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Abstract
Nontuberculous mycobacteria are increasingly causing disease in humans, ranging from skin lesions to widespread disease. Its ubiquitous 
character in nature makes its exposure very common. For these reasons, diagnosis of the disease, the correct identification/ characterization 
of the Nontuberculous mycobacteria responsible for the infection, and consequently the definition of the appropriate treatment regimen, remain 
the major challenge. Treatment is complex, requiring the prolonged use of multiple drugs, which makes it expensive and often brings side effects 
for the patient. So far, it has not been possible to establish, with certainty, a relationship between in vitro assays and microbiological response to 
drug treatment, thus making the treatments empirical. Diagnostic and clinical criteria should be updated to enable a more reliable identification 
in order to improve our understanding of Nontuberculous mycobacteria epidemiology, particularly for the species that have the most potential 
to cause disease. As an ultimate unavoidable downstream procedure, the use of whole genome data will strongly contribute to Nontuberculous 
mycobacteria characterization, not only for more precise strain/species differentiation but also eventually to anticipate antibiotic resistance through 
the identification of resistance markers. With this review, we hope to give the viewer an overview of the Nontuberculous mycobacteria-related 
topics that we believe are the most important.
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Introduction

The genus Mycobacterium 
First discovered in 1874 by Armauer Hansen, the genus Mycobacterium, with 

more than 220 species known to date, is the only genus of the Mycobacteriaceae 
family [1-3]. However, it was just in 1896 that the name Mycobacterium was 
established by Lehmann and Neumann [4,5].

Bacteria from the genus Mycobacterium are commonly called mycobacteria 
and, based on their differences in the capacity to grow in vitro, epidemiology, 
and association with diseases; they can be divided into four different groups: 
Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium ulcerans, 
and Nontuberculous mycobacteria (NTM) [6]. 

Mycobacteria are mostly aerobic, non-spore-forming, non-motile, and 
resistant to acid-alcohol decolorization and colony morphology can vary from 
rough to smooth and from pigmented to nonpigmented [2,4,7]. One of their 
most important and unique characteristic is the composition of their cell wall, 
which is rich in complex lipids and contains long carbon chains (60-90 C) [8-13]. 
Considering the growth rate, mycobacteria can be classified into two groups: 1) 
the slow growers (SGM) (require more than one week to be detected on solid 
media); and 2) the rapid growers (RGM) (require 3-7 days to be detected on solid 
media). Mycobacteria also have a higher G+C content and lower copy numbers 
of the ribosomal operon (two copies in the RGM and one copy in the SGM) than 

most bacteria [14,15]. 

According to pathogenicity, the genus Mycobacterium can also be subdivided 
into strict pathogens, opportunistic pathogens, and saprophyte species [16]. 
Since most of them are opportunistic environmental pathogens, such as 
saprophytes in soil and water [4], the correct identification in a clinical setting 
is essential for diagnosis, eventual outbreak detection, and management of the 
putative underlying disease.

Taxonomy of Mycobacterium genus

Members of the genus Mycobacterium have many phenotypic and genomic-
based characteristics that separate them from other genera [17]. In 1957, 
Ernest Runyon proposed the first taxonomic division of mycobacteria into four 
groups based on the growth rate and production of a pigment [18,19]. According 
to this scheme, SGM are divided in three groups: group I or photochromogen 
(pigmented when exposed to light), group II or scotochromogen (always 
pigmented) and group III or nonphotochromogen (nonpigmented). The RGM 
belong to group IV [7,18,20]. Of note, members of the M. avium complex are 
considered nonphotochromogen, however, some isolates are capable to produce 
slightly pigmented colonies [7] (Table 1).

