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Abstract

We prove the existence of solutions of nonlinear parabolic problems with measure data in Musielak-Orlicz-Sobolev spaces.
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Introduction

Let Q a bounded open subset of Rn and let Q be the cylinder Q x (0, T)
with some given T>0. We consider the following nonlinear parabolic problem:

aa—L;+ A(u) = uinQ
u(x,t)=0and Q x (0,T) (1)
u(x,0)=0in Q

where A=-div (a(x, t, u, Vu)) is an operator of Leray-Lions defined on D(A)
c WL ¢(Q), ¢ is an appropriate Musielak-Orlicz function related to the growth
of a(x, t, u, Vu), and p is a given Radon measure. Solution to problem (1) has
been provided firstly by Boccardo-Gallouet, in the setting of classical spaces
LP(0, T; W*P). Meskine, in prove the existence of solution to problem (1) in
the setting of inhomogeneous Orlicz-Sobolev space W *L, for any B € P,
where P, is a special class of N-functions and M the N-function. Let us point
out that our result can be applied in the particular case when ¢(x, t)=tp(x), in
this case we use the notations Lp‘x’(Q)=L¢(Q) and W"‘~°‘X’(Q)=W’“L¢(Q). These
spaces are called Variable exponent Lebesgue and Sobolev spaces. For some
classical and recent results on elliptic and parabolic problems in Orlicz-sobolev
spaces and a Musielak-Orlicz-Sobolev spaces.

Preliminaries

In this section we list briefly some definitions and facts about Musielak-
Orlicz-Sobolev spaces. We also include the definition of inhomogeneous
Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be used
later.

Musielak-Orlicz-Sobolev spaces
Let Q be an open subset of R".

A Musielak-Orlicz function ¢ is a real-valued function defined in Q x R,
such that:
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a): ¢(x, t) is an N-function i.e. convex, nondecreasing, continuous, ¢(x,
0)=0, ¢(x, t)>0 for all t>0 and

limsup #(x,1)
AxT_
t—-—>0xe t
limint
g0

t—-—>0xe t

b): ¢ (., t) is a Lebesgue measurable function [1,2].

Now, let ¢ (t)=d(x, t) and let ¢* be the non-negative reciprocal function
with respect to t, i.e the function that satisfies

0, (p(x,0) = p(x,4, ") =t

For any two Musielak-Orlicz functions ¢ and y we introduce the following
ordering:

c): if there exists two positives constants ¢ and T such that for almost
everywhere x € Q:

o(x,t) < y(x,ct) fort>T

We write ¢ < y and we say that y dominates ¢ globally if T=0 and near
infinity if T>0.

d): if for every positive constant ¢ and almost everywhere x € Q we
have [3-5].

@(x, cr)

)= 0or lim(sup lx.ch)

9% yep }’x,.")

lm[} (sup )=0

ren VIX,

We write ¢ << y at 0 or near o respectively, and we say that ¢ increases
essentially more slowly than y at 0 or near infinity respectively [6].

In the sequel the measurability of a function u: Q 1— R means the
Lebesgue measurability. We define the functional

80 ()= [, (.| u(x) el

Where u: Q 1— R is a measurable function.
The set
K,(Q) ={u:Q— Rmesurable/ g, Q(u) < +o}

is called the Musielak-Orlicz class (the generalized Orlicz class) [7,8].

The Musielak-Orlicz space (the generalized Orlicz spaces) Lo(Q) is the
vector space generated by Ko(Q), that is, Ld(Q) is the smallest linear space
containing the set K¢p(Q). Equivelently:
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Lw(Q)— u:Q — Rmesurable/ g,,Q (‘ ulx )‘)<+oo,forsome/1>0

Let

w(x,s) = supist —p(x,1)}

=0

y is the Musielak-Orlicz function complementary to (or conjugate of) ¢(x,
t) in the sense of Young with respect to the variable S [9].

On the space L$(Q) we define the Luxemburg norm:

I n|tm:fmf{,1>O/IF_@(.Y,@W,Q}‘

and the so-called Orlicz norm:

lull, 0= sup [ o lu(x)v(x)|dx

[lell <1

where v is the Musielak-Orlicz function complementary to ¢. These two
norms are equivalent [10].

The closure in LW(Q) of the set of bounded measurable functions with
compact support in Q is denoted by Ew(O). It is a separable space and Ew
(0)*=L®(O).

