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Introduction
It is a common truth that our knowledge in Molecular Biology is 

only as good as the tools we have at our disposal. Next-generation or 
high-throughput sequencing technologies provide a revolutionary tool 
in the aid of genomic studies by allowing the generation, in a relatively 
short time, of millions of short sequence tags, which reflect particular 
aspects of the molecular state of a biological system. A common 
application of these technologies is the study of the transcriptome, 
which involves a family of methodologies, including RNA-seq ([1]), 
CAGE (Cap Analysis of Gene Expression; [2]) and SAGE (Serial 
Analysis of Gene Expression; [3]). When compared to microarrays, this 
class of methodologies offers several advantages, including detection of 
a wider level of expression levels and independence on prior knowledge 
of the biological system, which is required by hybridisation-based 
technologies, such as microarrays.

Typically, an experiment in this category starts with the extraction 
of a snapshot RNA sample from the biological system of interest and 
it’s shearing in a large number of fragments of varying lengths. The 
population of these fragments is then reversed-transcribed to a c-DNA 
library and sequenced on a high- throughput platform, generating 
large numbers of short DNA sequences known as “reads”. The ensuing 
analysis pipeline starts with mapping or aligning these reads on a 
reference genome. At the next stage, the mapped reads are summarised 
into gene-, exon- or transcript-level counts, normalised and further 
analysed for detecting differential gene expression [4].

It is important to realize that the normalised read (or tag) count 
data generated from this family of methodologies represents the 
number of times a particular class of c-DNA fragments has been 
sequenced, which is directly related to their abundance in the library 
and, in turn, the abundance of the associated transcripts in the original 
sample. Thus, this count data is essentially a discrete or digital measure 
of gene expression, which is fundamentally different in nature (and, in 
general terms, superior in quality) from the continuous fluorescence 

intensity measurements obtained from the application of microarray 
technologies. Due to their better quality, next-generation sequence 
assays tend to replace microarray- based technologies, despite their 
higher cost [5].

One approach for the analysis of count data of gene expression is to 
transform the counts to approximate normality and then apply existing 
methods aimed at the analysis of microarrays [6,7]. However, as noted 
in McCarthy et al. [8], this approach may fail in the case of very small 
counts (which are far from normally distributed) and also due to the 
strong mean-variance relationship of count data, which is not taken 
into account by tests based on a normality assumption. Proper statistical 
modelling and analysis of count data of gene expression requires novel 
approaches, rather than adaptation of existing methodologies, which 
aimed from the beginning at processing continuous input.

Formally, the generation of count data using next-generation 
sequencing assays can be thought of as random sampling of an 
underlying population of cDNA fragments. Thus, the counts for each 
tag describing a class of cDNA fragments can, in principle, be modelled 
using the Poisson distribution, whose variance is, by definition, equal 
to its mean. However, it has been shown that, in real count data of 
gene expression, the variance can be larger than what is predicted by 
the Poisson distribution [9-12]. An approach that accounts for the 
so-called “over-dispersion” in the data is to adopt quasi-likelihood 
methods, which augment the variance of the Poisson distribution with 
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Abstract
Next-generation sequencing technologies provide a revolutionary tool for generating gene expression data. Starting with a 

fixed RNA sample, they construct a library of millions of differentially abundant short sequence tags or “reads”, which constitute a 
fundamentally discrete measure of the level of gene expression. A common limitation in experiments using these technologies is 
the low number or even absence of biological replicates, which complicates the statistical analysis of digital gene expression data. 
Analysis of this type of data has often been based on modified tests originally devised for analysing microarrays; both these and even 
de novo methods for the analysis of RNA-seq data are plagued by the common problem of low replication.

We propose a novel, non-parametric Bayesian approach for the analysis of digital gene expression data. We begin with a 
hierarchical model for modelling over-dispersed count data and a blocked Gibbs sampling algorithm for inferring the posterior 
distribution of model parameters conditional on these counts. The algorithm compensates for the problem of low numbers of biological 
replicates by clustering together genes with tag counts that are likely sampled from a common distribution and using this augmented 
sample for estimating the parameters of this distribution. The number of clusters is not decided a priori, but it is inferred along with 
the remaining model parameters. We demonstrate the ability of this approach to model biological data with high fidelity by applying 
the algorithm on a public dataset obtained from cancerous and non-cancerous neural tissues.

Source code implementing the methodology presented in this paper takes the form of the Python Package DGEclust, which is 
freely available at the following link: https://bitbucket.org/DimitrisVavoulis/dgeclust.
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a scaling factor, thus by-passing the assumption of equality between 
the mean and variance [13-16]. An alternative approach is to use the 
Negative Binomial distribution, which is derived from the Poisson, 
assuming a Gamma-distributed rate parameter. The Negative Binomial 
distribution incorporates both a mean and a variance parameter, thus 
modelling over-dispersion in a natural way [17,18]. An overview of 
existing methods for the analysis of gene expression count data can be 
found in Oshlack et al. and Kvam et al. [4,19].