Despite some limitations, the analysis of the 16S rRNA encoding gene, 
which is mostly conserved between species, was used to better differentiate 
some Mycobacterium species [14,21] and supported Runyon's classification 
into RGM and SGM, which still continues to be used by mycobacteriologists 
[6,20]. However, the need to improve the robustness and discrimination between 
different species in phylogenetic trees led to the analysis of concatenated 
sequences of housekeeping genes such as the 65-KDa heat shock protein gene 
(hsp65), RNA polymerase β- subunit (rpoB) and DNA gyrase subunit B (gyrB) 
[22-24]. No major breakthrough was accomplished with these approaches and 
the introduction of whole genome sequencing (WGS) coupled with bioinformatics 
tools revolutionized mycobacteria classification. Although genome-based 
phylogenies often do not produce very different tree topologies compared to 
conventional (phenotype-based) reconstructions, it is now clear that phylogenetic 
studies that ignore all genome-based analyses are outdated as they lack 
discriminatory power [25]. The first two studies relying on WGS data improved 
our understanding of mycobacteria taxonomy by validating the evident distinction 
between RGM and SGM: RGM assume the most ancestral branch, being the 
members of Mycobacterium abscessus-chelonae complex the most ancestral 
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cluster, whereas species belonging to M. terrae complex occupy an intermediate 
position and SGM are clearly separated in another branch [17,25] (Figure 1). 

Given the rampant advances in genomics and with the permanent release 
of new WGS data, it is now believed that the taxonomy of mycobacteria is well 
established. Still, one must realize that the genus phylogenetic tree is dynamic 
due to the continuous application of more robust differentiation and identification 
methods, leading, for example, to the inclusion of new species. In this regard, 
new studies have assumed some controversial opinions about the definitions 
of complexes/clades within the genus Mycobacterium. Gupta RS, et al. [15] 
defended the redistribution of the members of the genus Mycobacterium into 
five new groups: “Tuberculosis-Simiae clade” that includes all of the major 
human pathogens, and four novel genera: the SGM Mycolicibacterium gen. 
nov. (Fortuitum-Vaccae clade) and Mycolicibacillus gen. nov. (Triviale clade), 
and the RGM Mycobacteroides gen. nov. (Abscessus-Chelonae clade) and 
Mycolicibacter gen. nov. (Terrae clade) [15].

In contrast, Tortoli E, et al. [27] opts for the classical nomenclature that 
includes 192 species, of which five (M. chelonae-abscessus complex, M. 
fortuitum, M. avium, M. leprae and M. tuberculosis) are divided into subspecies 
[26,27]. 

Since this is still the most widely used approach in the scientific community, 
it will also be used in this review. 

Literature Review

Nontuberculous Mycobacteria

Nontuberculous mycobacteria, or just NTM, are also known as mycobacteria 
other than tuberculosis (MOTT), atypical mycobacteria or environmental 
mycobacteria [6,11]. These bacteria often exhibit saprophytic, commensal, and 
symbiotic behaviors, and they are classified as opportunistic human pathogens 
[28,29]. They have the capacity to tolerate a wide temperature range, do not 
grow on standard culture media, and are resistant to many antibiotics and 
disinfectants [30]. The cell wall, which is rich in lipids making it hydrophobic and 
impermeable, along with the slow growth rate, are the major characteristics that 
allow mycobacteria to persist in extreme environments [28,31,32]. As such, NTM 
have several reservoirs, either natural or human-made, such as soils, water, dust 
and air [32-41]. In addition, they also have the ability to infect animals, which 
gives them importance in both human and veterinary medicine [39,42,42].

Unlike M. tuberculosis, the transmission of NTM does not seem to be person-
to-person but rather trough inhalation of aerosols from infected sources and, in 
some cases, ingestion or trauma events [44]. Although it has been suggested that 
person-to-person transmission may occur between patients with cystic fibrosis 
[45,46], this seems to be an exception [47]. 

The environment is rich in RGM and most of them are not associated with 
disease. However, some species such as Mycobacterium abscessus-chelonae 

Runyon 
Group

Classification according to 
Growth Rate

Classification according to 
Pigmentation Description Organisms (e.g)

I Slow grower Photochromogen Cultures non pigmented in the dark and pigmented 
when exposed to the light

M. kansasii
M. marinun

II Slow grower Scotochromogen Pigmented colonies in either dark or light incubated 
cultures

M. gordonae
M. scrofulaceum

III Slow grower Nonphotochromogen Nonpigmented colonies either in cultures incubated 
in the dark or exposed to light

M. avium complex
M. tuberculosis

IV Rapid grower - Pigmented or nonpigmented M. abscessus - chelonae complex
M. fortuitum

Table 1. Runyon's classification of the Mycobacterium genus.