The following conditions are equivalent:
0 E,(Q)=K,(0)

DK, (9)=L,(0)

g) : phastheA, property

We recall that ¢ has the A, property if there exists k>0 independent of x
€ Q and a nonnegative function h, integrable in Q such that ¢(x, 2t) < ke(x,
t) + h(x) for large values of t, or for all values of t, according to whether Q has
finite measure or not Let us define the modular convergence: we say that a
sequence of functions u_€ L (Q) is modular convergent to u € L(P(Q) if there
exists a constant k>0 such that [11].

For any fixed nonnegative integer m we define
w"L, (Q) ={uel, (Q) Vialgm Duel, (Q)}

Where a=(a,, o, ..., o) with nonnegative integers o, ol=la | + o] + ... +
|an| and Deu denote the distributional derivatives.

The space Wm'—¢ (Q) is called the Musielak-Orlicz-Sobolev space [11].
Now, the functional
2,.Qu)=" g, o(Du)

al<m
forue Wme(Q) is a convex modular. And is a norm on WmL(p(Q).

||u||¢9: inf{A> Oigwig(%) <1

The pair <W

||u|| > is a Banach space if ¢ satisfies the following
condition:

There exist a constant ¢>0 such that 2/ ¢¢=v=<by Elmahi, A [12].

The space "L, () will always be identified to a o(T1Z,.T1E,) closed
subspace of the product Twen £, ()= T1L .

Let 'L, (2) be the o(I1L,,I1E,) closure of D (Q)in W"L, ().

Let W’“Em(Q) be the space of functions u such that u and its distribution
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derivatives up to order m lie in EQD (Q) and let W(,'"Ew (€) be the (norm) closure
of D(Q) in W’“L(p(Q).

The following spaces of distributions will also be used:
WL, (Q)={feD' (Q):f =Y. (-1 D" f,withf, € L, (Q)}

la|<m

);f =2 (DD f with f, € E, (Q)}

la|sm

WE, (Q)={feD(Q

As we did for L‘P( ), we say that a sequence of functions u € WL (Q)
is modular convergent to u € WL ( )if there exists a constant k>0 such that

ing, (4]
n—o (4

For two complementary Musielak-Orlicz functions ¢ and v the following
inequalities hold:

h): the young inequality:
t.s <o(x,t)+y(x,s) fort,s 20,x € Q

i): the holder inequality:
[ uCoverax| <l gl o

Foralue uel, (Q)and veL, (Q)
Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Q an bounded open subset of R" and let Q=Q x 10, T [with some
given T>0. Let ¢ be a Musielak function. For each a € N, denote by Da the
distributional derivative on Q of order o with respect to the variable x € R".
The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined
as follows [12,13].

WL (Q)={ueL,(0):V]al<1D uel, (0)}
And
WYE(Q)={ucE,(0):Y|al<1D] ucE,/ (0)}

The last space is a subspace of the first one and both are Banach spaces

under the norm
a
ju[=> | D
|a|<m

We can easily show that they form a complementary system when Q is a
Lipschitz domain. These spaces are considered as subspaces of the product
space TIL (Q) which has (N+1) copies. We shall also consider the weak
topologles o(TL,.1E,)and (1L, IL,) . If u € WhXL (Q) then the function :
t -—— u(t)=u(t, .) is deflned on (0, T ) with values in WlL( ). If, further, u €
WL (Q) then this function is a W1L (Q)-valued and is strongly measurable.
Furthermore the following imbed- dlng holds: WXL (Q)c LY0, T; W1L¢ (Q)).
The space WL (Q) is not in general separable, if ue WLXLw(Q), we cannot
conclude that the function u(t) is measurable on (0, T ). However, the scalar
function t 1— fu ()/¢, Q is in L (0, T). The space W"* L(D(Q) is defined as the
(norm) closure in WLXL¢(Q) of D(Q). We can easily show as in that when Q a
Lipschitz domain then each element u of the closure of D(Q) with respect of
the weak topology c(HLw, I1E ) is limit, in W>*L (Q) of some subsequence
(u) < D(Q) for the modular convergence; i.e., there exists A>0 such that for
all o] €1,

L({(X{W]dedt —0asi—> o

This implies that (u) converges to u in W"*L
o(TTLM, TILy). Consequently

?,0

(Q) for the weak topology
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@ (L, TIE,) _ ma(mv,,n@)
This space will be denoted by Elmahi A and Meskine D [14].
WOLXLW (Q). Furthermore, WOI’XEw Q)= WOI’XL(p (O)NIIE,

We have the following complementary system

Wi'L(Q) F
Wi E,(Q) F

F being the dual space of WLXE‘P(Q). It is also, except for an isomorphism,
the quotient of HLW by the polar setw (0)*, and will be denoted by
F=w™""L,(Q)and it is shown that

WLXLW(Q):{fZfoH ifa€L¢(Q):}

lal<]

This space will be equipped with the usual quotient norm [14].