Despite the decreasing cost of next-generation sequencing assays 
(and also due to technical and ethical restrictions), digital datasets of 
gene expression are often characterised by a small number of biological 
replicates or no replicates at all. Although this complicates any effort 
to statistically analyse the data, it has led to inventive attempts at 
estimating as accurately as possible the biological variability in the 
data given very small samples. One approach is to assume a locally 
linear relationship between the variance and the mean in the Negative 
Binomial distribution, which allows estimating the variance by 
pooling together data from genes with similar expression levels [17]. 
Alternatively, one can make the rather restrictive assumption that 
all genes share the same variance, in which case the over-dispersion 
parameter in the Negative Binomial distribution can be estimated 
from a very large set of data points [11]. A further elaboration of 
this approach is to assume a unique variance per gene and adopt a 
weighted-likelihood methodology for sharing information between 
genes, which allows for an improved estimation of the gene-specific 
over-dispersion parameters [8]. Another yet distinct empirical Bayes 
approach is implemented in the software baySeq, which adopts a form 
of information sharing between genes by assuming the same prior 
distribution among the parameters of samples demonstrating a large 
degree of similarity [18].

In summary, proper statistical modelling and analysis of digital gene 
expression data requires the development of novel methods, which take 
into account both the discrete nature of this data and the typically small 
number (or even the absence) of biological replicates. The development 
of such methods is particularly urgent due to the huge amount of data 
being generated by high-throughput sequencing assays. In this paper, 
we present a method for modelling digital gene expression data that 
utilizes a novel form of information sharing between genes (based on 
non-parametric Bayesian clustering) to compensate for the all-too-
common problem of low or no replication, which plagues most current 
analysis methods.

Approach
We propose a novel, non-parametric Bayesian approach for the 

analysis of digital gene expression data. Our point of departure is a 
hierarchical model for over-dispersed counts. The model is built around 
the Negative Binomial distribution, which depends, in our formulation, 
on two parameters: the mean and an over-dispersion parameter. We 
assume that these parameters are sampled from a Dirichlet process 
with a joint Inverse Gamma - Normal base distribution, which we 
have implemented using stick breaking priors. By construction, the 
model imposes a clustering effect on the data, where all genes in the 
same cluster are statistically described by a unique Negative Binomial 
distribution. This can be thought of as a form of information sharing 
between genes, which permit pooling together data from genes in the 
same cluster for improved estimation of the mean and over-dispersion 
parameters, thus bypassing the problem of little or no replication. 
We develop a blocked Gibbs sampling algorithm for estimating the 
posterior distributions of the various free parameters in the model. 

These include the mean and over-dispersion for each gene and the 
number of clusters (and their occupancies), which does not need to 
be fixed a priori, as in alternative (parametric) clustering methods. In 
principle, the proposed method can be applied on various forms of 
digital gene expression data (including RNA-seq, CAGE, SAGE, Tag-
seq, etc.) with little or no replication and it is actually applied on one 
such example dataset herein.

Modelling Over-Dispersed Count Data
The digital gene expression data we are considering is arranged in 

an M×N matrix, where each of the N rows corresponds to a different 
gene and each of the M columns corresponds to a different sample. 
Furthermore, all samples are grouped in L different classes (i.e. tissues 
or experimental conditions). It holds that L ≤ M, where the equality is 
true if there are no replicas in the data.

We indicate the number of reads for the ith gene at the jth sample with 
the variable yij. We assume that yij is Poisson-distributed with a gene- 
and sample-specific rate parameter rij. The rate parameter rij is assumed 
random itself and it is modelled using a Gamma distribution with shape 
parameter αiλ(j) and scale parameter sij. The function λ(.) in the subscript 
of the shape parameter maps the sample index j to an integer indicating 
the class this sample belongs to. Thus, for a particular gene and class, 
the shape of the Gamma distribution is the same for all samples. Under 
this setup, the rate rij can be integrated (or marginalised) out, which 
gives rise to the Negative Binomial distribution with parameters αiλ(j) 
and µij=αiλ(j) sij for the number of reads yij:
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can be thought of as a generalisation of the Poisson distribution, which 
accounts for over-dispersion. Furthermore, we model the mean as

( )i j  
ij j= c eµ λβ , where the offset N

j ij1
c = y  

=∑ i
is the depth or exposure 

of sample j and ( )i jλβ is, similarly to ( )i jλα , a gene- and class-specific 
parameter. This formulation ensures that µij is always positive, as it 
ought to.