Figure 1. Phylogenetic tree of Mycobacterium species.
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complex (MABC) (M. abscessus spp abscessus, M. abscessus spp. bolletii and 
M. abscessus spp. massiliense) and Mycobacterium fortuitum can cause disease 
Among the SGM, the ones that are most commonly isolated and associated with 
disease are: Mycobacterium avium complex (MAC), particularly the sub-species 
M. avium spp. avium, M. avium spp. intracellulare and M. avium spp chimaera, 
Mycobacterium xenopi and Mycobacterium kansasii [30,48-50]. 

As NTM are ubiquitous in environment, exposure is frequent [51,52], so the 
detection of these opportunistic pathogens in a clinical sample is not enough 
to classify them as the disease causing agents, making it difficult to clarify the 
clinical significance of NTM [53]. 

Epidemiology of Nontuberculous mycobacteria 

Although many studies report an increase in NTM human disease, and these 
are already recognized as a global health concern [54-57], the epidemiology of 
NTM is not well understood [58,59]. This lack of knowledge can be attributed 
to several factors: 1) NTM disease is not of mandatory reporting, so most of 
the cases are not reported to public health authorities and, as a consequence, 
incidence data relies just on the number of laboratory isolates [11,36,60]; 2) 
diagnosis of NTM requires considerable time and may be misdiagnosed as 
tuberculosis or other lung disorder [61-63]; and 3) the existing diagnostic tests 
are unreliable and costly and no prognostic tests are available [30].

The distribution of NTM species seems to be different among geographic 
regions and populations [36]. Hoefsloot et al. [49] showed that MAC is 
predominant worldwide, M. avium is predominant in North and South America 
and Europe, and M. intracellulare is most frequently isolated in Africa and 
Australia. They also described that M. xenopi is particularly prevalent in Hungary, 
Croatia, Northern Italy, Ontario, and in the area close to the English Channel. M. 
kansasii appears to be more prevalent in South America, Eastern Europe and the 
metropolitan centers of London, Paris and Tokyo and some areas of South Africa. 
M. malmoense seems to predominate in Europe [49].

More recently, Farnia P, et al. [64] published a systematic review on the 
distribution of NTM [64]. In the north and east of Europe, the most frequently 
found NTM in clinical samples belonged to MAC (in particular M. avium) and M. 
gordonae. In the south and west of Europe, the most common NTM isolated were 
M. xenopi, M. gordonae, and MAC, mainly M. avium. Similarly to the study of 
Hoefsloot et al. [49], Farnia P, et al. [64] also observed that in Africa and Australia 
M. intracellulare was the most frequent NTM isolated, followed by M. avium, and 
M. kansaii in Africa and by M. fortuitum in Australia. Furthermore, according to 
this study, in East Asia the most frequent NTM species isolated are M. avium and 
M. abscessus, in west Asia, M. fortuitum, M. gordonae, and M. simiae and, in 
south Asia, M. fortuitum, M. chelonae and M. xenopi [64]. 

A recent study from Portugal showed that MAC is the most isolated NTM 
associated with disease, followed by MABC and M. fortuitum. As expected, the 
majority of the cases appeared in the regions with higher population density 
[60,65]. 

Of note, a common denominator of all of these epidemiological studies is that 
the prevalence of the disease likely caused by NTM seems to increase with the 
aging of the population, with the development of laboratory techniques, with the 
increase in the number of immunosuppressed patients, and with a decrease in 
the incidence of tuberculosis [49,50,66-68]. Thus, it is clear that there is a need to 
create a broad approach involving both the collection of informative clinical data 
and more robust laboratory procedures in order to be able to estimate the true 
impact of these infections [1,69,70]. 