A7,

le|<1
Where the inf is taken on all possible decompositions

f=X.Df,, f, €L, Q)

|ex|<1

The space F is then given by

F, ={ZD§’fa, £, eEW(Q)}

lx|<1

and is denoted by F,=W-"E (Q).

In order to deal with the time derivative, we introduce a time mollification of
afunctionu € L¢(Q). Thus we define, for all p>0 and all (x, t) € Q
t ~
u ()= p | u(x, s)exp(u(s — £)ds

Where ii (x, s)=(x, s) X o (s) is the zero extension of u.

Propositionl:

O
Ifue L¢7(Q)lhen u,is measurable in O and (gt" =(u—u,) andif u<c Ly

I cp(x, uu)dxdr = [ @(x, w)dxdt
Q aQ

Proof: Since (x, t, s)~u(x, s)exp(u(s - t)) is measurable in Q x [0, T]

x [0, T], we deduce that u is measurable by Fubini's theorem. By Jensen’s
integral inequality we have, since

0
Jexp(,us)ds=1

<p(x, } uz;(x, s)exp(u(s — t))ds

- -

0 R
= «p(x, | nexp(usyu(x,s + t)ds

0 ~
< uexp(us)cp(x,u(x,s + t))ds

—m

Which implies
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0 -
f{p(x,u (%, t))a!xdr < (f uexp(ps)(p(x,'u.(x,s + t)ds))dxdt
0 " xR\-c

< } uexp(us)( ) zp(x, ;{x,s P t))dxdt)ds < j uexp(us](j o(x,u(x, t))dxdt)ds
= xR —= Q

= [ @(x, u)dxdt
Q

Furthermore

t+§

By e, L T _
i lnna_*U S lem(= po)- 1)uu(x, £+ lnnM i u(x, s)exp(u(s = (t + 8))ds =— o+

-

Proposition 2. Assume that (u )

n’n is a bounded sequence in W, Lo (O Suchihar

bounded in Wx L w(Q)+ LY(Q), then u _ relatively compact LY(Q).
Proof. It is easily by using Corollary 1 of 2.

Results

Let Po be a subset of Musielak-Orlicz functions defined by:

;
P = {q;: 0 X R, =R, is an Musielak — Orlics function, such that ¢ < @and [ § » H"(x, 1/c"”")
" 0

dt < o fora.ex € ﬂ}

Where (x, r)=¢ (x, 7)Ir
We assume that
P z0(2)
Let A: D(A) c W) Lp(Q) — W' Ly (Q) be a mapping given by
A (u)=—div a(x, t, u,Vu) where a: Q x R" x R" be Caratheodory function
satisfying for a.e (x, t) e Qand alls € R, &, n € R"with: £ z n
la(x t, 85 < Ba(x, ED/IE (3)
(a(x t,5,5) — alesmIE — 1)> 0(4)

a(x,t,5,8)5 = ap(x, [E))(5)
Where o, >0. Furthermore, assume that there exists D € P, such that
D > H'is a Musielak-Orlicz Function. (6)
Set Tk(s)=(-k, min(k, s)), Vs € R, forallk > 0

Denote by M, the set of all bounded Radon measure defined on Q and by
7, (Q) as the set of measurable functions

Q—R such that T, (u) € Wy Lp(Q) N D (A)assume that f € M, (Q)
and consider the following nonlinear parabolic problem with Dirichlet boundary

du

o F A= finQ (7)

Theorem 1. Assume that (2)-(6) hold and f € M, (Q).
Then there exists at least one weak solution of the problem

et (@Q)n w;ﬁdj(g),vq, €P, —Judr+ [a(x.tu ViyPvdx = (f,v), ¥v € D(Q)
Q o

Proof: The proof will be given in two steps.
Step 1: A priori estimates.
Consider now the following approximate equations:
{u € Wé'qu)(Q),un(x, 0=0 o= divafz,t,u ,Vu ) = £, (8)