Given the model above, the likelihood of observed reads yij ={ yij : 
λ(j)=l} for the ith gene in class l is written as follows:
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Where the index j satisfies the condition λ(j)=l. By extension, for the ith 
gene across all sample classes, the likelihood of observed counts yi={ yij 
: λ(j)=l, l=1,…. , L} is written as:

    ( | , ,......, , ) ( | , ) =∏ ili il il iL iL il il
l

p Y p Yα β α β α β                      (3)

where the class indicator l runs across all L classes.

Information sharing between genes

A common feature of digital gene expression data is the small 
number of biological replicates per class, which makes any attempt to 
estimate the gene- and class-specific parameters θil={αil , βil } through 
standard likelihood methods a futile exercise. In order to make robust 
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estimation of these parameters feasible, some form of information 
sharing between different genes is necessary. In the present context, 
information sharing between genes means that not all values of θil 
are distinct; different genes (or the same gene across different sample 
classes) may share the same values for these parameters. This idea can 
be expressed formally by assuming that θil is random with an infinite 
mixture of discrete random measures as its prior distribution:

 *

1 1
 ,0 1, 1

∞ ∞

= =

≤ ≤ =∑ ∑

k
il k k k

k k
w w w

θ
θ δ  

where *
kθ

δ  indicates a discrete random measure centered at 
* * *{ , }=k k kθ α β and wk is the corresponding weight. Conceptually, 

the fact that the above summation goes to infinity expresses our 
lack of prior knowledge regarding the number of components that 
appear in the mixture, other than the obvious restriction that their 
maximum number cannot be larger than the number of genes times 
the number of sample classes. In this formulation, the parameters *

kθ  
are sampled from a prior base distribution G0 with hyper-parameters

*
0, . . ( )ki e Gφ θ φ φ . We assume that *

kα is distributed according to 
an inverse Gamma distribution with shape aα and scale sα, while *

kβ  

follows the Normal distribution with mean µβ and variance 2
βσ . Thus, 

G0 is a joint distribution as follows:
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Given the above, *
kα can take only positive values, as it ought to, while 

*
kβ can take both positive and negative values.

 What makes the mixture in Eq. 4 special is the procedure for 
generating the infinite sequence of mixing weights. We set w1=V1 and 

1
 1

(1 )−

=
= −∏ k

k k mm
w V V for k ≥ 2 where {V1,…., Vk} are random variables 
following the Beta distribution, i.e., Vk ~ Beta(ak , bk ). This constructive 
way of sampling new mixing weights resembles a stick-breaking 
process; generating the first weight w1 corresponds to breaking a stick 
of length 1 at position V1; generating the second weight w2 corresponds 
to breaking the remaining piece at position V2 and so on. Thus, we 
write:

, ( , ),k k k k kw a b Stick a b k=1,2,….                      (6)

There are various ways for defining the parameters ak and bk. 
Here, we consider only the case where ak=1 and bk=η, with η > 0. This 
parametrisation is equivalent to setting the prior of θil to a Dirichlet 
Process with base distribution G0 and concentration parameter η. By 
construction, this procedure leads to a rapidly decreasing sequence of 
sampled weights, at a rate which depends on η. For values of η much 
smaller than 1, the weights wk decrease rapidly with increasing k, only 
one or few weights have significant mass and the parameters θil share 
a single or a small number of different values *

kθ . For values of the 
concentration parameter much larger than 1, the weights wk decrease 
slowly with increasing k, many weights have significant mass and 
the values of θil tend to be all distinct to each other and distributed 
according to G0. Below, we set η=1, which results in a balanced decrease 
of the weight mass with increasing k. In particular, for η=1, log (wk ) 
decreases (on average) in an unbiased manner with increasing k.

 Given the above formulation, sampling θil from its prior distribution 
is straightforward. First, we introduce an indicator variable zil ∈ {1, 2, 

. . .}, which points to the value of *
kθ  corresponding to the ith gene in 

class l. We sample such indicator variables for each gene in each class 
from the Categorical distribution, i.e. zil ~ Categorical (w1, w2, . . .), and 
set 

 
∗≡
ilil zθ θ . Although G0 is continuous, the distribution of θil is almost 

surely discrete and, therefore, its values are not all distinct. Different 
genes may share the same value of *θ and, thus, all genes are grouped 
in a finite (unknown) number of clusters, according to the value of *

kθ  
they share. Modeling digital gene expression data using this approach 
is one way to bypass the problem of few (or the absence of) technical 
replicates, since the data from all genes in the same cluster are pooled 
together for estimating the parameters that characterize this cluster. 
The clustering effect described in this section is illustrated in Figure 2.