Pathogenesis and immune response in NTM infections 

Although exposure to these bacteria is frequent, NTM disease is relatively 
uncommon, leading to the assumption that normal host defense mechanisms 
are sufficient to prevent infection. This also suggests that patients who develop 
NTM disease must have specific susceptibility factors that make them vulnerable 
[52]. However, the physiologic and cellular conditions that likely facilitate NTM 
infections are poorly understood [71]. On the pathogen side, with the exception 
of mycolactone of M. ulcerans, there is no evidence of specific virulence factors 
among mycobacteria that may potentiate the infection [11]. It has recently been 
suggested that the capacity of some NTM (e.g: MAC, Mycobacterium abscessus 
and Mycobacterium kansasii) to change their colony morphotype from smooth to 
rough, contributes to their virulence, being the latest the most virulent in most of 
the cases, with exception of MAC where smooth colonies are the most virulent 
[11,72-74].

M. kansasii affects mostly the lungs but it can also cause infections in lymph 
nodes, bone, skin and, in cases where the host has low CD4 counts (below 50/
mm3), disseminated disease can be developed [75-77]. This NTM species has 
the ability to enter macrophages, which in turn are the ideal environment for the 
microorganism to develop and be transported to other tissues[77,78].

M. abscessus is the most virulent fast-growing mycobacteria [79]. The 
infection shares similarities with the one caused by M. avium and M. tuberculosis 
(i.e., formation of granulomas and persistence of infection) however, its 
mechanisms of transmission and establishment of disease are still not well 
understood [79,80]. It is known that the colony morphotype plays an important 
role in the ability of this NTM species to infect, as it allows the transition between 
a phenotype with a greater ability to colonize (smooth) and a more virulent and 
invasive phenotype (rough) [81]. Both smooth and rough phenotypes can survive 
inside the macrophages and be maintained in loner phagosomes. The difference 
between these two phenotypes is that the smooth variant is usually able to 
prevent the activation of apoptosis and autophagy. On the other hand, when the 
transition to the rough variant occurs, bacterial cords formation and acidification 
of the phagosome begin, resulting in a massive tissue destruction leading to 
severe infection. The production of bacterial cords only happens in rough forms 
and is determinant to establish the infection [80],[82-84].

Concerning MAC infections, rough morphotypes are less pathogenic than 
the smooth ones, as they lack genes for glycopeptidolipids synthesis that are 
significant determinants for virulence [85-87]. These are necessary to biofilm 
production, which is an important mechanism to disrupt the host's immunity 
leading to settlement facilitation and resulting in invasion of bronchial epithelium 
[77,88]. MAC species also have the ability to survive the acidic pH of the 
stomach, overcome the acid barrier and gain access to the intestinal lumen [77]. 
Nevertheless, some differences can be found within the species of MAC. 

The phagocytes, after engulfing mycobacteria, activate a series of 
complex cascade reactions [89]; cytokines, such as interleukin-12 (IL-12), 
interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α), play a role in 
antimycobacterial immune response and regulation [90]. IL-12 production leads 
to natural killer (NK) cells production and t-lymphocyte proliferation [91], which 
are essential for the innate immune response to M. avium infections [92]. In fact, 
the secretion of TNF-α, IFN-γ and granulocyte-macrophage colony-stimulating 
factor (GM-CSF), will stimulate infected macrophages enabling them to control 
the intracellular infection [77,93,94]. Regarding M. abscessus infection, the 
rough morphotype prevents macrophages innate response [79,95,96]. In these 
cases, the immune innate response is activated by the interaction with toll-like 
receptor 2 (TLR2) resulting in a TNF-α release. IL-12 is also released leading 
to an activation and polarization of naive CD4+ T cells towards Th1 cells to 
produce IFN-γ [79]. The adaptive immune response also plays an important 
role in the immune response against M. abscessus infections, as it is important 
for granuloma formation through recruitment of B and T cells [97]. The granuloma 
is a structure that is formed during mycobacterial infections and usually contains 
the infection. However, as already mentioned, M. abscessus has the ability to 
change from smooth to rough colonies resulting in granuloma collapse and 
dissemination of the infection [84].

Disease, diagnosis and treatment 

Manifestation of the disease is the reflex of an interaction between the 
exposure (for example, the infecting dose and duration of exposure), the 
microorganism (pathogenicity and virulence), and the host (immune status, 
genetic risk factors and prior lung disease) [62,98,99]. The respiratory tract is 
the most frequent target of NTM, however, these bacteria have the ability to 
infect a wide variety of body sites [100]. The most common diseases caused by 
NTM are pulmonary disease, lymphadenitis, skin, soft tissue, and bone disease 
and disseminated disease in severely immunocompromised patients (Figure 2) 
[53,101,102]. 

