ISSN: 1736-4337

Open Access

Nonlinear Parabolic Equations Involving Measure Data in Musielak-Orlicz-Sobolev Spaces

M. L. Ahmed Oubeid^{1*}, A. Benkirane¹ and M. Sidi El Vally²

¹Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, B. P. 1796 Atlas Fes, Marocco ²Department of Mathematics, King Khalid University, Abha 61413, Kingdom of Saudi Arabia

Abstract

We prove the existence of solutions of nonlinear parabolic problems with measure data in Musielak-Orlicz-Sobolev spaces.

Keywords: Inhomogeneous Musielak-Orlicz-Sobolev spaces • Parabolic problems • Truncations

Classification: 46E35, 35K15, 35K20, 35K60

Introduction

Let Ω a bounded open subset of Rn and let Q be the cylinder $\Omega \times (0, T)$ with some given T>0. We consider the following nonlinear parabolic problem:

$$\frac{\partial u}{\partial t} + A(u) = \mu i n Q$$

$$u(x,t) = 0 \text{ and } \Omega x (0,T)$$

$$u(x,0) = 0 \text{ in } \Omega$$
(1)

where A=-div (a(x, t, u, ∇ u)) is an operator of Leray-Lions defined on D(A) $\subset W^{1,x}L_{\phi}(\Omega)$, ϕ is an appropriate Musielak-Orlicz function related to the growth of a(x, t, u, ∇ u), and μ is a given Radon measure. Solution to problem (1) has been provided firstly by Boccardo-Gallouet, in the setting of classical spaces L^p(0, T; W^{1,p}). Meskine, in prove the existence of solution to problem (1) in the setting of inhomogeneous Orlicz-Sobolev space $W_0^{1,x}L_B$ for any $B \in P_M$, where P_M is a special class of N-functions and M the N-function. Let us point out that our result can be applied in the particular case when $\phi(x, t)$ =tp(x), in this case we use the notations $L^{p(x)}(\Omega)$ =L_{ϕ}(Ω) and $W^{m,p(x)}(\Omega)$ =W^mL_{ϕ}(Ω). These spaces are called Variable exponent Lebesgue and Sobolev spaces. For some classical and recent results on elliptic and parabolic problems in Orlicz-sobolev spaces and a Musielak-Orlicz-Sobolev spaces.

Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces. We also include the definition of inhomogeneous Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be used later.

Musielak-Orlicz-Sobolev spaces

Let Ω be an open subset of R^n .

A Musielak-Orlicz function φ is a real-valued function defined in $\Omega\times R_{_{+}}$ such that:

*Address for Correspondence: M. L. Ahmed Oubeid, Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, B. P. 1796 Atlas Fes, Marocco, E-mail: ouldoubeid25@gmail.com, oubeid@sp.mr

Copyright: © 2024 Oubeid MLA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 17 December, 2023, Manuscript No. glta-23-122959; **Editor Assigned:** 19 December, 2023, PreQC No. P-122959; **Reviewed:** 02 January, 2024, QC No. Q-122959; **Revised:** 08 January, 2024, Manuscript No. R-122959; **Published:** 15 January, 2024, DOI: 10.37421/1736-4337.2024.18.426

a): $\varphi(x,\,t)$ is an N-function i.e. convex, nondecreasing, continuous, $\varphi(x,\,0){=}0,\,\varphi(x,\,t){>}0$ for all t>0 and

$$\begin{aligned} &\lim_{t \to 0} \sup_{x \in 0} \frac{\phi(x,t)}{t} = o \\ &\lim_{t \to 0} \sup_{x \in 0} \frac{\phi(x,t)}{t} = o \end{aligned}$$

b): ϕ (., t) is a Lebesgue measurable function [1,2].

Now, let $\phi_x(t)=\phi(x, t)$ and let ϕ^{-1} be the non-negative reciprocal function with respect to t, i.e the function that satisfies

$$\varphi_x^{-1}(\varphi(x,t)) = \varphi(x,\phi_x^{-1}) = t$$

For any two Musielak-Orlicz functions φ and γ we introduce the following ordering:

c): if there exists two positives constants c and T such that for almost everywhere $x \in \Omega$:

$$\varphi(x,t) \leq \gamma(x,ct)$$
 for $t \geq T$

We write $\phi \prec \gamma$ and we say that γ dominates ϕ globally if T=0 and near infinity if T>0.

d): if for every positive constant c and almost everywhere $x \in \Omega$ we have [3-5].

$$\lim_{t \to 0} (\sup_{x \in \Omega} \frac{\varphi(x, ct)}{\gamma(x, t)}) = 0 \text{ or } \lim_{t \to \infty} (\sup_{x \in \varphi} \frac{\varphi(x, ct)}{\gamma(x, t)}) = 0$$

We write $\phi \prec \prec \gamma$ at 0 or near ∞ respectively, and we say that ϕ increases essentially more slowly than γ at 0 or near infinity respectively [6].

