and that the ideal derived 
from gA  coincides with gA .
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Corollary 

The Lie algebra gA  of finite dimension superior than or equal to three is 
semi-simple if and only if the derivative ideal of 

gA  coincides with 
gA  and 

any derivation of gA  is inner.

Proof: From the above theorem, it remains to prove that the horizontal 
nullity space RhN of the curvature R of the connection Γ is reduced to zero. 
Otherwise, by Theorem 1 and Proposition 19 of [1], there would exist vector 
fields ( )ie {1,..., },i q q n∈ ≤ such that ( )i ge A∈ and that ( )i Re hN∈ .In this case 
the derivation D  of 

gA  defined by ( ) ,1i iD e e i p= ≤ ≤ , is outer. Hence the 
result.

Some examples

Example 1

We take 4M = R  and the energy function written
3 21 2 2 2 3 2 4 21 ( ( ) ( ) ( ) ( ) )

2
x xE e y y y e y= + + +

The coordinates x1 , x4 do not appear on the function E

The non-zero coefficients of Γ are:

2 33 1 4 1 4 2
1 1 2 3 4 4
1 3 4 1 2 4, , , , , .

2 2 2 2 2 2

x xy y e y e y y y
Γ = Γ = Γ = − Γ = − Γ = Γ =

The horizontal nullity space of the curvature {0}.RhN =

 The Lie algebra AΓ  is generated by 

3 3
1 2 1 1

1 3 1
1 1 3 1 3

( ) ,
4 2

x xx x yg e x y e y
x x y y

− −   ∂ ∂ ∂ ∂
= − − + + − + +   ∂ ∂ ∂ ∂   

                               

1 1

2 1 3 1g ,
2 2
x y

x x y
∂ ∂ ∂

= − + −
∂ ∂ ∂

2
2

4 2 4 4 2
4 4

3 2 4 2 4

( ) 2g ,
4 2

x
xx x y y ex e y

x x y y

−
−

  ∂ ∂ ∂ + ∂
= − − + −    ∂ ∂ ∂ ∂   

                               

4 4
4 5 62 4 4 4 1g 2 ,g ,g .x y

x x y x x
∂ ∂ ∂ ∂ ∂

= − + + = =
∂ ∂ ∂ ∂ ∂

Multiplication table of AΓ

[,] 1g 2g 3g 4g 5g 6g

1g 0 1

2
g  0 0 0 2g-  

2g 1

2
g

-  0 0 0 0 6

2
g  

3g 0 0 0 3g-  4

2
g  0 

4g 0 0 3g  0 5g-  0 

5g 0 0 4

2
g

-  5g  0 0 

6g 2g  6

2
g

-  0 0 0 0 

The Lie algebras g gcA A AΓ= =  and they are semi-simple. 

Example 2

We take 6M = R and the energy function written:

( )6 1 3 31 2 2 2 3 2 4 2 5 2 6 21 ( ) ( ) ( ) ( ) ( ) ( )
2

x x x xE y e y e y e y e y y= + + + + +

The missing coordinates are x2, x4  and x5. The non-zero coefficients j
iΓ  

of Γ  are:
1 3 13 6 2 3 1 4

1 2 2 3 3 3
3 2 6 1 3 4, , , , , ,

2 2 2 2 2 2

x x xe y y y y y y e −

Γ = − Γ = Γ = Γ = Γ = Γ = −

3 1 65 4 3 5 3 2
3 4 4 5 5 6
5 3 4 3 5 2, , , , , .

2 2 2 2 2 2

x x xe y y y y y y e−

Γ = − Γ = Γ = Γ = Γ = Γ = −

The horizontal nullity space of the curvature is reduced to zero.

The Lie algebra AΓ  is generated by:

4 5 4 5
1 3 4 5 4 52 ,g x x y y

x x x y y
∂ ∂ ∂ ∂ ∂

= − + + + +
∂ ∂ ∂ ∂ ∂

5 4 5 4
2 4 5 4 5 ,g x x y y

x x y y
∂ ∂ ∂ ∂

= − + −
∂ ∂ ∂ ∂

                                                

 
3 44 5, ,g g

x x
∂ ∂

= =
∂ ∂

6 6
2 2 2 2

2 6 2
5 2 6 2 6

( ) ,
4 2

x xx x yg e x y e y
x x y y

− −   ∂ ∂ ∂ ∂
= − − + − + +   ∂ ∂ ∂ ∂   

2 2
6 72 6 2 22 , .g x y g

x x y x
∂ ∂ ∂ ∂

= − + =
∂ ∂ ∂ ∂

Multiplication table of AΓ     

[,] 1g  2g  3g  4g  5g  6g  7g  
1g  0 0 3g_  4g_  0 0 0 

2g  0 0 4g  3g_  0 0 0 

3g  3g  4g_  0 0 0 0 0 

4g  4g  3g  0 0 0 0 0 

5g  0 0 0 0 0 5g_  6

2
g  

6g  0 0 0 0 5g  0 7g_  

7g  0 0 0 0 6

2
g_  7g  0 

The commutative ideal is generated by 3g  and 4g . The derivative ideal of 

gA  does not coincide with
gA .

The Lie algebras gA , 
gcA  and gA   are identical.

The derivations are all inner.

Remark 1: The two examples above show that the relation in gA , 
gcA  

and 
gA do not allow knowing a priori the nature of 

gA , although 
gA  is an 

ideal of 
gA . They confirm our decomposition of the elements of

gA .



J Generalized Lie Theory Appl, Volume 15:3, 2020Anona M

Page 3 of 3

Remark 2: In [2], we have studied some Lie algebras of countable vector 
fields where the derivative ideal coincides with the algebra and all derivation is 
inner, yet this algebra contains a commutative ideal. The above corollary gives 
a view in the case of a finite dimensional Lie algebra.
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