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Note on 2d binary operadic harmonic oscillator 1
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Abstract

It is explained how the time evolution of the operadic variables may be introduced. As
an example, a 2-dimensional binary operadic Lax representation for the harmonic oscillator
is constructed.
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1 Introduction

It is well known that quantum mechanical observables are linear operators, i.e the linear maps
V → V of a vector space V and their time evolution is given by the Heisenberg equation. As
a variation of this one can pose the following question [7]: how to describe the time evolu-
tion of the linear algebraic operations (multiplications) V ⊗n → V . The algebraic operations
(multiplications) can be seen as an example of the operadic variables [2, 3, 4, 5].

When an operadic system depends on time one can speak about operadic dynamics [7]. The
latter may be introduced by simple and natural analogy with the Hamiltonian dynamics. In
particular, the time evolution of operadic variables may be given by operadic Lax equation.
In [8] it was shown how the dynamics may be introduced in a 2-dimensional Lie algebra. In
the present paper, an operadic Lax representation for the harmonic oscillator is constructed in
general 2-dimensional binary algebras.

2 Operad

Let K be a unital associative commutative ring, and let Cn (n ∈ N) be unital K-modules. For
f ∈ Cn, we refer to n as the degree of f and often write (when it does not cause confusion) f
instead of deg f . For example, (−1)f .= (−1)n, Cf .= Cn and ◦f

.= ◦n. Also, it is convenient to
use the reduced degree |f | .= n− 1. Throughout this paper, we assume that ⊗ .= ⊗K .

Definition 2.1 (operad (e.g [2, 3])). A linear (non-symmetric) operad with coefficients in K is
a sequence C

.= {Cn}n∈N of unital K-modules (an N-graded K-module), such that the following
conditions are satisfied.

(1) For 0 ≤ i ≤ m− 1 there exist partial compositions

◦i ∈ Hom(Cm ⊗ Cn, Cm+n−1), | ◦i | = 0

(2) For all h⊗ f ⊗ g ∈ Ch ⊗ Cf ⊗ Cg, the composition (associativity) relations hold,

(h ◦i f) ◦j g =





(−1)|f ||g|(h ◦j g) ◦i+|g| f if 0 ≤ j ≤ i− 1
h ◦i (f ◦j−i g) if i ≤ j ≤ i + |f |
(−1)|f ||g|(h ◦j−|f | g) ◦i f if i + f ≤ j ≤ |h|+ |f |
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(3) Unit I ∈ C1 exists such that

I ◦0f = f = f ◦i I, 0 ≤ i ≤ |f |

In the second item, the first and third parts of the defining relations turn out to be equivalent.

Example 2.2 (endomorphism operad [2]). Let V be a unital K-module and En
V

.= Endn
V

.=
Hom(V ⊗n, V ). Define the partial compositions for f ⊗ g ∈ Ef

V ⊗ Eg
V as

f ◦i g
.= (−1)i|g|f ◦ (id⊗i

V ⊗g ⊗ id⊗(|f |−i)
V ), 0 ≤ i ≤ |f |

Then EV
.= {En

V }n∈N is an operad (with the unit idV ∈ E1
V ) called the endomorphism operad of

V .

Thus, the algebraic operations can be seen as elements of an endomorphism operad. Just as
elements of a vector space are called vectors, it is natural to call elements of an abstract operad
operations.

3 Gerstenhaber brackets and operadic Lax pair

Definition 3.1 (total composition [2, 3]). The total composition • : Cf⊗Cg → Cf+|g| is defined
by

f • g
.=
|f |∑

i=0

f ◦i g ∈ Cf+|g|, | • | = 0

The pair ComC
.= {C, •} is called the composition algebra of C.

Definition 3.2 (Gerstenhaber brackets [2, 3]). The Gerstenhaber brackets [·, ·] are defined in
ComC as a graded commutator by

[f, g] .= f • g − (−1)|f ||g|g • f = −(−1)|f ||g|[g, f ], |[·, ·]| = 0

The commutator algebra of ComC is denoted as Com−C
.= {C, [·, ·]}. One can prove that

Com−C is a graded Lie algebra. The Jacobi identity reads

(−1)|f ||h|[[f, g], h] + (−1)|g||f |[[g, h], f ] + (−1)|h||g|[[h, f ], g] = 0

Assume that K
.= R and operations are differentiable. The dynamics in operadic systems