In the sequel the measurability of a function u: $\Omega \rightarrow R$ means the Lebesgue measurability. We define the functional

$$g_{\varphi,\Omega}(u) = \int_{\Omega} \varphi(x, |u(x)|) dx$$

Where u: $\Omega \rightarrow R$ is a measurable function.

The set

$$K_{\varphi}(\Omega) = \{ u : \Omega \to R \, mesurable \, / \, g_{\varphi}, \Omega(u) < +\infty \}$$

is called the Musielak-Orlicz class (the generalized Orlicz class) [7,8].

The Musielak-Orlicz space (the generalized Orlicz spaces) $L\phi(\Omega)$ is the vector space generated by $K\phi(\Omega)$, that is, $L\phi(\Omega)$ is the smallest linear space containing the set $K\phi(\Omega)$. Equivelently:

$$L_{\varphi}(\Omega) = \left\{ u: \Omega \to R \text{ mesurable } / g_{\varphi}, \Omega \quad (\frac{|u(x)|}{\lambda}) < +\infty, \text{ for some } \lambda > 0 \right\}$$

٦

l et

$$\psi(x,s) = \sup_{t \ge 0} \{st - \varphi(x,t)\}$$

 ψ is the Musielak-Orlicz function complementary to (or conjugate of) $\phi(x, y)$ t) in the sense of Young with respect to the variable S [9].

On the space $L\phi(\Omega)$ we define the Luxemburg norm:

$$\|u\|_{\varphi,\Omega} = \inf\{\lambda > 0 / \int_{\Omega} \varphi(x, \frac{|u(x)|}{\lambda}) dx \le 1\}$$

and the so-called Orlicz norm:

$$\| u \|_{\varphi,\Omega} = \sup_{\|u\|_{\Psi} \le 1} \int_{\Omega} | u(x)v(x) | dx$$

where ψ is the Musielak-Orlicz function complementary to ϕ . These two norms are equivalent [10].

The closure in $L_{\alpha}(\Omega)$ of the set of bounded measurable functions with compact support in Ω is denoted by $E_{\alpha}(\Omega)$. It is a separable space and E_{α} $(\Omega)^* = L_{\alpha}(\Omega).$

The following conditions are equivalent:

 \mathbf{e}): $E_{\alpha}(\Omega) = K_{\alpha}(\Omega)$ f): $K_{\alpha}(\Omega) = L_{\alpha}(\Omega)$

g): φ has the Δ , property

We recall that ϕ has the Δ_{2} property if there exists k>0 independent of x $\in \Omega$ and a nonnegative function h, integrable in Ω such that $\phi(x, 2t) \le k\phi(x, t)$ t) + h(x) for large values of t, or for all values of t, according to whether Ω has finite measure or not Let us define the modular convergence: we say that a sequence of functions $u_n \in L_{\alpha}(\Omega)$ is modular convergent to $u \in L_{\alpha}(\Omega)$ if there exists a constant k>0 such that [11].

$$\lim_{n\to\infty}g_{\varphi},\Omega(\frac{u_n-u}{k})=0.$$

For any fixed nonnegative integer m we define

$$W^{m}L_{\varphi}(\Omega) = \{ u \in L_{\varphi}(\Omega) : \forall \mid \alpha \mid \leq m \qquad D^{\alpha}u \in L_{\varphi}(\Omega) \}$$

Where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ with nonnegative integers α_i ; $|\alpha| = |\alpha_1| + |\alpha_2| + ... + |\alpha_n|$ $|\alpha n|$ and D^{α} u denote the distributional derivatives.

The space $W^m L_{\alpha}(\Omega)$ is called the Musielak-Orlicz-Sobolev space [11].

Now, the functional

$$g_{\varphi}, \Omega(u) = \sum_{|\alpha| \le m} g_{\varphi,\Omega}(D^{\alpha}u)$$

for $u \in W^m L_{\alpha}(\Omega)$ is a convex modular. And is a norm on $W^m L_{\alpha}(\Omega)$.

$$\left\| \boldsymbol{\mathcal{U}} \right\|_{\boldsymbol{\varphi},\Omega}^{m} = \inf \left\{ \lambda > 0 : \overline{g}_{\boldsymbol{\varphi},\Omega} \left(\frac{u}{\lambda} \right) \le 1 \right\}$$

The pair $\left\langle W^{m}L_{\rho}(\Omega), ||u||_{\rho,\Omega}^{*}\right\rangle$ is a Banach space if ϕ satisfies the following condition:

There exist a constant c>0 such that $\inf_{x \in O} \varphi(x, 1) \ge c$ by Elmahi, A [12].

