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Introduction
Psychological stress is believed to be one of the significant factors 

involved in the development and progression of human cancer [1,2]. 
Stress has been shown to increase both tumor growth and invasiveness; 
however, the mechanisms underlying this phenomenon are as yet 
unresolved [3]. Sympathetic nervous system mediators, including 
the stress hormone norepinephrine (NE), might in part modulate 
this effect [4,5]. Sood et al. have shown that the adrenergic hormones 
epinephrine and NE increase the invasive potential of ovarian cancer 
cells in in vitro assays [3]. Some clinical studies investigating the 
potential role of β-adrenergic antagonists in cancer patients have 
shown that they increase patient survival [6], however, other studies 
investigating survival in patients with ovarian cancer could not confirm 
the efficacy of β-blocker treatment [7,8], suggesting that NE might be 
acting through alternative pathways.

The sympathetic innervation of the human ovary is critical for the 
regulation of multiple aspects of ovarian function including ovulation 
[9-12]. NE is the predominant catecholamine acting on β-adrenergic 
receptors in granulosa and thecal cells, stimulating steroidogenesis. In 
addition to responding to NE from sympathetic nerves, granulosa cells 
can synthesize and store NE as well as release it upon depolarization. 
Much less is known about the effects of NE on the ovarian surface 
epithelium (OSE), the third cell type found in the mammalian ovary.

The OSE constitutes the outer layer of the ovary, undergoing rupture 
and repair with each ovulatory cycle [13]. Reactive oxygen species 
(ROS) are involved in follicular rupture at the ovarian surface during 
ovulation [14-16]. Collateral damage from cyclic ROS generation 
occurs to the deoxyribonucleic acid (DNA) of the OSE which requires 

repair prior to proliferation. Most ovarian cancers are thought to arise 
from undifferentiated cells in the OSE and therefore ROS-mediated 
damage to stem-like cells within the OSE could be a critical factor in 
ovarian cancer etiology.

The catecholamines (dopamine, epinephrine, NE) are known 
primarily as neurotransmitters in the central and peripheral nervous 
systems; however, they can easily undergo oxidation forming a complex 
array of products [17]. Two scenarios can result from these reactions. 
On the one hand, catecholamines can act as antixoidants, scavenging 
both singlet oxygen and superoxide and protecting DNA from ROS-
mediated DNA cleavage [18,19]. Alternatively, reaction products 
formed by oxidation of the catecholamines including unstable quinones 
and adrenochromes, can damage DNA [20-22] and result in cell 
damage. Research shows that NE can be either protective or damaging to 
mammalian cells, depending upon the cell type and NE concentration. 
In granulosa cells, NE at 10 nM levels increased ROS levels, but this 
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Abstract
Objective: To determine the role of norepinephrine (NE) on DNA damage and reactive oxygen species (ROS) 

generation in ovarian surface epithelial cells. 

Method: Non-tumorigenic, immortalized ovarian surface epithelial cells were treated with NE, bleomycin, and 
bleomycin followed by NE. The comet assay was performed on each treatment group to determine the amount of 
single and double-strand breaks induced by treatments. ROS levels for each treatment group were measured using 
the H2DCF-DA fluorescence assay. Finally, RNA transcripts were measured for each treatment group with regards 
to the expression of DNA repair and oxidative stress genes.

Results: The mean tail moment of untreated cells was significantly greater than that of cells treated with NE 
(p=0.02). The mean tail moment of cells treated with bleomycin was significantly greater than that of cells treated 
with bleomycin followed by NE (p<0.01). Treatment with NE resulted in significantly less ROS generation than in 
untreated cells (p<0.01). NE treatment after hydrogen peroxide treatment resulted in a noticeable decrease in ROS 
generation. Genes associated with oxidative stress were upregulated in cells treated with bleomycin, however this 
upregulation was blunted when bleomycin-treated cells were treated subsequently with NE.

