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Abstract

It is explained how the time evolution of the operadic variables may be introduced. As
an example, a 2-dimensional binary operadic Lax representation for the harmonic oscillator
is constructed.
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1 Introduction

It is well known that quantum mechanical observables are linear operators, i.e the linear maps
V' — V of a vector space V' and their time evolution is given by the Heisenberg equation. As
a variation of this one can pose the following question [7]: how to describe the time evolu-
tion of the linear algebraic operations (multiplications) V®"* — V. The algebraic operations
(multiplications) can be seen as an example of the operadic variables [2, 3, 4, 5].

When an operadic system depends on time one can speak about operadic dynamics [7]. The
latter may be introduced by simple and natural analogy with the Hamiltonian dynamics. In
particular, the time evolution of operadic variables may be given by operadic Lax equation.
In [8] it was shown how the dynamics may be introduced in a 2-dimensional Lie algebra. In
the present paper, an operadic Lax representation for the harmonic oscillator is constructed in
general 2-dimensional binary algebras.

2 Operad

Let K be a unital associative commutative ring, and let C"™ (n € N) be unital K-modules. For
f € C™, we refer to n as the degree of f and often write (when it does not cause confusion) f
instead of deg f. For example, (—1)7 = (=1)*, Cf = C™ and of = o,. Also, it is convenient to
use the reduced degree |f| =n — 1. Throughout this paper, we assume that ® = Q.

Definition 2.1 (operad (e.g [2, 3])). A linear (non-symmetric) operad with coefficients in K is
a sequence C' = {C"},cn of unital K-modules (an N-graded K-module), such that the following
conditions are satisfied.

(1) For 0 <1i <m — 1 there exist partial compositions

0; € Hom(C™ @ C™,C™ ™™ 1) |o;| =0
(2) Forall h® f ® g € C" ® Cf @ 09, the composition (associativity) relations hold,

(—)l9l(h o g) o f HO<j<i—1
(hoif)ojg=qhoi(foj-ig) ifi<j<i+]|f|
(=)Mlsl(ho; 51 g)0i f ifi+ f<j<|hl+]|f]
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(3) Unit I € C?! exists such that
Logf=f=fo;l, 0<i<|f]

In the second item, the first and third parts of the defining relations turn out to be equivalent.

Example 2.2 (endomorphism operad [2]). Let V' be a unital K-module and &£ = Endy, =
Hom(V®" V). Define the partial compositions for f ® g € 5‘]; ® &Y as

Foig= (—1)islfo (id¥ @g ©id2V1D), 0<i<|f

Then €y = {E}nen is an operad (with the unit idy € &) called the endomorphism operad of
V.

Thus, the algebraic operations can be seen as elements of an endomorphism operad. Just as
elements of a vector space are called vectors, it is natural to call elements of an abstract operad
operations.

3 Gerstenhaber brackets and operadic Lax pair
Definition 3.1 (total composition [2, 3]). The total composition e: Cf @C9 — CI*19l is defined
by

|/
feg=) foige Wl Je|=0

i=0
The pair Com C' = {C, e} is called the composition algebra of C.

Definition 3.2 (Gerstenhaber brackets [2, 3]). The Gerstenhaber brackets [-,-] are defined in
Com C as a graded commutator by

[f,9)= feg—(~)/¥lge f=—(—1)[g 1], [[,]|=0

The commutator algebra of Com C' is denoted as Com™C = {C,[-,:]}. One can prove that
Com™C is a graded Lie algebra. The Jacobi identity reads

(=), g), B] + (—=1)lV1[[g, B], f] + (—1)1"l91[[R, f], 9] = O

Assume that K = R and operations are differentiable. The dynamics in operadic systems
(operadic dynamics) may be introduced by

Definition 3.3 (operadic Lax pair [7]). Allow a classical dynamical system to be described by

the evolution equations
dx; )
d—;:fi(xl,...,xn), 1=1,...,n

An operadic Laz pair is a pair (L, M) of homogeneous operations L, M € C, such that the above
system of evolution equations is equivalent to the operadic Lax equation

b _ M,L]=MeL— (—1)MIEIL ¢ M
dt

Evidently, the degree constraints |M| = |L| = 0 give rise to ordinary Lax pair [6, 1].
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4 Operadic harmonic oscillator

Consider the Lax pair for the harmonic oscillator:

I— P wq M= w 0 -1
wq —p 2\1 0
Since the Hamiltonian is

1
H(q,p) = 5(192 + w?q?)

it is easy to check that the Lax equation

L=[ML=ML-LM
represents the Hamiltonian system

dg OH dp OH 9
_ _ ap — _wlq

at  op P @t o
If 1 is a homogeneous operadic variable one can use the above Hamilton’s equations to obtain

du_Ouds | Opdy _ op  , 0p
dt Oq dt  Op dt dq Op

Therefore, the linear partial differential equation for the operadic variable u(q, p) reads

By integrating one gains sequences of operations called the operadic (Lax representations of)
harmonic oscillator.