The space $W^m L_{\varphi}(\Omega)$ will always be identified to a $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ closed subspace of the product $\Pi_{{}_{\mathcal{D}}(\Omega)} = \Pi L_{\varphi}$.

Let $W^{{}^{m}L_{\varphi}}(\Omega)$ be the $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ closure of D (Ω) in $W^{{}^{m}L_{\varphi}}(\Omega)$.

Let $W^m E_n(\Omega)$ be the space of functions u such that u and its distribution

derivatives up to order m lie in $\mathsf{E}_{\sigma}(\Omega)$ and let $W_0^{\mathsf{m}} E_{\sigma}(\Omega)$ be the (norm) closure of $D(\Omega)$ in $W^m L_{\omega}(\Omega)$.

The following spaces of distributions will also be used:

$$\begin{split} W^{-m}L_{\psi}\left(\Omega\right) &= \{f \in D^{1}\left(\Omega\right); f = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} with f_{\alpha} \in L_{\psi}\left(\Omega\right)\} \\ W^{-m}E_{\psi}\left(\Omega\right) &= \{f \in D^{1}\left(\Omega\right); f = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} with f_{\alpha} \in E_{\psi}\left(\Omega\right)\} \end{split}$$

As we did for $L_{\alpha}(\Omega)$, we say that a sequence of functions $u_{\alpha} \in W^{m}L_{\alpha}(\Omega)$ is modular convergent to $u\in W^mL_{_{\!\!\!\Omega}}(\Omega)$ if there exists a constant k>0 such that

$$\lim_{n\to\infty}\overline{g}_{\varphi\$}\left(\frac{un-u}{\grave{v}_k}\right)=0.$$

For two complementary Musielak-Orlicz functions ϕ and ψ the following inequalities hold:

h): the young inequality:

$$t.s \le \varphi(x,t) + \psi(x,s)$$
 for $t,s \ge 0, x \in \Omega$

i): the holder inequality:

$$\left|\int_{\Omega} u(x)v(x)dx\right| \leq ||u||_{\phi,\mathfrak{s}} |||\mathfrak{Y}|||_{\psi,\Omega}$$

For all $u \in u \in L_{\omega}(\Omega)$ and $v \in L_{\omega}(\Omega)$

Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Ω an bounded open subset of R^n and let $\mathsf{Q}{=}\Omega$ \times 10, T [with some given T>0. Let ϕ be a Musielak function. For each $\alpha \in N^n$, denote by $D\alpha$ the distributional derivative on Q of order α with respect to the variable $x \in R^n$. The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows [12,13].

$$W^{1,x}L_{\varphi}(Q) = \{ u \in L_{\varphi}(Q) : \forall \mid \alpha \mid \leq 1 D_x^{\alpha} \ u \in L_{\varphi}(Q) \}$$

And

$$W^{1,x}E_{\varphi}(Q) = \{ u \in E_{\varphi}(Q) : \forall \mid \alpha \mid \leq 1 D_x^{\alpha} \ u \in E_{\varphi}(Q) \}$$

The last space is a subspace of the first one and both are Banach spaces under the norm

$$|u| = \sum_{|\alpha| \le m} \left\| D_x^{\alpha} u \right\|_{\varphi, \mathcal{Q}}$$

We can easily show that they form a complementary system when Ω is a Lipschitz domain. These spaces are considered as subspaces of the product space $\Pi L_{Q}(Q)$ which has (N+1) copies. We shall also consider the weak topologies $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ and $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$. If $u \in W^{1, \times} L_{\varphi}(Q)$ then the function : t \rightarrow u(t)=u(t, .) is defined on (0, T) with values in $W^1L_{\omega}(\Omega)$. If, further, $u \in$ $W^{1,x}L_{\alpha}(Q)$ then this function is a $W^{1}L_{\alpha}(\Omega)$ -valued and is strongly measurable. Furthermore the following imbed-ding holds: $W^{1,x}L_{\alpha}(Q) \subset L^{1}(0, T ; W^{1}L_{\alpha}(\Omega))$. The space $W^{1,x}L_{Q}(Q)$ is not in general separable, if $u \in W^{1,x}L_{Q}(Q)$, we cannot conclude that the function u(t) is measurable on (0, T). However, the scalar function t $1 \rightarrow /u$ (t)/ ϕ , Ω is in L₁(0, T). The space W^{1, x}L₀(Q) is defined as the (norm) closure in $W^{1,x}L_{\alpha}(Q)$ of D(Q). We can easily show as in that when Ω a Lipschitz domain then each element u of the closure of D(Q) with respect of the weak topology $\sigma(\Pi L_{a}, \Pi E_{u})$ is limit, in $W^{1, \times} L_{a}(Q)$, of some subsequence (u) \subset D(Q) for the modular convergence; i.e., there exists λ >0 such that for all $|\alpha| \leq 1$,

$$\int_{\mathcal{Q}} \varphi \left(\left(x, \left(\frac{D_x^{\alpha} u_i - D_x^{\alpha} u}{\lambda} \right) \right) dx \, dt \to 0 \, as \, i \to \infty \right)$$