Conclusion: NE is associated with decreased DNA damage and ROS production in ovarian surface epithelial 
cells. This effect is protective in the presence of the oxidative-damaging agent bleomycin. These results suggest an 
additional physiologic role for the stress hormone NE, in protecting ovarian surface epithelial cells from oxidative 
stress.
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effect was considered to be a normal physiologic event that did not 
reduce cell viability and was independent of the β-adrenergic receptor 
[23]. Rather, an active NE transporter (NET) has been identified which 
allows for cellular uptake of NE into the cellular cytoplasm, bypassing 
the β-adrenergic receptor mediated signaling cascade and implying a 
receptor-independent role of NE [11]. Low levels of NE (0.3–10 µM) 
have been shown to protect dopaminergic neurons [24] independently 
of β--receptor activation, perhaps by acting as an antioxidant or metal 
chelator [25]. In contrast, NE acting through α-adrenergic receptors 
increased superoxide production in primary human peripheral blood 
mononuclear cells, suggesting the physiologic role of NE might be cell-
type specific [26]. 

The relationship between ROS generation and NE has not been 
previously examined in OSE cells. In this study, we investigated the effect 
of NE on the hTERT-immortalized cell line IOSE-29. DNA damage was 
assessed by the comet assay in the presence and absence of the DNA-
damaging agent, bleomycin. Levels of intracellular ROS in the presence 
and absence of exogenous hydrogen peroxide were also measured. The 
effect of NE on the transcriptional level of a battery of genes involved in 
attenuating ROS and repairing DNA was also assessed. 

Materials and Methods
Cell line generation and culture methods

Transfection of human ovarian surface epithelial cells with the 
SV40 early region expressing T/t antigen and then subsequent infection 
with a retrovirus containing a full-length hTERT cDNA, to create 
the IOSE-29 (Immortalized Ovarian Surface Epithelial-29) cell line 
has been previously described [27,28]. For this study, IOSE-29 cells 
were cultured in 10 cm dishes with 10 ml of ovarian epithelial-cell 
culture medium consisting of 1:1 MCDB105 and Media 199 (Sigma-
Aldrich) supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin (Life Technologies, Inc.).

Cell treatments

Control cells: Cells were incubated with serum free media for 
24 hours prior to and for the duration of experiments. All cells were 
detached simultaneously using serum free media and a cell scraper.

Treatment with NE: Cells were incubated with serum free media 
for 24 hours prior to experiments. Cells were incubated with 10-5 M 
NE (Sigma-Aldrich, N5785) in serum-free media for 30 min at 37°C. 
Previous studies have shown that NE does not result in considerable 
changes in DNA integrity until 10 min [29]. We therefore chose 30 
minutes as the time period to treat cells. We chose 10-5 M as this is the 
concentration in the serum during physiologic stress [30]. Cells were 
then washed twice (5 min each) with 1x PBS and incubated with serum-
free media at 37°C for the duration of the experiment. All cells were 
detached simultaneously using serum free media and a cell scraper.

Treatment with Bleomycin: Cells were incubated with 2.5 ug/ml 
bleomycin (15 unit bottle, TEVA Parenteral Medicines Inc, 92618) in 
serum-free media for 30 minutes at 37°C to induce single and double 
strand DNA breaks. Cells were then washed twice (5 min each) with 
1x PBS and incubated with serum-free media at 37°C for the duration 
of the experiment. All cells were detached simultaneously using serum 
free media and a cell scraper.

Treatement with bleomycin followed by NE: Cells were incubated 
with 2.5 ug/ml bleomycin in serum-free media for 30 min at 37°C. Cells 
were then washed twice (5 min each) with 1x PBS and then incubated 
with 10-5 M NE (Sigma-Aldrich, N5785) in serum-free media for 30 

minutes at 37°C. Cells were then washed twice (5 min each) with 1x 
PBS. All cells were detached simultaneously using serum free media 
and a cell scraper.

Cell viability assay

A cell viability assay was done to determine whether treatment with 
NE would alter viability of the cells, as this would affect interpretation of 
results from DNA damage and PCR expression assays. Approximately 
5 × 104 cells were plated in 10 cm cell culture dishes. Treated cells 
were incubated with 10-5 M NE for 30 min. At 24 and 48 h, cells were 
manually counted in triplicate samples. 