A correct and early identification of NTM is essential for the management 
of the disease [11]. Since the symptoms of NTM are non-specific, there is often 
a delay in diagnosis, resulting in disease progression and, eventually, more 
complicated treatment regimens with more side effects [11,103]. 

Pulmonary and extrapulmonary NTM diseases are managed separately, 
although clinical, radiological and laboratory findings are critical in both cases 
[104]. In either case, the diagnosis is complicated as NTM exposure is very 
common, although disease development is rare [105]. Furthermore, due to the 
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ubiquitous character of NTM, in most cases of pulmonary disease one must take 
into account that the presence of a NTM positive culture from respiratory sites 
only reflects colonization rather than the detection of the disease-causing agent. 
In addition, the respiratory samples are non-sterile which makes it another factor 
that creates uncertainty in the final diagnosis [104]. 

Although NTM lung disease does not reveal specific symptoms (i.e., 
cough, fever, fatigue, weight loss and hemoptysis), the radiological findings are 
suggestive of this type of infection. Typically, specific bronchiectasis with nodules 
or cavitation is found in nodular bronchiectasis disease and fibrocavitary disease, 
respectively [54,106,107].

Lymphadenitis, with cervical adenitis as the clinical presentation, is common 
among immunocompetent children [11,53,104,108]. The first symptom that is 
suggestive of lymphadenitis is unilateral indolent swelling that persists in time 
without systemic symptoms associated [104,108]. The definitive diagnosis relies 
on the microbiological findings through lymph node sample analysis as these also 
allow excluding tuberculosis and pyogenic lymphadenitis [104,108]. 

Skin, bone, and soft tissues disease, as the other forms of NTM infections, 
also demand clinical context, microbiological results, histopathology results 
compatible with the diagnosis and history of underling disease [53,104]. Skin and 
soft tissues disease may develop in immunocompromised patients after a puncture 
wound or a traumatic injury [108,109]. Nosocomial infections are acquired due to 
invasive therapeutic interventions, surgeries or long term intravenous catheters 
[108]. Albeit rare, NTM have been isolated from osteomyelitis cases and, in 
immunocompromised patients, is often a result of disseminated disease [110]. 
Bone infection can occur in immunocompetent patients after an accidental 
trauma or surgery [111,112]. Diagnosis is difficult manly due to the lack of specific 
examination methods and to the various possible clinical presentations [111]. 
Magnetic resonance is used to help find possible sites of infection; however, it 
cannot clearly differentiate infection caused by NTM or TB [113]. As such, for a correct 
diagnosis, microbiological and/or histological confirmation is mandatory [104].

Disseminated disease may appear in patients with low CD4+ T cell counts 
[53] and, once more, symptoms are nonspecific (e.g., fever, weight loss and 
abdominal pain) [104]. A positive blood culture is the main differential diagnosis, 
but it can also be done by the isolation of NTM from another sterile sample, for 
example lymph node, bone marrow or liver [104]. 

Some genetic/ heritable and acquired disorders that compromise the lung 
may act as risk factors to NTM disease. Examples of acquired disorders are 
smoking-related emphysema, bronchiectasis as a result of another unrelated 
infection, use of immunosuppressives, pneumoconiosis and chronic aspiration 
[114-116]. On the other hand, genetic disorders include cystic fibrosis (CF), 
elastin deficiency, congenital bronchial cartilage deficiency, alpha-1-antitypsin 

deficiency and, primary ciliary dyskinesia [117-121]. Several studies indicate 
that NTM infections are more common in female gender, and consider older 
age and low body weight as risk factors for disease [122-126]. In addition, an 
immunosuppressed status, as the one associated with human immunodeficiency 
virus infection, transplantation, or defects in the pathways of the IL-12, TNF-α 
and, IFN-γ are well-known risk factors [71,108] [127-130]. Also, in an infected 
individual, an immunosuppressive treatment increases the risk of progression to 
disease by NTM. 