Generative model

The description in the previous paragraphs suggests a hierarchical 
model, which presumably underlies the stochastic generation of the 
data matrix in Figure 1. This model is explicitly described below:
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At the bottom of the hierarchy, we identify the measured reads 
yij for each gene in each sample, which follow a Negative Binomial 
distribution with parameters ( ) ( ) ( )i j i j i j{ , }=λ λ λθ α β . The parameters of 
the Negative Binomial distribution ( )i jλθ  are gene- and class-specific 
and they are completely determined by an also gene- and class-specific 
indicator variable ziλ(j) and the centers *

kθ  of the infinite mixture of 

Figure 1: Format of digital gene expression data. Rows correspond to 
genes and columns correspond to samples. Samples are grouped into 
classes (e.g. tissues or experimental conditions). Each element of the 
data matrix is a whole number indicating the number of counts or reads 
corresponding to the ith gene at the jth sample. The sum of the reads across 
all genes in a sample is the depth or exposure of that sample.
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point measures in Eq. 4. These centers are distributed according to a 
joint inverse Gamma and Normal distribution with hyper-parameters

2{ , , , }= a s µα α β βφ σ , while the indicator variables are sampled from a 
Categorical distribution with weights {w1, w2, . . .}. These are, in turn, 
sampled from a stick-breaking process with concentration parameter 
η. In this model, ϕ, wk , *

kθ  and ziλ(j) are latent variables, which are 
subject to estimation based on the observed data. 

Inference
At this point, we introduce some further notation. We indicate the 

N × L matrix of indicator variables with the letter Z; * * *
1 2{ , ,....}Θ = θ θ

lists the centers of the point measures in Eq. 4 and W={w1, w2, . . .} 
is the vector of mixing weights. We are interested in computing the 
joint posterior density *( , , , )Θp Z W Yφ , where Y is a matrix of count 
data as in Figure 1. We approximate the above distribution through 
numerical (Monte Carlo) methods, i.e. by sampling a large number of 
{ ,W,Z, }∗Θ φ -tuples from it. One way to achieve this is by constructing 
a Markov chain, which admits *( , , , )Θp Z W Yφ  as its stationary 
distribution. Such a Markov chain can be constructed by using Gibbs 
sampling, which consists of alternating repeated sampling from the 
full conditional posteriors * *( , , ), ( ), ( , , )Θ Θp Y Z p W Z p Z Y Wφ and

*( , )Θp Zφ . Below, we explain how to sample from each of these 
conditional distributions. 

Sampling from the conditional posterior ( | , , )∗Θp Y Z ϕ

In order to sample from the above distribution it is convenient 
to truncate the infinite mixture in Eq. 4 by rejecting all terms with 

index larger than K and setting
1

1
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K = 1V . It has been shown that the error associated with 
this approximation when k (1, )v  Beta η  is less than or equal to 
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η

 ([8]). For example, for 314 10 , 6, 200= × = =N M k  

and 1=η , the error is minimal (less than 8010− ). Thus, the truncation 
should be virtually indistinguishable from the full (infinite) mixture. 

Next, we distinguish between ack active clusters *Θac and ink  
inactive clusters *Θin , such that { }* * *

in= ,Θ Θ Θac
 and ac=k + ink k . Active 

clusters are those containing at least one gene, while those containing 
no genes are considered inactive. We write: 

* * * * *
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Updating the inactive clusters is a simple matter of sampling ink times 
from the joint distribution in Eq. 5 given the hyper-parameters ϕ. 
Sampling the active clusters is more complicated and involves sampling 
each active cluster center *

,Θac k  individually from its respective 
posterior *

, ,( )Θac k ac kp Y , where ,ac kY  is a matrix of measured count data 
for all genes in the thk  active cluster. Sampling { }* *

, , , ,=ac k ac k ac kθ α β  is 
done using the Metropolis algorithm with acceptance probability: 

+ +
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ac k ac k ac k
acc

ac k ac k ac k

p Y p
P

p Y p

θ θ
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Where the superscript + indicates a candidate vector of parameters. 
Each of the two elements (α and β) of this vector is drawn from a 
symmetric proposal of the following form:

 (  | )   exp (0.01 · ) + ∗ ∗=q x x x r                                                               (9)

Where the random number r is sampled from the standard Normal 
distribution, i.e., r Normal(0,1). The prior of is a joint Inverse Gamma 

- Normal distribution, as shown in Equation 5, while the likelihood 
function *

, ,( )ac k ac kp Y θ  is a product of Negative Binomial probability 
distributions, similar to those in Equation 2 and 3.