This implies that (u,) converges to u in $W^{1, \times} L_{\alpha}(Q)$ for the weak topology $\sigma(\Pi LM, \Pi L\psi)$. Consequently

$$\overline{D(Q)}^{\sigma(\Pi L_{\varphi},\Pi E_{\psi})} = \overline{D(Q)}^{\sigma(\Pi L_{\varphi},\Pi E_{\psi})}$$

This space will be denoted by Elmahi A and Meskine D [14].

$$W_0^{1,x}L_{\psi}(Q)$$
. Furthermore, $W_0^{1,x}E_{\varphi}(Q) = W_0^{1,x}L_{\varphi}(Q) \cap \Pi E_{\varphi}$

We have the following complementary system

$$\begin{pmatrix} W_0^{1,X} L_{\varphi}(Q) & F \\ W_0^{1,X} E_{\varphi}(Q) & F_0 \end{pmatrix}$$

F being the dual space of $W^{1,x}E_{\varphi}(Q)$. It is also, except for an isomorphism, the quotient of ΠL_{ψ} by the polar set $W^{1,x}L_{\varphi}(Q)^{\perp}$, and will be denoted by $F = W^{-1,x}L_{\psi}(Q)$ and it is shown that

$$W^{-1,x}L_{\psi}(Q) = \left\{ f\sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha} : f_{\alpha} \in L_{\varphi}(Q) = \right\}$$

This space will be equipped with the usual quotient norm [14].

$$\left\|f\right\|\sum_{|\alpha|\leq 1}\left\|f_{\alpha}\right\|_{\psi,\mathcal{Q}}$$

Where the inf is taken on all possible decompositions

$$f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha}, \ f_{\alpha} \in L_{\psi}(Q)$$

The space F_o is then given by

$$F_0 = \left\{ \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha}, \ f_{\alpha} \in E_{\psi}(Q) \right\}$$

and is denoted by $F_0 = W^{-1,x} E_w(Q)$.

In order to deal with the time derivative, we introduce a time mollification of a function $u \in L_{A}(Q)$. Thus we define, for all $\mu > 0$ and all $(x, t) \in Q$

$$u_{\mu}(x,t) = \mu \int_{-\infty}^{t} \widetilde{u(x,s)} exp(\mu(s-t)) ds$$

Where $\tilde{u}(x, s)=(x, s) X_{(0,T)}(s)$ is the zero extension of u.

Proposition1:

If
$$u \in L\varphi(Q)$$
 then u_{μ} is measurable in Q and $\frac{\partial u_{\mu}}{\partial t} = (\mu - u_{\mu})$ and if $u \in L\varphi$

$$\int_{Q} \varphi(x, u_{\mu}) dx dt \leq \int_{Q} \varphi(x, u) dx dt$$

Proof: Since $(x, t, s) \mapsto u(x, s) exp(\mu(s - t))$ is measurable in $\Omega \times [0, T]$

 \times [0, T], we deduce that u is measurable by Fubini's theorem. By Jensen's integral inequality we have, since

$$\int_{-\infty}^{0} \exp(\mu s) ds = 1.$$

$$\varphi\left(x, \int_{-\infty}^{t} \mu \widetilde{u}(x, s) \exp(\mu(s - t)) ds\right) = \varphi\left(x, \int_{-\infty}^{0} \mu \exp(\mu s) \widetilde{u}(x, s + t) ds\right)$$

$$\leq \int_{-\infty}^{0} \mu \exp(\mu s) \varphi\left(x, \widetilde{u}(x, s + t)\right) ds$$