(operadic dynamics) may be introduced by

Definition 3.3 (operadic Lax pair [7]). Allow a classical dynamical system to be described by
the evolution equations

dxi

dt
= fi(x1, . . . , xn), i = 1, . . . , n

An operadic Lax pair is a pair (L, M) of homogeneous operations L,M ∈ C, such that the above
system of evolution equations is equivalent to the operadic Lax equation

dL

dt
= [M,L] .= M • L− (−1)|M ||L|L •M

Evidently, the degree constraints |M | = |L| = 0 give rise to ordinary Lax pair [6, 1].
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4 Operadic harmonic oscillator

Consider the Lax pair for the harmonic oscillator:

L =
(

p ωq
ωq −p

)
, M =

ω

2

(
0 −1
1 0

)

Since the Hamiltonian is

H(q, p) =
1
2
(p2 + ω2q2)

it is easy to check that the Lax equation

L̇ = [M, L] .= ML− LM

represents the Hamiltonian system

dq

dt
=

∂H

∂p
= p,

dp

dt
= −∂H

∂q
= −ω2q

If µ is a homogeneous operadic variable one can use the above Hamilton’s equations to obtain

dµ

dt
=

∂µ

∂q

dq

dt
+

∂µ

∂p

dp

dt
= p

∂µ

∂q
− ω2q

∂µ

∂p

Therefore, the linear partial differential equation for the operadic variable µ(q, p) reads

p
∂µ

∂q
− ω2q

∂µ

∂p
= M • µ− µ •M

By integrating one gains sequences of operations called the operadic (Lax representations of)
harmonic oscillator.

5 Example

Let A
.= {V, µ} be a binary algebra with operation xy

.= µ(x⊗ y). We require that µ = µ(q, p)
so that (µ, M) is an operadic Lax pair, i.e the operadic Lax equation

µ̇ = [M, µ] .= M • µ− µ •M, |µ| = 1, |M | = 0

represents the Hamiltonian system of the harmonic oscillator.
Let x, y ∈ V . Assuming that |M | = 0 and |µ| = 1, one has

M • µ =
0∑

i=0

(−1)i|µ|M ◦i µ = M ◦0 µ = M ◦ µ

µ •M =
1∑

i=0

(−1)i|M |µ ◦i M = µ ◦0 M + µ ◦1 M = µ ◦ (M ⊗ idV ) + µ ◦ (idV ⊗M)

Therefore, one has

d

dt
(xy) = M(xy)− (Mx)y − x(My)

Let dimV = n. In a basis {e1, . . . , en} of V , the structure constants µi
jk of A are defined by

µ(ej ⊗ ek)
.= µi

jkei, j, k = 1, . . . , n
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In particular,

d

dt
(ejek) = M(ejek)− (Mej)ek − ej(Mek)

By denoting Mei
.= M s

i es, it follows that

µ̇i
jk = µs

jkM
i
s −M s

j µi
sk −M s

kµi
js, i, j, k = 1, . . . , n

In particular, one has

Lemma 5.1. Let dimV = 2 and M
.= (M i

j)
.= ω

2

(
0 −1
1 0

)
. Then the 2-dimensional binary

operadic Lax equations read



µ̇1
11 = −ω

2

(
µ2

11 + µ1
21 + µ1

12

)
, µ̇2

11 = ω
2

(
µ1

11 − µ2
21 − µ2

12

)

µ̇1
12 = −ω

2

(
µ2

12 + µ1
22 − µ1

11

)
, µ̇2

12 = ω
2

(
µ1

12 − µ2
22 + µ2

11

)

µ̇1
21 = −ω

2

(
µ2

21 − µ1
11 + µ1

22

)
, µ̇2

21 = ω
2

(
µ1

21 + µ2
11 − µ2

22

)

µ̇1
22 = −ω

2

(
µ2

22 − µ1
12 − µ1

21

)
, µ̇2

22 = ω
2

(
µ1

22 + µ2
12 + µ2

21

)

For the harmonic oscillator, define its auxiliary functions A± and D± by




A2
+ + A2− = 2

√
2H

A2
+ −A2− = 2p

A+A− = ωq

,

{
D+

.= A+

2 (A2
+ − 3A2−)

D−
.= A−

2 (3A2
+ −A2−)

Then one has the following

Theorem 5.2. Let Cβ ∈ R (β = 1, . . . , 8) be arbitrary real–valued parameters, M
.= ω