Sampling from the conditional posterior ( | , , )∗Θp Z Y W  

Each element zil of the matrix of indicator variables Z is sampled 
from a Categorical distribution with weights 1{ ,..., },= K

il il ilπ π π where 

1/ == ∏ ∑ ∏K K K m
il il m ilπ and:

1 * *
1 1 1{ ,..., } { ( ),....., ( )}∝K

il il il K ilw p Y w p Yπ π θ θ                   (10)

In the above expression, Yil is the data for the ith gene in class l, as 
mentioned in a previous section. Notice that zil can take any integer 
value between 1 and K and that the weights πil depend both on the 
cluster weights wk and on the value of the likelihood function *

1( )ilp Y θ .

Sampling from the conditional posterior p(w | z)

 The mixing weights W are generated using a truncated stick-
breaking process with η=1. As pointed out in Engström et al. [20], this 
implies that W follows a generalised Dirichlet distribution. Considering 
the conjugacy between this and the multinomial distribution, the first 
step in updating W is to generate K − 1 Beta-distributed random 
numbers:

1
Beta(1 , )

=

∼ + + −∑
k

k k m
m

V N N Nη                   (11)

for k=1, . . . , K − 1, where Nk is the total number of genes in the kth 
cluster. Notice that Nk can be inferred from Z by simple counting and

1=∑ =K
m kN N , where N is the total number of genes. VK is set equal to 

1, in order to ensure that the weights add up to 1. These are simply 

generated by setting V1=w1 and ( )k-1
k 1 mV 1 V ,== ∏ −k mw  as mentioned 

in a previous section.

Sampling from the conditional posterior ( | ,Z)∗Θp φ

The hyper-parameters 2{ , , , }= a s µα α β βφ σ  influence 
indirectly the observations Y through their effect on the 
distribution of the active cluster centres, * * *{ , }Θ =ac ac acα β  where 

* * *
1{ , ,.... , }=

acac ac ac Kα α α and * * *
1{ , ,.... , }.=

acac ac ac Kβ β β  If we 
further assume independence between *

acα and *
acβ we can write

2 * * * 2 *( | ,Z) ( , , , , ) ( , ) ( , ).∗Θ = =ac ac ac acp p a s µ p a s p µα α β β α α β βφ σ α β α σ β

Assuming Kac active clusters and considering that the prior for α* 
(see Equation 5), it follows that the posterior *( , )acp a sα α α is: 
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The parameters γ1 to γ4 are given by the following expressions:
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where the initial parameters 

1 2 3
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4, , ,andγ γ γ γ are all positive. 

Since sampling from Equation 12 cannot be done exactly, we employ a 
Metropolis algorithm with acceptance probability 

*
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where the proposal distribution q(•|•) for sampling new candidate 
points has the same form as in Eq. 9. Furthermore, taking advantage 
of the conjugacy between a normal likelihood and a Normal-Inverse 
Gamma prior, the posterior probability for parameters µβ and 2

βσ  
becomes:

2 *
1 2 3 4( , ) ( , , , )=acp µ NormalInverseGammaβ βσ β δ δ δ δ                  (14)

The parameters 1δ to 4δ (given initial parameters
3

(0)δ  to (0)
4δ ) are 
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acK
β β . Sampling a 2{ , }µβ βσ  -pair from the 

above posterior takes place in two simple steps: first, we sample 
2

3 4( , ) InverseGammaβσ δ δ where 3δ and 4δ  are shape and scale 
parameters, respectively. Then, we sample 2

1 2( , / ).µ Normalβ βδ σ δ

Algorithm
We summarise the algorithm for drawing samples from the 

posterior ( ,Z,W, | )∗Θp Yφ below. Notice that x(t) indicates the value of 
x at the tth iteration of the algorithm. x(0) is the initial value of x.

1. Set 
1 2 3

(0) (0) (0) (0) (0)
4{ , , , }=γ γ γ γ γ

2. Set 
1 2 3

(0) (0) (0) (0) (0)
4{ , , , }=δ δ δ δ δ

3. Set (0) (0) (0) (0) 2(0){ , , , }= a b
αα β βφ µ σ

4. Set K , the truncation level

5. Sample *(0)Θ  from its prior (Eq. 5) conditional on (0)φ

6. Set all K elements of (0)W to the same value i.e 1/K

7. Sample (0)Z  from the Categorical distribution with weights 
(0)W

8. For t=1,2,3,.....T

a. Sample *( )Θ t
ac given ( 1) ( 1),− −t tZ φ  and the data matrix Y using a 

single step of the Metropolis algorithm for each active cluster 
(see Eq. 8)

b. Sample *( )Θ t
in  from its prior given ( 1)−tφ  (see Eq. 5)

c. Sample ( )tZ given ( ) ( )t t 1  ,W∗ −Θ and the data matrix Y (see Eq. 
10)

d. Sample ( )tW given ( )tZ (see Eq. 11)

e. Sample ( )tφ given *( )Θ t
ac and ( 1)−tφ  (see Eqs. 12 and 14)

9. Discard the first T0 samples, which are produced during the 
burn-in period of the algorithm (i.e. before equilibrium is 
attained), and work with the remaining T − T0 samples.