Which implies

$$\int_{Q} \varphi(x, u_{\mu}(x, t)) dx dt \leq \int_{\Omega \times R} \left(\int_{-\infty}^{0} \mu exp(\mu s) \varphi(x, \widetilde{u}(x, s + t) ds) \right) dx dt$$

$$\leq \int_{-\infty}^{0} \mu exp(\mu s) \left(\int_{\Omega \times R} \varphi(x, \widetilde{u}(x, s + t)) dx dt \right) ds \leq \int_{-\infty}^{0} \mu exp(\mu s) \left(\int_{Q} \varphi(x, u(x, t)) dx dt \right) ds$$

$$= \int_{0}^{1} \varphi(x, u) dx dt$$

Furthermore

$$\frac{\partial u_{\mu}}{\partial t} = \lim_{\delta \to 0} \frac{1}{\delta} (exp(-\mu\delta) - 1)u_{\mu}(x,t) + \lim_{\delta \to 0} \frac{1}{\delta} \int_{t}^{t+\delta} u(x,s)exp(\mu(s - (t + \delta)))ds = -\mu u_{\mu} + \mu u_{\mu}$$

Proposition 2. Assume that $(u_n)_n$ is a bounded sequence in $W_{\psi}^{1,z} L_{\varphi}(Q)$. Such that $\frac{\partial u_{\mu}}{\partial t}$ is bounded in $W^{-1,x} L_{\psi}(Q) + L^1(Q)$, then u_n relatively compact $L^1(Q)$.

Proof. It is easily by using Corollary 1 of 2.

Results

Let $P\phi$ be a subset of Musielak-Orlicz functions defined by:

$$P_{_{\rm ep}} = \left\{ \phi: \Omega \times R_{_{+}} \to R_{_{+}} \text{ is an Musielak} - Orlicz \text{ function, such that } \phi \ll \varphi \text{ and } \int \phi \circ H^{^{-1}}(x, 1/t^{^{1-1/m}}) dt < \infty \text{ for a. } e x \in \Omega \right\}$$

Where $(x, r)=\varphi(x, r)/r$

We assume that

$$P_{\phi} \neq \emptyset$$
 (2)
Let $A: D(A) \subset W_0^{1,x} L\varphi(Q) \to W^{1,x} L\psi(Q)$ be a mapping given by

A (u)=–div a(x, t, u, ∇ u) where *a*: $Q \times R^n \times R^n$ be Caratheodory function satisfying for a.e (x, t) $\in \Omega$ and all $s \in R$, ξ , $\eta \in R^n$ with: $\xi \neq \eta$

 $|a(x,t,s,\xi)| \leq \beta \varphi(x,|\xi|)/|\xi| (3)$

 $(a(x, t, s, \xi) - a(x, s, \eta))(\xi - \eta) > 0(4)$

$$a(x, t, s, \xi)\xi \geq \alpha \varphi(x, |\xi|)(5)$$

Where α , β >0. Furthermore, assume that there exists $D \in P_{\alpha}$ such that

 $D \circ H^{-1}$ is a Musielak-Orlicz Function. (6)

Set $Tk(s)=(-k, min(k, s)), \forall s \in R$, for all $k \ge 0$

Denote by $M_{\rm b}$ the set of all bounded Radon measure defined on Q and by $T_{\rm 0}^{1,\varphi}$ (Q) as the set of measurable functions

 $Q \rightarrow R$ such that $T_k(u) \in W_0^{1,x} L\varphi(Q) \cap D(A)$ assume that $f \in M_b(\Omega)$ and consider the following nonlinear parabolic problem with Dirichlet boundary

$$\frac{\partial u}{\partial t} + A(u) = f \text{ in } Q \quad (7)$$

Theorem 1. Assume that (2)-(6) hold and $f \in M_b$ (Q). Then there exists at least one weak solution of the problem $\{u \in T_0^{1,\varphi}(Q) \cap W_0^{1,x}L_{\varphi}(Q), \forall \varphi \in P_{\varphi} - \int_Q u \frac{dv}{dt} + \int_{\Omega} a(x,t,u,\nabla u)\nabla v dx = \langle f,v \rangle, \forall v \in D(Q)$

Proof: The proof will be given in two steps.

Step 1: A priori estimates.

Consider now the following approximate equations:

$$\{u_n \in W_0^{1,x} L_{\varphi}(Q), u_n(x,0) = 0; \frac{\partial u_n}{\partial t} - diva(x,t,u_n, \nabla u_n) = f_n(B)\}$$

Where f_n is a smooth function which converges to f in the distributional sense and $||f_n||_{L^1(Q)} \le ||f||_{M_p(Q)}$ By Theorem 2 of 3, there exists atleast one solution of U_n of (8), For k>0, by taking $T_k(u_n)$ as test function in (8), one has

$$\int_{\Omega} a(x, t, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \le Ck$$

In view of (5), we get

 $\int_{\Omega} \varphi \left(x, \left| \nabla T_k (u_n) \right| \right) dx \le Ck$