Comet assay to assess DNA damage

The Trevigen alkaline comet assay kit (4250-050-k) was used to 
measure DNA damage in each sample. Cells were treated, isolated and 
mixed in low melting point agarose in PBS and pipetted onto slides 
supplied by the kit. After the gels were allowed to set at 4°C, the slides 
were immersed in lysis buffer (4250-050-01, Trevigen) for 40 min. After 
excess buffer was drained from the slides, the slides were immersed in 
Alkaline Unwinding Solution (200 mM NaOH, 1mM EDTA) for 20 min 
at room temperature. The slides were then placed in an electrophoresis 
tray, submerged in alkaline electrophoresis solution (200 mM NaOH, 
1mM EDTA, pH 8) with the power supply set at 21 volts for 30 min. 
Excess electrophoresis solution was drained, and slides were gently 
immersed twice in dH2O for 5 min each, then in 70% ethanol for 5 
min. Samples were dried for 30 min at 37°C. SYBR Gold solution was 
placed onto the dried slides and removed after 30 minutes. Slides were 
dried and submitted to our university core facility lab for evaluation 
by epifluoresecence microscopy. Of note, the personnel from the core 
facility lab were unaware of the sample source, adding an extra layer of 
blinding to the results.

Mean tail moment was used to measure DNA break frequency and, 
thus, DNA damage. The mean tail moment was obtained by selecting at 
random one hundred comets per sample and averaging the tail moment 
for this sample. Tail moment was calculated by multiplying the length of 
the tail by the percent DNA in the tail. Each experiment was performed 
in triplicate.

ROS quantification 

Changes in intracellular ROS levels were determined 
using the fluorogenic probe 5-(and-6)-chloromethyl-2’,7’-
dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCF-
DA; Invitrogen, Eugene, OR, USA). Briefly, cells were grown to 70% 
confluence and loaded with 50 μM CM-H2DCF-DA at 37°C for 30 
min. Cells were then washed with PBS. Cells were treated with 40 uM 
Hydrogen peroxide (H2O2) (Fisher, Fair Lawn, NJ, USA) as a positive 
control. Empty wells without plated cells were used as a negative 
control. Changes in DCF fluorescence were recorded on an FLx800 
(Bio-Tek Instruments, Winooski, VT, USA) microplate reader at 
485 nm excitation and 528 nm emission, at 10 min intervals. For the 
H2O2→NE samples, cells were treated with 40 µM H2O2 and fluorescence 
measurements were obtained at 10 min intervals. After 30 min, 10 
µM NE was added to the wells and fluorescence measurements were 
continued at 10 min intervals. Results are expressed as fold change or 
arbitrarily in fluorescence units (FU). Experiments were performed in 
triplicate.

RNA extraction and quantification

Total cellular RNA was extracted from cells using RNAqueous™ 
total RNA isolation kits (Life Technologies, CA) according to the 
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manufacture’s recommendations. Subsequent to extraction, RNA 
was quantitated spectrophotometrically using a NanoDrop ND-
1000 (NanoDrop Techniologies, DE). The quality of the purified 
RNA was assessed by visualization of 18S and 28S RNA bands using 
an Agilent BioAnalyzer 2100 (Agilent Technologies, CA). Resulting 
electropherograms were used in the calculation of the 28S/18S ratio and 
the RNA Integrity Number [31].

Real time SYBR green QPCR gene expression analysis

The DNA Repair PCR Array (PAHS-042ZF-2 Qiagen) and the 
Human Oxidative Stress PCR Array (PAHS-065z Qiagen) was used as 
the template for genes transcribed following oxidative stress. Reverse 
transcription was performed on 0.5 mg of total RNA, utilizing RT2 
First Strand Kit (Qiagen) as recommended by the manufacturer. The 
resulting cDNA was used as template for the subsequent PCR reaction, 
consisting of 2X RT2 SYBR Green Master Mix, template cDNA and 
reagent grade H2O in a total volume of 2700 ul. A multi-channel pipette 
was use to distribute 25 ul of the reaction mix to each well of the 96 well 
plate. Thermal cycling was carried out with a Roche LightCycler 480 II 
(Roche, USA) per manufacture’s recommendations (95°C, 10 min; and 
40 cycles at 95°C, 15 S; 60°C, 1 min). Each experiment was performed 
in triplicate.