The above procedure implements a form of blocked Gibbs sampling 
with embedded Metropolis steps for impossible to directly sample from 
distributions.

Results and Discussion
We applied the methodology described in the preceding sections 

on publicly available digital gene expression data (obtained from 
control and cancerous tissue cultures of neural stem cells; [20]) for 
evaluation purposes. The data we used in this study can be found at the 
following URL: http://genomebiology.com/content/supplementary/
gb-2010-11-10-r106-s3.tgz. As shown in Table 1, this dataset consists 
of four libraries from glioblastoma-derived neural stem cells and two 
from non- cancerous neural stem cells. Each tissue culture was derived 
from a different subject (with the exception of GliNS1 and G144, which 
came from the same patient). Thus, the samples are divided in two 
classes (cancerous and non-cancerous) with four and two replicates, 
respectively.

We implemented the algorithm presented above in the 
programming language Python, using the libraries NumPy, SciPy and 
MatplotLib. The most recent version of the software can be found at 
the following link: https://bitbucket.org/DimitrisVavoulis/dgeclust. 
Calculations were expressed as operations between arrays and the 
multiprocessing Python module was utilised in order to take full 
advantage of the parallel architecture of modern multicore processors. 
The algorithm was run for 200K iterations, which took approximately 
two days to complete on a 12-core desktop computer. Simulation 
results were saved to the disk every 50 iterations.

Figure 2: The clustering effect that results from imposing a stick-breaking 
prior on the gene and class- specific model parameters, θil. A matrix of 
indicator variables is used to cluster the observed count data into a finite 
number of groups, where the genes in each group share the same model 
parameters. The number of clusters is not known a priori. The distribution 
of weight mass among the various clusters in the model is determined by 
parameter η.

Cancerous Non-Cancerous
Genes GliNS1 G144 G166 G179 CB541 CB660

13CDNA73 4 0 6 1 0 5
15E1.2 75 74 222 458 215 167
182-FIP 118 127 555 231 334 114

. . . . . . .

. . . . . . .

. . . . . . .

Table 1: Format of the data [6]. 

The first four samples are from glioblastoma neural stem cells, while the last two 
are from non-cancerous neural stem cells. The dataset contains a total of 18760 
genes (i.e. rows).
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The raw simulation output includes chains of random values of the 
hyper-parametersφ , the gene- and class-specific indicators Z and the 
active cluster centres *Θac , which constitute an approximation to the 
corresponding posterior distributions given the data matrix Y. The chains 
corresponding to the four different components of 2{ , , , }= a s µα α β βφ σ  
are illustrated in Figure 3. It may be observed that these reached 
equilibrium early during the simulation (after less than 20K iterations) 
and they remained stable for the remaining of the simulation. As 
explained earlier, these hyper-parameters are important, because they 
determine the prior distributions of the cluster centres α* and β* (hyper-
parameters { , }a sα α and 2{ , }µβ βσ , respectively) and, subsequently, of 
the gene- and class-specific parameters α and β. It follows from analysis 
of the chains in Figure 3 that the estimates for these hyper-parameters 
are (indicating the mean and standard deviation of the estimates):

20.83 0.13, 1.00 0.16, 10.01 0.39, 5.41 1.32.= ± = ± = − ± = ±a sα α β βµ σ  
The corresponding Inverse Gamma and Normal distributions, which 
are the priors of the cluster centres α* and β*, respectively, are illustrated 
in Figure 4.

A major use of the methodology presented above is that it allows 

us to estimate the gene and class-specific parameters α and β, under 
the assumption that the same values for these parameters are shared 
between different genes or even by the same gene among different 
sample classes. This form of information sharing permits pulling 
together data from different genes and classes for estimating pairs of 
α and β parameters in a robust way, even when only a small number 
of replicates (or no replicates at all) are available per sample class. As 
an example, in Figure 5 we illustrate the chains of random samples for 
α and β corresponding to the non-cancerous class of samples for the 
tag with ID 182-FIP (third row in Table 1). These samples constitute 
approximations of the posterior distributions of the corresponding 
parameters. Despite the very small number of replicates (n=4), the 
variance of the random samples is finite. Similar chains were derived 
for each gene in the dataset, although it should be emphasised that the 
number of such estimates is smaller than the total number of genes, 
since more than one genes share the same parameter estimates.