Where £ is a smooth function which converges to f i the distributional
sense and | £,l, o, <IIflly,, By Theorem 2 of 3, there exists atleast one
solution of U, of (8), For k>0, by taking 7 (u.,) as test function in (8), one has

i a[x, £ Tk(u.n), VTk(un))VTk[un)dx < Ck

In view of (5), we get
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Co(x, VT (w )|)dx < Ck
glq)(x l k(uﬂ)lj x
Take a C? (R), and no decreasing function B, such that for and 2
L.(SH=S|S |§§andﬁk(5) =ksignif |k|=S
% - div(a(x, tu, Vu.n)Bk’(u")} + a.(x, tu, Vun)Vu"[’ik”(un) = ank'(un) in D'(Q)

Which implies easily that aﬂ‘a(,u”)

is bounded in W*Lys (Q) + LYQ).
Thanks to Proposition 2, we deduce that f(w ) is compact in LY(Q).

Then as in (20) and by the proof of Theorem 3 of 1, we deduce that there
exists [15].

u € L= (0, T; L{Q) such that: 22, —> 2« almost everywhere in Q and
(almost everywhere in and

|
Tk(un)ATu weakly in WO'XLW(_Q) for CT(HL‘P, HE\D) [9)

Now, let ¢ € Po. By a slight adaptation of the context of Lemma 2.1. of
4, it follows that

I d)[x, V(un)Ddx < ¢, vn (10)
Q

We shall show that a{x, & (‘un], V(uﬂ))V(urJ is bounded in (L l[J(Q))n

Let w € (Eo (@) || «BY (5) and Young inequality, one has

_(i; ﬂ(x. E Tk(uﬂ), \TTk(un))mdx

= &S w(n e ax + B wcu b

< Bgcp[:x.]'\?'TkI:un]Ddx + B

This last inequality is deduced from the fact that w(x, ¢ (x, u)lu) < ¢ (x,
u), for all u>0 and

JpCralendx <1 imviewar A0, ey of (10), [15,16].

ia(x, t, Tk(un),VTk(uandx =Ck+ B

Which implies that (a(x, t, T (u), VT(u)), is a bounded sequence in
(L,(Q)n.

\4

Step 2. Almost everywhere convergence of the gradient and passage to
the limit. Since T, (u) € W** LQ(Q), then there exists a sequence (akj) c D(Q)
such that (akj) — T,(u) for the modular convergence in WL*LW(Q). For the
remaining of this article, y, and y, , will denoted respectively the characteristic
functions of the sets

@, = {(x € &[T (ulx 1)) = s}and Q, ={xDEQ |v:rk(-uj(x, 0] < s}

For the sake of simplicity, we will write only & (n, j, p, s) to mean all
quantities (possibly different) such that

lim lim lim lim enjps)=0
n—oo j—Fo L—Fw s Fw®

For every pu>0, we define
i
w (e t)= u [ expln(s — Hwix, g g (8)dls

—oo

Page 4 of 6

- i

the time regularized of any function w € W;'KL(P(Q)

Taking now Tn(uﬂ — Tk(ocj) ) as test function in (8), we obtain

W,

ou, X
T~ Tk(%)

The first term of the left hand side of the last equality reads as
ou, 2 o, ”g(“:)u X
(5 Tq(“n‘ Tk(“,)u} B i Y Tk(%)u

The second term of the last equality can be easily to see that is positive
and the third term can be written as

¢ ﬁTk.gfj’ g Tn(”,, = Tk(“ﬂu)) = ug (Tk(d:f) s Tk(“ﬂu)(Tu(un - Tk(crf)u))dxdt

thus by letting n, j — o2 and since (otjf] - Tk(u) a.e. in @ and by using Lebesgue Theorem

é (Tk(a?)— Tk{ajf]u)(rq(u" - Tk(njk)“])dxdt = g (70 = 7,00 (1, (1 = 7,000 ))xde + en. )

Consequently

) + ga(x, t uﬂ,V(un))VT“(un — Tk(vj))dx < (n

W

Bu

(T". Tw(u“ w2 Tk(c(jf)”)) = e(n,j)
On the other hand,
_IQ' a(x, tu, V[uﬂ}} NI,

u —T (akj dedt
n E\ g i

=

) a(x, £ Tk(un), VTk(uﬂ)). (VTk(uﬂ) — VTk(ch ;(js)dxdt
h Tt(un}—fk(ng*]ugan

n

+ J

te=<lu poghs T, [c(ﬂu

a(x, tLu, Vun) V'undxdt

<}

= I

- a(x tLu, Vu“)A VTk (af) HX{IVTk[uk)'>s}dth
(e, u”—T).__{o(;J“

<n} !

which implies, by using the fact that [17].