5 Example

Let A = {V,u} be a binary algebra with operation zy = pu(x ® y). We require that pu = u(q,p)
so that (u, M) is an operadic Lax pair, i.e the operadic Lax equation

fr=[M,pl=Mep—peM, |u=1 [M[=0

represents the Hamiltonian system of the harmonic oscillator.
Let 2,y € V. Assuming that |M| =0 and |u| = 1, one has

0
Mo,u:Z(—l)““lMoiM:MoOu:Mou
=0

1
MOM:Z(—l)ilMluoiM:uoOM—l—,uolM:Mo(M@idv)—|—,uo(idV®M)
=0

Therefore, one has

d

—(2y) = M(zy) — (Ma)y — z(My)

Let dimV = n. In a basis {e1,...,e,} of V, the structure constants Mé‘k of A are defined by

plej ®ex) = piei, Gk =1,....n
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In particular,

i(eaek) M(ejer) — (Mej)er — ej(Mey,)

By denoting Me; = Mjes, it follows that
Nék = MjkM; - M;Mik - Mliﬂés’ hLik=1,...,n
In particular, one has

Lemma 5.1. Let dimV = 2 and M = (M!) = ¢ (%°'). Then the 2-dimensional binary
operadic Lazr equations read

<

iy = =% (u3) + M21 +pie) s 17y =5 (01 — M%1 )
fily = =% (#is + #22 f11) 5 M%2 =& (112 — M22 + piy)
fiyy = —% (n31 — M11 o)y B3 =% (hy + Hn )
fiap = =% (32 — iz — y1) , F32 =% (ag + s + 13))

For the harmonic oscillator, define its auxiliary functions A+ and D+ by

A% + A2 =2V2H
+ A {D+ Aa2 342)

A2 —A%2 =2p ,
+ D_ = 4=(342 — A%)

ArA_ =wq
Then one has the following

Theorem 5.2. Let Cg € R (B =1,...,8) be arbitrary real-valued parameters, M =
and

o |
[y
~—

(SIS
—
=]

11 (q,p) = CsA_ + CeAy + C7D_ + Cs D,

phy(q,p) = C1A, + CoA_ — C7Dy + CyD_

p31(q,p) = —C1Ay — CoA_ — C3AL — C4A_ — C5A4 + CeA_ — C7Dy + CsD—
1o (q,p) = —C3A_ + C4A; — C7D_ — CsDs.

12,(q,p) = C3A, + C4A_ — C7Dy + CsD_

135(q,p) = LA — CoAy + C3A_ — CyAy + CsA_ + CgAy — CoD_ — CsD.
13,(q,p) = —CLA_ + CoA; — C7D_ — CsD,.

135(q,p) = —C5A; + CgA_ + C7D; — CsD_

Then (p, M) is a 2-dimensional binary operadic Lax pair of the harmonic oscillator.
Idea of proof. Denote

GYP = Ay +eag

(;3‘”/2 = D+ %D

Define the matrix

0 G e o 0 G —q*? o
0 G gt 0o - @ o
0 0o -¢v* g g e o 0
| f 0 e e @ o o
G 0 G 0 0 G¥ 0 G
c? o G700 0 ¢ o Ge/?
GSw/Q _GSw/Z _G3w/2 —G?iw/2 _Giw/Q _G3w/2 —G?iw/Q Giw/?

G?L/Q Ggrwm GE’L/Q Lo e _Ga_w/2 _G?f/2 o
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Then it follows from Lemma 5.1 that the 2-dimensional binary operadic Lax equations read
Ol =0, a=1,...,8

Since the parameters Cj are arbitrary, the latter constraints imply I' = 0. Thus one has to
consider the following differential equations

¢ =0=a¥"

By direct calculations [9] one can show that

s, \2
?_ v = =0 = ¥*=0 O
q=p
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