Take a
$$C^2$$
 (*R*), and no decreasing function β_k such that for and 2
 $\beta_k(S) = S \mid S \mid \leq \frac{k}{2} \text{ and } \beta_k(S) = k \text{ sign if } \mid k \mid \geq S$

$$\frac{\partial \beta_{k}(u_{n})}{\partial t} - div \Big(a \Big(x, t, u_{n}, \nabla u_{n} \Big) \beta_{k}'(u_{n}) \Big) + a \Big(x, t, u_{n}, \nabla u_{n} \Big) \nabla u_{n} \beta_{k}''(u_{n}) = f_{n} \beta_{k}'(u_{n}) \operatorname{in} D'(Q)$$

Which implies easily that $\frac{\partial \beta_k(u_n)}{\partial t}$ is bounded in W^{-1,x}L ψ (Q) + L¹(Q). Thanks to Proposition 2, we deduce that $\beta(u_{ij})$ is compact in L¹(Q).

Then as in (20) and by the proof of Theorem 3 of 1, we deduce that there exists [15].

 $u \in L^{\infty}$ (0, T; $L^{1}(\Omega)$ such that: $u_{n} \rightarrow u$ almost everywhere in Q and (almost everywhere in and

$$T_{k}(u_{n}) \rightarrow T_{u} weakly in W_{0}^{1,x}L_{\varphi}(Q) for \sigma(\Pi L_{\varphi}, \Pi E_{\psi})$$
(9)

Now, let $\phi \in P\phi$. By a slight adaptation of the context of Lemma 2.1. of 4. it follows that

$$\int_{Q} \Phi(x, \left| \nabla(u_{n}) \right|) dx \leq C, \forall n \quad (10)$$

We shall show that
$$a(x, t, (u_n), \nabla(u_n)) \nabla(u_n)$$
 is bounded in $(L_{\psi}(Q))^n$

Let $\omega \in (E\varphi(Q))^{\parallel} \omega \parallel_{(\omega)} By$ (5) and Young inequality, one has

$$\int_{Q} \alpha(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \omega dx$$

$$\leq \beta \int_{Q} \psi\left(x, \frac{\varphi(x, |\nabla T_{k}(u_{n})|)}{|\nabla T_{k}(u_{n})|}\right) dx + \beta \int_{Q} \varphi(x, |\omega|) |dx$$

$$\leq \beta \int_{Q} \varphi(x, |\nabla T_{k}(u_{n})|) dx + \beta$$

This last inequality is deduced from the fact that $\psi(x, \phi(x, u)/u) \le \phi(x, u)$ u), for all u>0 and

 $\int_{-}^{\infty} \varphi(x, |\omega) dx \leq 1 \text{ in view of (10)} \text{ In view of (10), [15,16].}$

$$\int_{\Omega} a(x, t, T_k(u_n), \nabla T_k(u_n)) \omega dx \le Ck + \beta$$

Which implies that $(a(x, t, T_k(u_n), \nabla T_k(u_n))_n$ is a bounded sequence in (L_{_}(Q))n.

Step 2. Almost everywhere convergence of the gradient and passage to the limit. Since $T_k(u) \in W^{1, \times} L_{\alpha}(Q)$, then there exists a sequence $(\alpha_i^k) \subset D(Q)$ such that $(\alpha_{i}^{k}) \xrightarrow{} T_{k}(u)$ for the modular convergence in $W^{1, \times} L_{\omega}(Q)$. For the remaining of this article, χ_{s} and $\chi_{i,s}$ will denoted respectively the characteristic functions of the sets

$$Q_{s} = \{(x,t) \in Q; |\nabla T_{\nu}(u(x,t))| \le s\} \text{ and } Q_{is} = \{(x,t) \in Q; |\nabla T_{\nu}(v_{i}(x,t))| \le s\}$$

For the sake of simplicity, we will write only ϵ (n, j, μ , s) to mean all quantities (possibly different) such that

lim lim lim $\epsilon(n, j, \mu, s) = 0$ $n \rightarrow \infty \quad j \rightarrow \infty \quad \mu \rightarrow \infty \quad s \rightarrow \infty$

For every $\mu > 0$, we define

$$w_{\mu}(x,t) = \mu \int_{-\infty}^{t} exp(\mu(s-t))w(x,t)\chi_{[0,T]}(s)ds$$

the time regularized of any function $w \in W_0^{1,x}L_\omega(Q)$

Taking now
$$T_{\eta} \left(u_n - T_k \left(\alpha_j^k \right)_{\mu} \right)$$
 as test function in (8), we obtain
 $\left\langle \frac{\partial u_n}{\partial t}, T_{\eta} \left(u_n - T_k \left(\alpha_j^k \right)_{\mu} \right) \right\rangle + \int_Q a(x, t, u_n, \nabla(u_n)) \nabla T_{\eta} \left(u_n - T_k(v_j) \right) dx \le C\eta$