Statistical analysis

Statistical significance of observed differences was defined as a 
p<0.05. Paired t-tests were used to calculate statistical differences, 
pairing results within experiments. All experiments were performed 
in triplicate. Calculations were done in R (R Foundation for Statistical 
Computing, 2014).

Results
Cell viability assay

Cell viability was similar with and without treatment with NE 
(Figure 1). 

NE resulted in decreased DNA damage in ovarian surface 
epithelial cells

DNA damage was assessed via mean tail moment, which 
represents the relative amount of damaged DNA present in the comet 
tail. Comet assay data is summarized in Figures 2 and 3. The mean tail 
moment of the untreated ovarian surface epithelial cells was 2.40 ± 
0.47 arbitrary units, while the mean tail moment after treatment with 
bleomycin was 20.80 ± 6.1, signifying greater DNA damage. Treatment 
with NE resulted in a mean tail moment of 0.25 ± 0.19, a 10-fold 

decrease from untreated values (p=0.02). Treatment with bleomycin 
followed by treatment with NE resulted in a mean tail moment of 3.48 
± 0.90, a 6-fold decrease from the mean tail moment of treatment with 
bleomycin alone (p<0.01).

NE resulted in decreased levels of ROS

ROS data is summarized in Figure 4. Treatment with NE resulted 
in decreased ROS, as exhibited by decreased fluorescence emission 
throughout the 50 min experimental period. In addition, when 
comparing the treatment with H2O2 with the treatment with H2O2 
followed by NE, both groups initially had similar fluorescence patterns 
until the NE was added to the second group, resulting in an abrupt 
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Figure 1: Cell viability assay. Presence of 10 uM norepinephrine does not affect 
cell viability of IOSE-29 ovarian surface epithelial cells. NE: Norepinephrine.
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Figure 2: Comet assay results. This graph represents the levels of DNA 
damage with respect to untreated ovarian surface epithelial cells as a 
reference. DNA damage in cells treated with norepinephrine is significantly less 
than DNA damage in untreated cells (p=0.02). DNA damage in cells treated 
with bleomycin followed by norepinephrine is significantly less than DNA 
damage in cells treated with only bleomycin (p=0.01). NE: Norepinephrine; 
Bleo: Bleomycin; Bleo->NE: 30 minute treatment with bleomycin followed by 
30 minute treatment with norepinephrine.
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Figure 3: Comet assay images. Images of comet assay results of IOSE-29 
cells. As expected, treatment with bleomycin resulted in larger comet tails, 
signifying greater DNA damage. Treatment with norepinephrine resulted in less 
tail, and subsequent treatment with norepinephrine after treatment with DNA 
damaging agent resulted in smaller tail. Bleo: Bleomycin; NE: Norepinephrine; 
Bleo->NE: 30 minute treatment with bleomycin followed by 30 minute treatment 
with norepinephrine.
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decrease in fluorescence. There was significantly less ROS generation 
when cells were treated with NE compared to untreated cells (p<0.01). 
There tended to be less ROS generation after treatment with H2O2 
followed by NE compared to treatment with only H2O2 (p=0.14).

NE resulted in a decreased expression of oxidative stress-
associated genes

All oxidative stress genes with significant changes in transcription 
after treatment with norepinephrine showed decreased transcription 
after treatment with norepinephrine compared to the control. The same 
was observed with bleomycin followed by norepinephrine treatment 
compared to bleomycin treatment only. The specific fold changes are 
summarized in Figure 5. 

Discussion
Our results suggest that NE has a protective effect against oxidative 

stress in IOSE-29 cells, since treatment with NE resulted in reduced 

production of ROS and reduced DNA damage. Studies have shown 
that excess NE, generated by stress, might enhance the development 
and progression of ovarian cancer [3]. Our results thus provide a 
mechanistic connection between NE levels and ovarian cancer. 

Baseline serum levels of NE have been reported to be in the 2–3 
nM range rising by a factor of 4 under physiological stress [23,32,33]. 
Higher levels of NE are found in human preovulatory follicles, where 
concentrations as high as high as 45 nM have been reported [23]. In a 
previous study, Sood et al. demonstrated that the invasiveness of cultured 
ovarian cancer cells increased with increasing NE concentration up to 
10 µM [23]. We therefore used this concentration in our experiments. 
Further studies are warranted to determine how lower concentrations 
of NE (i.e. physiologic concentrations) affect DNA integrity. 