The clinical significance of NTM isolated in the airways is hard to measure 
since they are environmental bacteria, and colonization of the airways is common. 
For this reason, the American Thoracic Society (ATS) and the Infectious Disease 
Society of America (IDSA) have provided criteria for NTM disease diagnosis. It 
requires microbiological, clinical, and radiographic correlation, with all of these 
criteria of equal importance [53]. As a NTM-positive respiratory specimen from 
a patient who has no evidence of underlying disease may imply contamination, 
at least two separate positive cultures of sputum specimens collected in different 
time periods are required to define the case as possible disease. However, if a 
patient has a lung biopsy with mycobacterial histopathological features and a 
positive NTM culture is isolated from the biopsy sample, a single positive result is 
enough to consider as a potential case of disease. The same criteria apply if the 
patient has a positive culture of other invasively collected biological samples such 
as bronchial or bronchoalveolar lavage. Clinical criteria for case definition include 
pulmonary or systemic symptoms such as cough, sputum production, chest 
pain, fatigue, fever, and weight loss whereas radiographic criteria are based on 
chest radiographic results showing nodular or cavitary opacities or computerized 
tomography (CT) scan results showing bronchiectasis with multiple nodules. 
Even if a patient meets all the criteria necessary to be classified as having NTM 
disease, the pathogenicity of the NTM isolate must be taken into account, and for 
low-pathogenic NTM species, recurrent positive cultures and strong clinical and 
radiological evidence are required for establishment of NTM disease [53,61,131]. 

Treatment regimens used in NTM infections require the prolonged use of 
multiple drugs, which is costly and may cause severe side effects for the patient, 
as these drugs usually show high toxicity [61]. As such, each treatment is unique 
and dependent on the individual comorbidities of each patient and the risk-benefit 
ratio [132]. The decision of which combination of drugs to use depends on the 
species and, in some cases, the subspecies of the NTM causing the disease. 
Although drug susceptibility testing (DST) is advised for correct treatment 
regimen design, correlation between in vitro and in vivo outcome is not yet well 
established [133.134] and, as such, treatments are still mostly empirical. 

Treatment regimens for SGM usually include ethambutol, rifampicin and 
a macrolide and, in some severe cases, amikacin or streptomycin can also 
be added. Not every SGM species has defined breakpoints for DST. Members 

Figure 2. Clinical diseases more common caused by NTM.
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of MAC are tested for clarithromycin, linezolid, and moxifloxacin; M. kansasii 
is tested for clarithromycin, rifampicin, amikacin, ciprofloxacin, ethambutol, 
isoniazid, linezolid, moxifloxacin, rifabutin, streptomycin, and trimethoprim-
sulfamethoxazole; and M. marinum is tested for amikacin, ciprofloxacin, 
clarithromycin, doxycycline, ethambutol, moxifloxacin, rifabutin, rifampin, and 
trimethoprim-sulfamethoxazole [135].

In case of infections with RGM, the treatment regimen is based on DST 
results that are performed for macrolides, fluroquinolones, amikacin, imipenem, 
tetracyclines, linezolid, and trimethoprim-sulfamethoxazole [53].