The first term of the left hand side of the last equality reads as

 $(\frac{\partial u_n}{\partial t}, T_\eta \left(u_n - T_k \left(\alpha_j^k\right)_n\right) = (\frac{\partial u_n}{\partial t} - \frac{\partial T_k \left(\alpha_j^k\right)_n}{\partial t}, T_\eta \left(u_n - T_k \left(\alpha_j^k\right)_n\right) + (\frac{\partial T_k \left(\alpha_j^k\right)_n}{\partial t}, T_\eta \left(u_n - T_k \left(\alpha_j^k\right)_n\right))$

The second term of the last equality can be easily to see that is positive and the third term can be written as

$$\langle \frac{\partial T_k (\alpha_j^k)}{\partial t}, T_\eta \left(u_n - T_k (\alpha_j^k)_\mu \right) \rangle = \mu \int_Q \left(T_k (\alpha_j^k) - T_k (\alpha_j^k)_\mu \right) \left(T_\eta \left(u_n - T_k (\alpha_j^k)_\mu \right) \right) dx dt$$
 thus by letting $n, j \to \infty$ and since $\left(\alpha_j^k \right) \to T_k(u)$ a.e. in Q and by using Lebesgue Theorem

$$\int_{Q} \left(T_{k} \left(\alpha_{j}^{k} \right) - T_{k} \left(\alpha_{j}^{k} \right)_{\mu} \right) \left(T_{\eta} \left(u_{n} - T_{k} \left(\alpha_{j}^{k} \right)_{\mu} \right) \right) dx dt = \int_{Q} \left(T_{k} (u) - T_{k} (u)_{\mu} \right) \left(T_{\eta} \left(u - T_{k} (u)_{\mu} \right) \right) dx dt + \varepsilon(n, j) dx dt$$
Consequently

$$\left\langle \frac{\partial u_n}{\partial t}, T_{\eta} \left(u_n - T_k \left(\alpha_j^k \right)_n \right) \right\rangle \ge \varepsilon(n, j)$$

On the other hand,

$$\begin{split} &\int_{Q} a\left(x,t,u_{n'}\nabla\left(u_{n}\right)\right) \cdot \nabla T_{\eta}\left(u_{n}-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right) dxdt \\ &= \int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right| < \eta\right\}} a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u_{n}\right)\right) \cdot \left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{j,s}\right) dxdt \\ &+ \int_{\left\{k < \left|u_{n}\right|\right\} \cap \left\{\left|u_{n}-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right| < \eta\right\}} a\left(x,t,u_{n'}\nabla u_{n}\right) \nabla u_{n} dxdt \end{split}$$

(1)

$$-\int\limits_{\{k<\left|u_{n}\right\}]\cap\left\{\left|u_{n}-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right|<\eta\}}a\left(x,t,u_{n},\nabla u_{n}\right)\cdot\nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{\left(\left|\nabla T_{k}\left(\alpha_{j}^{k}\right)\right|\right)>s\}}dxdt$$

which implies, by using the fact that [17].

$$\int a(x, t, u_n, \nabla u_n) \cdot \nabla u_n dx dt \ge 0$$

[k<|u_n]) \left(|u_n - T_k(\alpha_j^k)_n |

$$\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right|<\eta\right\}}a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{j,s}\right)dxdt\leq C\eta$$

$$\int_{\{k < |u_n|\} \cap \{\left|u_n - T_k\left(\alpha_j^k\right)_n\right| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k\left(\alpha_j^k\right)_{\mu} \chi_{\{\left|\nabla T_k\left(\alpha_j^k\right)\right| > s\}} dx dt$$

Since $a(x, t, T_{k+\eta}(u_n, \nabla T_{k+\eta}(u_n))$ is bounded in $(L_{\psi}(\Omega))^n$ there exists some $h_{k+\eta} \in (L_{\psi}(\Omega))^n$ such that

$$a(x, t, T_{k+\eta}, \nabla T_{k+\eta}(u_n)) \rightarrow h_{k+\eta}$$

weakly in $(L_{\mu}(\Omega))^n$ for $\sigma(\Pi L_{\mu}, \Pi E_{\alpha})$

+

Consequently,

$$\int_{\{k < |u_n|\} \cap \{ \left| u_n - T_k(\alpha_j^k)_\mu \right| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_\mu \chi_{\{ \left| \nabla T_k(\alpha_j^k) \right| > s\}} dx dt =$$

$$= \int_{\{k < |u_n|\} \cap \{ |u_n - T_k(\alpha_j^k)_{\mu}| < \eta\}} h_{k+\eta} \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{ |\nabla T_k(\alpha_j^k)| > s\}} dx dt + \varepsilon(n)$$