2

(
0 −1
1 0

)
and 




µ1
11(q, p) = C5A− + C6A+ + C7D− + C8D+

µ1
12(q, p) = C1A+ + C2A− − C7D+ + C8D−

µ1
21(q, p) = −C1A+ − C2A− − C3A+ − C4A− − C5A+ + C6A− − C7D+ + C8D−

µ1
22(q, p) = −C3A− + C4A+ − C7D− − C8D+

µ2
11(q, p) = C3A+ + C4A− − C7D+ + C8D−

µ2
12(q, p) = C1A− − C2A+ + C3A− − C4A+ + C5A− + C6A+ − C7D− − C8D+

µ2
21(q, p) = −C1A− + C2A+ − C7D− − C8D+

µ2
22(q, p) = −C5A+ + C6A− + C7D+ − C8D−

Then (µ,M) is a 2-dimensional binary operadic Lax pair of the harmonic oscillator.

Idea of proof. Denote
{

G
ω/2
±

.= Ȧ± ± ω
2 A∓

G
3ω/2
±

.= Ḋ± ± 3ω
2 D∓

Define the matrix

Γ = (Γβ
α) .=




0 G
ω/2
+ −G

ω/2
+ 0 0 G

ω/2
− −G

ω/2
− 0

0 G
ω/2
− −G

ω/2
− 0 0 −G

ω/2
+ G

ω/2
+ 0

0 0 −G
ω/2
+ −G

ω/2
− G

ω/2
+ G

ω/2
− 0 0

0 0 −G
ω/2
− G

ω/2
+ G

ω/2
− −G

ω/2
+ 0 0

G
ω/2
− 0 −G

ω/2
+ 0 0 G

ω/2
− 0 −G

ω/2
+

G
ω/2
+ 0 G

ω/2
− 0 0 G

ω/2
+ 0 G

ω/2
−

G
3ω/2
− −G

3ω/2
+ −G

3ω/2
+ −G

3ω/2
− −G

3ω/2
+ −G

3ω/2
− −G

3ω/2
− G

3ω/2
+

G
3ω/2
+ G

3ω/2
− G

3ω/2
− −G

3ω/2
+ G

3ω/2
− −G

3ω/2
+ −G

3ω/2
+ −G

3ω/2
−



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Then it follows from Lemma 5.1 that the 2-dimensional binary operadic Lax equations read

CβΓβ
α = 0, α = 1, . . . , 8

Since the parameters Cβ are arbitrary, the latter constraints imply Γ = 0. Thus one has to
consider the following differential equations

G
ω/2
± = 0 = G

3ω/2
±

By direct calculations [9] one can show that
{

ṗ = −ω2q

q̇ = p
⇐⇒ G

ω/2
± = 0 ⇐⇒ G

3ω/2
± = 0

Acknowledgement

Research was in part supported by the Estonian Science Foundation, Grant ETF 6912. More
expanded version of the present paper is presented in [9].

References

[1] O. Babelon, D. Bernard, and M. Talon. Introduction to Classical Integrable Systems. Cambridge
Univ. Press, 2003.

[2] M. Gerstenhaber. The cohomology structure of an associative ring. Ann. of Math. 78 (1963), 267–288.
[3] M. Gerstenhaber, A. Giaquinto, and S. D. Schack. Algebras, bialgebras, quantum groups, and alge-

braic deformations. In “Deformation Theory and Quantum Groups with Applications to Mathematical
Physics”. M. Gerstenhaber and J. Stasheff, Eds. Contemp. Math. 134 (1992), 51–92.

[4] L. Kluge and E. Paal. On derivation deviations in an abstract pre-operad. Comm. Algebra, 29
(2001), 1609–1626.

[5] L. Kluge, E. Paal, and J. Stasheff. Invitation to composition. Comm. Algebra, 28 (2000), 1405–1422.
[6] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Applied

Math. 21 (1968), 467–490.
[7] E. Paal. Invitation to operadic dynamics. J. Gen. Lie Theory Appl. 1 (2007), 57–63.
[8] E. Paal and J. Virkepu. Note on operadic harmonic oscillator. Rep. Math. Phys. 61 (2008), 207–212.
[9] E. Paal and J. Virkepu. 2D binary operadic Lax representation for harmonic oscillator. Preprint

arXiv:0803.0592 (math-ph).

Received December 12, 2007
Revised April 09, 2008