I a(1 LU, Vun}. Vu dxdt 2 0

i<l Jintle T, («")u <}

[ (z(x, t, Tk(uﬂ].VTk(u“)]. (VTk(un)— VT;((“;]P%;,;]"W < 0y
Tk(un)_Tk[“:)u <n}

-+ I

a(x,f,u ,Vul).VT (ak) -y oy dxdt
["4“«!}0{1&..*7”&{'{],, s @ {IUT*{ﬂJ}}' <}

=n}

2 = i n E:
Since a(x, t. Tk+q[uﬂ‘ VTHq(“n)) is bounded in (L‘p(ﬂ)) there exists some

th e (LW(Q)} such that

ar(x, & Tk+q' VTHn (un)) Ahkm

weakly in (L‘P(Q))" for U(HI_‘P, F[EqJ
Consequently,

il a(x, tou, V"uﬂ). VTk[aj_c) i [ dxdt =
oo (“x) |<¢} S {l k{ .l,| 1
Tl )

el ot

K
hk+uka(aj]!l’{{|wk[ajf)1:=s}dxdt + &(n)
ge<|u [

L4
u__‘ka[cc}. )“‘ =}
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where we have used the fact that VTk(a;J“ el "n—";-( “:) = tends strongly to + » i “ a(% Ty (u,) VTk(“n))[VTk(ajk )XJ-S = VTk(”)Xs]dmt
o grfuJ-r (<) |<m
VTk((tj_c) X . in (Ew(Q))".Lettingj — oo we obtain .
u feslubng uir"(ui)u <} + _f [a(x, t, Tk[un), VTk(ka)xj_ls) - n(x, i, Tk[u“), VTk(u)xs)]VTk(u”) dxdi
. fruudr(d) |«
I a(x‘, tu, Vu ) VTk((x:] % wdvde
(}«<|u“|]n[ u“—TA_(n;} <} . " i [|VTA(“J)I' 4} - I a(x, it Tk(un), V’I'k(aj)xﬂsjv’l"k(aj)xﬂsdxdt
i frfu)n(<) [0
= ] ! lk+qVTk(u)HX{IVTx(x()i>s}dth +e(nj) + ) a(x, £ Tk(u”}, VTk(u)xs)VTk(u)xsdxdt
{k=palnfu-T, {uf) <}
f

{

7, (u)-T, z(“ﬂ B

u

. . sImjms)+Lnjus)+Lmjns)+ L0 uns)+ 1w 12
Thanks to Proposition 1, one easily has Sl L S i o

We shall go to limit as n, j, p and s — oo in the last fifth integrals of the last
side. Starting with I, we have [19].

I h VT (W) ¥, dxdt = J R VT ()X, dxdt + ()
frctungior,on oy ¥ % IR aepnngior e e S S )

Hence

al e T, (u). vr,(w,)). (vrk(u") = Vrk(q;f) x]vs)n!xdf +on+ e s) Lujws)= on + e(mjns) — Il
%

a (x, B Tk(un), VTk(uf)xj_g)VTk(a;)lesdxdt
{rn)-r) o2

(l T (x,)-T, [K;JJ(")

On the other hand, remark that ) alxeT (). VTk(a;‘)xjvs)x{ R afx 6.7, 00, vrk(«;‘)xﬁ)x{ MR, in (£,@)"
I a[x, t Tk(u”), VTk(u"D. (VTk(u") — VTk(c(]) xj{s)dxdt o u
(7 (e )-1, («jf)u <} ¥ while
VTk(un}AVTk(u) weakly
I a’(x, t. Tk(u"), VTk(uﬂ)). (VTk(un) = VTk(oL;()xj’s}dxdr
i) We deduce then that

i {iTA(u,.)*TJ;(Rf]ulw} a(x' L Tk(un)’ VTk(“n))' (VT;:(“;C)X;J - VTk(a:)ux;.s)dxdt 7[ . a(x, £ Tk(un}, VTk(t:;c)x“][VTk(un) - VTk[oc;c)xﬁs]dxdr
arrk(un) T-«(%)J"”
The latest integral tends to 0 as n and j go to <. Indeed, we have [18].