It has already been mentioned that the sharing of α and β parameter 
values between different genes can be viewed as a form of clustering 
(Figure 2), i.e. there are different groups of genes, where all genes in a 
particular group share the same α and β parameter values. As expected 
in a Bayesian inference framework, the number of clusters is not 
constant, but it is itself a random variable, which is characterised by 
its own posterior distribution and its value, fluctuates randomly from 

Figure 3: Simulation results after 200K iterations. The chains of random 
samples correspond to the components of the vector of hyper-parameters
φ , i.e. µβ and 2

βσ . (Panel A) and aα and sα (panel B). The former determines 
the Normal prior distribution of the cluster center parameters β∗, while the 
latter pair determines the Inverse Gamma prior distribution of the cluster 
center parameters α∗. The random samples in each chain are approximately 
sampled (and constitute an approximation of) the corresponding posterior 
distribution conditional on the data matrix Y.

Figure 4: Estimated Inverse Gamma (panel A) and Normal (panel B) prior 
distributions for the cluster parameters α* and β*, respectively. The solid 
lines indicate mean distributions, i.e. those obtained for the mean values 
of the hyper-parameters 2, , ,a s µα α β βσ  . The dashed lines are distributions 
obtained by adding or subtracting individually one standard deviation from 
each relevant hyper-parameter.
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one iteration to the next. In Figure 6, we illustrate the chain of sampled 
cluster numbers during the course of the simulation (panel A). The first 
75K iterations were discarded as burn-in and the remaining samples 
were used for plotting the histogram in panel B, which approximates 
the posterior distribution of the number of clusters given the data 
matrix Y. It may be observed that the number of clusters fluctuates 
between 35 and 55 with a peak at around 42 clusters. The algorithm 
we present above does not make any particular assumptions regarding 
the number of clusters, apart from the obvious one that this number 
cannot exceed the number of genes times the number of sample 
libraries. Although the truncation level K=200 sets an artificial limit in 
the maximum number of clusters, this is never a problem in practise, 
since the actual estimated number of clusters is typically much smaller 
that the truncation level K (see the y-axis in Figure 6A). The fact that 
the number of clusters is not decided a priori, but rather inferred 
along with the other free parameters in the model sets the described 
methodology in an advantageous position with respect to alternative 
clustering algorithms, which require deciding the number of clusters at 
the beginning of the simulation [21].

Similarly to the stochastic fluctuation in the number of clusters, 

the cluster occupancies (i.e. the number of genes per cluster) are a 
random vector. In Figure 7, we illustrate the cluster occupancies at two 
different stages of the simulation, i.e. after 100K and 200K iterations, 
respectively. We may observe that, with the exception of a single 
super-cluster (containing more than 6000 genes), cluster occupancies 
range from between around 3000 and less than 1000 genes. It should 
be clarified that each cluster includes many (potentially, hundreds of) 
genes and it may span several classes. An individual cluster represents 
a Negative Binomial distribution (with concrete α and β parameters), 
which models with high probability the count data from all its member 
genes. This is illustrated in Figure 8, where we show the histogram of 
the log of the count data from the first sample (sample GliNS1 in Table 
1) along with a subset of the estimated clusters after 200K iterations 
(gray lines) and the fitted model (red line). It may be observed that each 
cluster models a subset of the gene expression data in the particular 
sample. The complete model describing the whole sample is a weighted 
sum of the individual clusters/Negative Binomial distributions. 
Formally, 

1 ( ) 1 ( ) ( ) ( ) ( ) ( )
1( , ,....... , ) ( , )=j j j N j N j ij i j i jp Y p Y
Nλ λ λ λ λ λα β α β α β        (15)

where Yj is the jth sample and the index i runs over all N genes. We 

Figure 6: Stochastic evolution of the number of clusters during 200K 
iterations of the simulation (panel A) and the resulting histogram after 
discarding the first 75K iterations as burn-in (panel B). After reaching 
equilibrium, the number of clusters fluctuates around a mean of 
approximately 43 clusters. In general, the estimated number of clusters is 
much smaller than the truncation level (K = 200, see y-axis in panel A). The 
histogram in panel B approximates the posterior distribution of the number 
of clusters given the data matrix Y.

Figure 5: Chains of random samples approximating the posterior 
distributions of the parameters α (panel A) and β (panel B) corresponding 
to the non-cancerous class of samples for the tag with ID 182-FIP (third 
row in Table 1). These samples were generated after 200K iterations of 
the algorithm. A similar pair of chains exists for each gene at each sample 
class (i.e. cancerous and non-cancerous), although not all pairs are distinct 
to each other due to the clustering effect imposed on the data by the 
algorithm.
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repeat that not all ( ) ( ){ , }i j i jλ λα β pairs are distinct. Also, clusters with 
larger membership (i.e. including a larger number of genes) have larger 
weight in determining the overall model.