Our results establish that in IOSE-29 cells in culture, added NE 
does not diminish cell viability, but reduces levels of DNA damage and 
ROS levels under standard culture conditions as well as in response to 
ROS-generating molecules including H2O2 and bleomycin. The time-
dependence of these effects, as well as the effect of NE on gene expression 
levels, suggest that NE is acting directly as an antioxidant in these cells 
under these experimental conditions. Upon the basis of these findings, 
we propose a pathway by which NE acts as a rapid ROS scavenger. NE 
causes a decrease in ROS, resulting in a decrease in downstream DNA 
damage and decreased transcription of genes involved in the cellular 
response to oxidative stress and antioxidant defense (Figure 6). 

The implications of these findings on normal ovarian physiology 
are of interest. Cyclic increases in NE during ovulation could serve to 
protect the DNA of OSE stem cells from damage that otherwise might 
result in genetic mutations. On the other hand, normal or stress-related 
higher levels of NE could also enhance the survival of tumorigenic cells, 
especially in response to DNA-damaging chemotherapy. The capacity 
of NE to enhance cell survival by non-adrenergic mechanisms might 
explain why β-blockers do not consistently improve survival in ovarian 
cancer patients.

Our results might also be of significance within the context of 
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Figure 4: ROS generation measured by H2DCFDA. As expected, treatment 
with hydrogen peroxide resulted in greater ROS generation. Treatment with 
norepinephrine resulted in significantly less ROS generation than in untreated 
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Figure 5: mRNA expression level of oxidative stress associated genes. All 
results are normalized to untreated cells. As expected, treatment with bleomycin 
resulted in increased expression of these genes when compared to untreated 
cells. Treatment with norepinephrine resulted in decreased expression of these 
genes when compared to untreated cells and treatment with norepinephrine 
after treatment with bleomycin resulted in decreased expression of these 
genes when compared with bleomycin treatment alone. Bleo: Bleomycin; NE: 
Norepinephrine; Bleo->NE: treatement with bleomycin for 30 minutes followed 
by treatment with norepinephrine for 30 minutes.
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Figure 6: Proposed model of norepinephrine’s antioxidant effect in ovarian 
surface epithelial cells. Outlined above is the proposed pathway by which 
norepinephrine decreases ROS generation and subsequent DNA damage in 
ovarian surface epithelial cells. In this model, norepinephrine acts as a rapid 
ROS scavenger leading to a decrease in downstream DNA damage and 
reactive transcription of genes involved in the cellular response to oxidative 
stress.
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polycystic ovary syndrome (PCOS). In PCOS, hyperactivation of the 
sympathetic innervation of the ovary results in ovarian cyst formation 
and ovulatory failure [10]. Enhanced NE release would be expected 
to result in increased NE in the follicular fluid of patients with PCO. 
Paradoxically, both follicular fluid and granulosa cells from PCOS 
women have significantly lower NE levels [23]. Women with PCOS 
also have substantially higher levels of markers for oxidative stress 
and decreased antioxidant status [34,35]. Perhaps increased ROS in 
PCOS women cause the diminished NE levels. Diminished NE levels 
would result in less protection of DNA in OSE stem cells and increased 
mutation potential, perhaps explaining in part the association between 
PCOS and ovarian cancer [36]. In support of this mechanism, 
Macarthur et al. have shown that increased free radical production 
in septic stress is sufficient to oxidize and deactivate catecholamines, 
including exogenous catecholamines [37]. A superoxide dismutase 
small molecule mimetic restored vasopressor responses to NE. Perhaps 
such agents would be of value in treating PCOS. 

In summary, we observe that NE decreases ROS in IOSE-29 cells 
in culture and reduces DNA damage. This effect is likely mediated by 
a direct radical scavenging property of NE as opposed to activation 
of adrenergic receptors. Cyclic release of NE in the ovary at the time 
of ovulation could protect replicating cells, including stem cells, from 
promutagenic insults, decreasing ovarian cancer risk. Increased local 
or systemic inflammation could result in diminished NE levels seen 
in PCOS which might be related to ovulatory failure and increased 
ovarian cancer risk.
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