n(x t, Tk(u"), VTk(unD.[VTk(af)x_ - VTk(a;_‘)"szs)d)cdt

s

{

T (s —T?(n}']u <n}

i a(x, 6T, (w). VTk[a}k)xjsJ[VTk(u) == VTk(txjf})(”]dxdt + g(n)
Tk(uw)iTi({K;)J =n}

{

tends to which gives by letting j — oo and using the modular convergence of VTk(nk]

X P2
I hk[VTk{aj:]xj_s == VTk(aj)ules]dxdt

s T;,(ujka[:zfou|<q}

a(x, {7 Tk(u), VT;C(Q?)X;,S)[VT;((M) = VTk(txf)les]dxdt + g(n)

{ <n}

J
Tj,(\t."]—]"*(&j)u

asn — o2, since
a(x, t, Tk(uﬂ). VTk(un))Ahk weakly in (L‘V(Q))71 for J(HLw, HE@)
while vrk(a}’f)x} = VTk((‘z;() x,,  (£,(@))"1t's obvious that

2 w b

= ga(x, £, Th(u),VTk(u)xs)[VTk(u)f VTk(u}xs]d.!cdt + 2(j) = £(j)

I3 &
r |oT (a,)x — wr (a ) 2 ]dxdt ;
; k[ A\ ) K s %) Finally
(‘T;,(u)—?'k(u))ul<n}

L(njnsy< en + enj,us)+ e(nj)= enjwmsn) (13)
goes to 0 as j, § — oo by using Lebesgue theorem [18,19]. We deduce

For what concerns 12, by letting n — oo, we have

I a(x, e, 7 (), v, (u ). (v7 (u,) — v7, af x,.)dxde + €n + e(n . S).
then o)) oo ( ( ) ) Lnjns) = i hk[VTk(nf]xj's - VTk(u)xs]d,xdt + ()
(v 71}{.1;:]“ =}
Let 0 < 8 < 1. We have =
TG, o)) = 2.7, 9, 09)] x [T, ) = 7, 0] "t 5 s (‘Ti(u“) 1)< w a(x, t; Tk(un), VT k(u") Xi-s)x(‘r_(,, &) L‘i‘ﬂ— h for ol (HLLU» E ‘P]
+e S ([ef .7, 0.) 97, (1)) — a7, () v o) ¢ [ ) = om0 anae]” amy while
(Tk(u“)*Tk(ﬂf)N!GH"Q, .
X€|T( )(=5) }[VT"(GJ)XJ-S B VTk(u)Xs]H
On the other hand, we have for every s > r H L
X(‘Tgur(“f) <n}[vrk[aﬂxﬁs B VTkm)xs]Stmng by (qu(g))"
I la(e T, (w ). 97, (w ) — a(x. 6.7, (w,), V7, 00)] x [vr,(u) — v7 ()] dxde .
A J,TK[R;JJ <mne,

< ik H [a(w e, () V7, (2 ) — a(xt. 7, (uw ). vT, Cox )] * [T, (u ) — VT, (0 dxde
Tn("u)”'.(“f)_ <

b

= [a(x, t; Tk (un), VTk (uﬂ)) — a(x, 2 Tk (uﬂ), VTk[ajf ) x}s)] X [VTk(u") — VT;‘ (c(f] x]zs]dxdt

I
Tk(“n)’rx(#)_

<}
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By letting now j = oo, and using Lebesgue theorem, we deduce then that
L(nj.ps) = e(nj) (14)
Similar tools as above, give

;3(::.;‘,;1. 5)= g(n.j)

References

Oubeid, Mohamed Leimne Ahmed, A. Benkirane and M. Sidi EI Vally. "Strongly
nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces." Bol da Soc
Parana de Mat 33 (2015): 193-225.