The proposed methodology provides a compact way to model 
each sample in a digital gene expression dataset following a two-step 
procedure: first, the dataset is partitioned into a finite number of 
clusters, where each cluster represents a Negative Binomial distribution 
(modelling a subset of the data) and the parameters of each such 
distribution are estimated. Subsequently, each sample in the dataset 
can be modelled as a weighted sum of Negative Binomial distributions. 
In Figure 9, we show the log of count data for each sample in the dataset 
shown in Table 1 along with the fitted models (red lines) after 200 K 
iterations of the algorithm.

Conclusion
Next-generation sequencing technologies are routinely being used 

for generating huge volumes of gene expression data in a relatively 

short time. This data is fundamentally discrete in nature and their 
analysis requires the development of novel statistical methods, rather 
than modifying existing tests that were originally aimed at the analysis 
of microarrays. The development of such methods is an active area of 
research and several papers have been published on the subject [4,19].

In this paper, we present a novel approach for modelling over-
dispersed count data of gene expression (i.e. data with variance 

Figure 7: Cluster occupancies after 100K and 200K iterations of the 
algorithm. A single super-cluster (including more than 6000 genes) 
appears at both stages of the simulation. The occupancy of the remaining 
clusters demonstrates some variability during the course of the simulation, 
with clusters containing between 3000 and less than 1000 genes.

Figure 8: Histogram of the log of the number of reads from sample GliNS1, 
a subset of the estimated clusters (gray lines) and the estimated model of 
the sample at the end of the simulation. Each cluster (gray line) represents 
a Negative Binomial distribution with specific α and β parameters, which 
models a subset of the count data in this particular sample. The complete 
model (red line) is the weighted sum of all component clusters.

Figure 9: Histograms of the log of the number of reads from cancerous 
(panels Ai-iv) and non-cancerous (panels Bi,ii) samples and the respective 
estimated models after 200K iterations of the algorithm. As already 
mentioned, each red line is the weighted sum of many component Negative 
Binomial distributions / clusters, which model different subsets of each 
data sample. We may observe that the estimated models fit tightly the 
corresponding data samples.
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larger than the mean predicted by the Poisson distribution) using a 
hierarchical model based on the Negative Binomial distribution. The 
novel aspect of our approach is the use of a Dirichlet process in the form 
of stick breaking priors for modelling the parameters (mean and over- 
dispersion) of the Negative Binomial distribution. By construction, this 
formulation forces clustering of the count data, where genes in the same 
cluster are sampled from the same Negative Binomial distribution, with 
a common pair of mean and over-dispersion parameters. Through this 
elegant form of information sharing between genes, we compensate for 
the problem of little or no replication, which often restricts the analysis 
of digital gene expression datasets. We have demonstrated the ability of 
this approach to model accurately actual biological data by applying the 
proposed methodology on a publicly available dataset obtained from 
cancerous and non-cancerous cultured neural stem cells [20].

We show that inference is achieved in the proposed model through 
the application of a blocked Gibbs sampler, which includes estimating, 
among others, the gene- and class-specific mean and over-dispersion 
of the Negative Binomial distribution. Similarly, the number of clusters 
and their occupancies are inferred along with the rest free parameters 
in the model.

Currently, the software implementing the proposed method remains 
relatively computationally expensive. In particular, 200 K iterations 
require approximately two days completing on a 12-core desktop 
computer. This time scale is not disproportionate to the production 
time of experimental data and it is mainly due to the high volume of the 
tested data (> 15 K genes per sample) and the need to obtain long chains 
of samples for a more accurate estimation of posterior distributions. 
Long execution times are a characteristic, more generally, of all Monte 
Carlo approximation methods. Our implementation of the algorithm 
is completely parallelised and calculations are expressed as operations 
between vectors in order to take full advantage of modern multi-core 
computers. Ongoing work towards reducing execution times aims 
at the application of variation inference methods [22], instead of the 
blocked Gibbs sampler we currently use. The algorithm can be further 
improved by avoiding truncation of the infinite summation described 
in Equation 4, as described in Papaspiliopoulos and Roberts [23] and 
in Walker [24].

This non-parametric Bayesian approach for modelling count data 
has thus shown great promise in handling over-dispersion and the all-
too-common problem of low replication, both in theoretical evaluation 
and on the example dataset. The software that has been produced (DGE 
clust ) will be of great utility for the study of digital gene expression data 
and the statistical theory will contribute to leading the development of 
non-parametric methods in general for modelling all forms of count 
data of gene expression.
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