Mechanisms of antimicrobial resistance 

Antimicrobial resistance is a global problem underlying infections caused by 
bacteria, and mycobacteria are no exception. Most NTM species are resistant 
to a wide array of antibiotics and both natural and acquired resistances are 
important determinants for the treatment success [53,136]. DST is used to 
determine the interplay between resistance and susceptibility during suboptimal 
drug exposure and selection, which helps in the establishment of appropriate 
treatment regimens [136]. As NTM have natural/intrinsic resistance according to 
species or subspecies, it is of extreme importance to identify the NTM causing the 
disease in order to define the appropriate treatment regimen, even if an empiric 
one [53]. This natural drug resistance is conferred by mechanisms associated 
with the cell wall permeability, thickness, formation of granulomas or the capacity 
to form biofilms. These mechanisms interfere with drug uptake that allow their 
biotransformation, or decrease the affinity with the drug target [136-141]. The 
highly hydrophobic and impermeable cell wall of mycobacterial cells, which is 
composed by N-glycolyl muramic acid and is abundant in lipids constituted by 
long chain fatty acids with more than 90 carbons [139-141], hampers the diffusion 
of hydrophilic antibiotics and nutrients through this layer [136,142]. For these 
reason, the transport mechanisms across membrane is essentially controlled by 
porin channels [136,142,143]. It is the activity of these porins that determines the 
susceptibility to hydrophilic (e.g norfloxacin and β-lactam) and hydrophobic (e.g 
vancomycin and rifampicin) antibiotics [144-146]. In addition, NTM also possess 
efflux systems (e.g. P55, tetV and tap that confer resistance to aminoglycosides 
and tetracyclines) that avoid the accumulation of drugs inside the cell[136],[147-
149]. These efflux pumps are substrate-specific, but others transport a wide 
range of substrates, conferring resistance to multiple drugs at once [150]. Another 
efflux pump system has been described in MAC: MmpL5/MmpS5, which confers 
resistance to clofazimine and bedaquiline.

The persistence of a multidrug-resistant phenotype is possible due to the 
existence of several genes and systems involved in cell wall maintenance 
such as the protein kinase G (pknG), and asnB in M. smegmatis, and the 
mtrAB in M. smegmatis and M. avium [143]. Whenever a disruption in these 
genes is observed, there will usually occur a decrease in hydrophobicity of the 
mycobacterial cell wall, leading to increased susceptibility to lipophilic antibiotics 
(e.g. macrolides, rifamycins, and penicillins) [152-155]. 

As mentioned before, the formation of biofilms and granulomas are two 
additional mechanisms to promote antimicrobial resistance in NTM [138,156]. 
The lipid-rich extracellular matrix of the biofilm works as a barrier, which does 
not allow the penetration of drugs [156]. Furthermore, in biofilms, horizontal gene 
transfer is potentiated due to the interactions between the bacteria that form the 
biofilm layers, promoting the spread of drug resistance [157]. Moreover, some 
genes are expressed differently when the bacteria grows in biofilms [158]. For 
example, it is assumed that the increased chlorine resistance noted in M. avium 
and M. intracellulare cells when these bacteria grow in biofilms is due to changes in 
the cell wall, which in turn results from changes in the structure of mycolic acid [159]. 

Changes in gene expression may lead to modifications in the binding sites 
of antibiotics. This is the case of the erythromycin ribosomal methylase (erm) 
gene that confers resistance to macrolides by methylating the bacterial ribosome, 
thereby blocking the binding site for macrolides [160,161]. The erm gene has 
been described in M. abscessus spp. abscessus, M. abscessus spp. bolletii, M. 
fortuitum, and M. porcinum [133,162,163]. In M. abscessus spp. massiliense the 
treatment with macrolides can still be an option as inducible macrolide resistance 
does not occur in this subspecies [164,165]. 

On the other hand, acquired resistance appears mainly due to spontaneous 
mutations in chromosomal genes, especially during antibiotic treatment [137,150] 
and, due to this type of resistance, multidrug-resistance pathogens are rapidly 
increasing worldwide [166]. Mutations in 23S rRNA gene (rrl) and in 16S rRNA 
gene (rrs) are responsible for resistance to macrolide and aminoglycoside 
respectively, in MABC and MAC clinical isolates [156,162][167-170]. Rifamycin 

resistance is acquired by a mutation in the rpoB gene encoding the β-subunit 
of RNA polymerase resulting in a blockage of RNA synthesis [171,172]. These 
mutations have been reported in MAC and M. kansasii [133,174,174]. The 
expression of arr gene in M. smegmatis and M. abscessus it is also associated 
with a reduced efficacy of rifamycins such as rifampicin and rifabutin [175,176].

Conclusion

Infections caused by nontuberculous mycobacteria are becoming a public 
health problem. Although they are more common in immunosuppressed patients 
and with other comorbidities, there are also reports of immunocompetent patients 
infected with NTM disease. In order to increase the knowledge on pathogenicity, 
evolution, treatment, resistance mechanisms, and environmental niches, studies 
on NTM are mandatory. This study summarizes the NTM-related issues that we 
consider the most important.
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