‘ : 3 2. Oubeid, ML Ahmed, A. Benkirane and M. Sidi El Vally. "Parabolic equations in
S 8y =— Lt T (1), VT, (W) )V ) .
1) == L a6 T,00. 9T, QT 00 + el o) Musielak-Orlicz-Sobolev spaces." Int J Anal Appl 4 (2014): 174-191.
. . 3. Oubeid, ML Ahmed, A. Benkirane and M. Sidi EI Vally. "Nonlinear elliptic equations
1o s) = {] a(x £, T, (), VT, ())VT, () + (), 1. $) involving measure data in Musielak-Orlicz-Sobolev spaces." J Abstr Differ Equ Appl
o ’ 4(2013): 43-57.
Combining (11),(12),(13),(14) and (15) we have ) . . . -
4. Benkirane, A. and M. Sidi El Vally. "An existence result for nonlinear elliptic
S (et (0 )77, (w ) = alx 67 (u ). 9T, 0)) % (v7,(u,) — VT, 0)] dxde equations in Musielak-Orlicz-Sobolev spaces." Bull Belg Math Soc 20 (2013): 57-75.
n
5 5. Benkirane, A., J. Douieb and M. Ould Mohamedhen Val. "An approximation
< C(meas{ T () - Tk({x;f) < n}) + ce(jmsm)’ theorem in Musielak-Orlicz-Sobolev spaces." Comment Math 51 (2011).
) o ) 6. Benkirane, A. and M. Val. "Some approximation properties in Musielak-Orlicz-
and by passing to the limit sup over n, j, y, s and n Sobolev spaces." Thai J Math 10 (2012): 371-381.
- (= - = 8 v =5
{{ [[ae e mfae ) 7)) = el tom () v, )] ¢ [v7, () = o7, @] dvat = 0 7. Benkirane, A. and M. Sidi EI Vally. "Variational inequalities in Musielak-Orlicz-
i Sobolev spaces." Bull Belg Math Soc 21 (2014); 787-811.
and thus, there exists subsequence also denote by (u ) such that 8. Boccardo, L. "Elliptic and parabolic differential equations with measured data."
Vu — Vua.e. in(Q Bollettino dell'Unione Matematica Italiana A 11 (1997): 439.
mn T
9. Boccardo, Lucio and Thierry Gallouet. "Non-linear elliptic and parabolic equations
and since ris arbitrary, we have involving measure data." J Funct Anal 87 (1989): 149-169.
Vu > Vua.einQ 10. Boccardo, Lucio, Andrea Dall'Aglio, Thierry Gallouet and Luigi Orsina. "Nonlinear
n parabolic equations with measure data." J Funct Anal 147 (1997): 237-258.
On the other hand, thanks to (3), (6) and (10), we deduce that 11. Donaldson, Thomas. "Inhomogeneous Orlicz-Sobolev spaces and nonlinear
Jo( v )| parabolic initial value problems." J Differ Equ 16 (1974): 201-256.
-1 <t x,t.u", u, " 723 " ” §
JD-H (S'—p ]dldf =f D(x, |v“n|]d3df =c 12. Elmahi, A. "Compactness results in inhomogeneous Orlicz-Sobolev spaces." In
@ 2 Partial Differ Equ Appl, CRC Press (2002): 220-235.
Hence 13. Elmabhi, Abdelhak. "Strongly nonlinear parabolic initial-boundary value problems in
) ) Orlicz spaces." Electron J Differ Equ (2002): 203-220.
a(.‘r:. t,u ,Vu )—*a(x. tu, Vu) _ , . . -
n n g 14. Elmahi, A. and D. Meskine. "Strongly nonlinear parabolic equations with natural
growth terms in Orlicz spaces." Nonlinear Anal Theory Methods Appl 60 (2005): 1-35.
"’""eamy for o H‘[‘ng‘l‘ HEDEH-l 15. Elmahi, A. and D. Meskine. "Parabolic equations in Orlicz spaces." J London Math
Soc 72 (2005): 410-428.
Gomg back to approximate equations 8 and using v € D(Q) as the test 15, Emahi, A. and D. Meskine. "Strongly nonlinear parabolic equations with natural
function, one has growth terms and L1 data in Orlicz spaces." Port Math 62 (2005): 143-184.
S u‘%dmf e fa(x, tu, Vu )v-mmt —< f v > 17. Meskine, Driss. "Parabolic equations with measure data in Orlicz spaces." J Evol
e " Q - . Equ 5 (2005): 529-543.
In which we can pass to the limit since we have [20,21]. 18. Robert, Jacques. "Equations d'évolution paraboliques fortement non linéaires." Ann
w —u strongly in [E‘ (Q})ﬂ foreveryy < & € P Sc Norm Super Pisa - Cl Sci 1 (1974): 247-259.
B ® 19. Porretta, Alessio. "Existence results for nonlinear parabolic equations via strong
. convergence of truncations." Ann Mat Pura Appl 177 (1999): 143-172.
This completes the proof of Theorem 1. g PP (1999)
20. Musielak, J. "Orlicz Spaces, Lectures Notes in Math., 1034." (1983).
Ackn owledgement 21. El Vally, M. Sidi. "Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev

spaces." Adv Dyn Syst Appl 8 (2013): 115-124.

None.

Conflict of Interest How to cite this article: Oubeid, M. L. Ahmed, A. Benkirane and M. Sidi El
Vally. “Nonlinear Parabolic Equations Involving Measure Data in Musielak-Orlicz-

None. Sobolev Spaces.” J Generalized Lie Theory App 18 (2024): 426.

Page 6 of 6


https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23083
https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23083
http://etamaths.com/index.php/ijaa/article/view/168
http://etamaths.com/index.php/ijaa/article/view/168
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/236344751_Nonlinear_Elliptic_Equations_Involving_Measure_Data_in_Musielak-Orlicz-Sobolev_Spaces/links/0c960517d4c317c626000000/Nonlinear-Elliptic-Equations-Involving-Measure-Data-in-Musielak-Orlicz-Sobolev-Spaces.pdf
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/236344751_Nonlinear_Elliptic_Equations_Involving_Measure_Data_in_Musielak-Orlicz-Sobolev_Spaces/links/0c960517d4c317c626000000/Nonlinear-Elliptic-Equations-Involving-Measure-Data-in-Musielak-Orlicz-Sobolev-Spaces.pdf
https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-20/issue-1/An-existence-result-for-nonlinear-elliptic-equations-inMusielak-Orlicz-Sobolev/10.36045/bbms/1366306714.short
https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-20/issue-1/An-existence-result-for-nonlinear-elliptic-equations-inMusielak-Orlicz-Sobolev/10.36045/bbms/1366306714.short
https://bibliotekanauki.pl/articles/745202.pdf
https://bibliotekanauki.pl/articles/745202.pdf
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/216849281_Some_approximation_properties_in_Musielak-Orlicz-Sobolev_spaces/links/0912f50dc341d16d38000000/Some-approximation-properties-in-Musielak-Orlicz-Sobolev-spaces.pdf
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/216849281_Some_approximation_properties_in_Musielak-Orlicz-Sobolev_spaces/links/0912f50dc341d16d38000000/Some-approximation-properties-in-Musielak-Orlicz-Sobolev-spaces.pdf
https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-21/issue-5/Variational-inequalities-in-Musielak-Orlicz-Sobolev/10.36045/bbms/1420071854.pdf
https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-21/issue-5/Variational-inequalities-in-Musielak-Orlicz-Sobolev/10.36045/bbms/1420071854.pdf
https://www.sciencedirect.com/science/article/pii/0022123689900050
https://www.sciencedirect.com/science/article/pii/0022123689900050
https://www.sciencedirect.com/science/article/pii/S0022123696930402
https://www.sciencedirect.com/science/article/pii/S0022123696930402
https://core.ac.uk/download/pdf/82055621.pdf
https://core.ac.uk/download/pdf/82055621.pdf
https://www.taylorfrancis.com/chapters/edit/10.1201/9780203910108-17/compactness-results-inhomogeneous-orlicz-sobolev-spaces-elmahi
https://eudml.org/serve/123480/accessibleLayeredPdf/0
https://eudml.org/serve/123480/accessibleLayeredPdf/0
https://www.sciencedirect.com/science/article/pii/S0362546X04003311
https://www.sciencedirect.com/science/article/pii/S0362546X04003311
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610705006630
https://emis.dsd.sztaki.hu/journals/PM/62f2/pm62f202.pdf
https://emis.dsd.sztaki.hu/journals/PM/62f2/pm62f202.pdf
https://link.springer.com/article/10.1007/s00028-005-0217-8
https://link.springer.com/article/10.1007/BF02505907
https://link.springer.com/article/10.1007/BF02505907
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/235330705_Strongly_Nonlinear_Elliptic_Problems_in_Musielak-Orlicz-Sobolev_Spaces/links/02e7e518cd93522508000000/Strongly-Nonlinear-Elliptic-Problems-in-Musielak-Orlicz-Sobolev-Spaces.pdf
https://www.researchgate.net/profile/Mohameden-Sidi-El-Vally/publication/235330705_Strongly_Nonlinear_Elliptic_Problems_in_Musielak-Orlicz-Sobolev_Spaces/links/02e7e518cd93522508000000/Strongly-Nonlinear-Elliptic-Problems-in-Musielak-Orlicz-Sobolev-Spaces.pdf