where we have used the fact that
$$\nabla T_k \left(\alpha_j^k \right)_{\mu} \chi_{\{k < [u_n]} \cap \left[\left[u_n - T_k \left(\alpha_j^k \right)_{\mu} \right]_{<\eta} \right]}$$
 tends strongly to
 $\nabla T_k \left(\alpha_j^k \right)_{\mu} \chi_{\{k < [ul]} \cap \left[\left[u - T_k \left(\alpha_j^k \right)_{\mu} \right]_{<\eta} \right]}$ in $\left(E_{\varphi}(Q) \right)^n$. Letting $j \to \infty$ we obtain
 $\int a(x, t, u_n, \nabla u_n) \cdot \nabla T_k \left(\alpha_j^k \right)_{\mu} \zeta_{[\nabla T_k \left(\alpha_j^k \right)] > s} dx dt$
 $(k < [u_n] \cap t \left[\left[u_n - T_k \left(\alpha_j^k \right)_{\mu} \right]_{<\eta} \right]$

$$= \int\limits_{\{k < |u|\} \cap \left| \left| u - T_k \left(\alpha_j^k \right)_u \right| < \eta \}} h_{k+\eta} \nabla T_k(u)_u \chi_{\{ \left| \nabla T_k(u) \right| > s \}} dx dt + \varepsilon(n, j)$$

Thanks to Proposition 1, one easily has

Hence

 $\int \limits_{\left\{ \left| T_{k}\left(u_{n}\right) - T_{k}\left(a_{j}^{k}\right)_{k}\right| \leq \eta \right\}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \left(\nabla T_{k}\left(u_{n}\right) - \nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu} \chi_{j,x}\right) dx dt + C\eta + \varepsilon(n, j, \mu, s)$

On the other hand, remark that

 $\int \limits_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right| < \eta\right\}} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \left(\nabla T_{k}\left(u_{n}\right) - \nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{j,s}\right) dx dt$

$$= \int a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \left(\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)_{j \in \mathcal{T}_k} \right) dx dt$$

$$\{ |T_k(u_n) - T_k(\alpha_j^k)_{j \in \mathcal{T}_k} | c_{\mathcal{T}_k} \rangle = 0$$

$$+ \int a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \left(\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \chi_{j,s} \right) dx dt.$$

The latest integral tends to 0 as n and j go to ∞ . Indeed, we have [18].

 $\int a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \left(\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \chi_{j,s} \right) dx dt$ $t |T_k(u_n) - T_k(\alpha_j^k)| < \eta \}$

tends to

$$\int_{\left\{\left|T_{k}(u)-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right|<\eta\right\}}h_{k}\left|\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}-\nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{j,s}\right|dxdt$$

as $n \to \infty$, since $a(x, t, T_k(u_n), \nabla T_k(u_n)) \rightarrow h_k$ weakly in $(L_{\psi}(\Omega))^n$ for $\sigma(\Pi L_{\psi}, \Pi E_{\varphi})$. while $\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \chi_{j,s} \in (E_{\psi}(Q))^n$. It's obvious that

$$\int_{\left(\left|T_{k}(u)-T_{k}\left(\alpha_{j}^{k}\right)_{a}\right|<\eta\right)}h_{k}\left[\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}-\nabla T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\chi_{j,s}\right]dxdt$$

goes to 0 as j, $\mu \rightarrow \infty$ by using Lebesgue theorem [18,19]. We deduce

Let 0 < δ < 1. We have

 $+ C\left[\int_{\left|\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{n}^{*}\right)\right|_{n}\right| < \eta\right) \cap Q_{r}} \left[\left[a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) - a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right] \times \left[\nabla T_{k}\left(u_{n}\right) - \nabla T_{k}\left(u\right)\right] dx dt\right]^{5} (11)$

On the other hand, we have for every $s \ge r$

 $\int\limits_{\left[T_{k}\left(u_{n}\right)-T_{k}\left(a_{i}^{*}\right)\right]\left[\neg\right]\cap Q_{r}} \left[a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u_{n}\right)\right)-a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u\right)\right)\right] \\ \times \left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(u\right)\right]dxdt$

 $\leq \int\limits_{\left[T_{k}\left(u_{n}\right)-T_{k}\left(a_{n}^{i}\right)\right]<1\right)} \left[a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u_{n}\right)\right)-a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(u\right)\chi_{s}\right)\right] \\ \times \left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(u\right)\chi_{s}\right]dxdt$

 $\leq \int\limits_{\left(\left|T_{k}(u_{k})-T_{k}(a_{j}^{k})\right|_{k}<0\right)} \left[a\left(x,t,T_{k}(u_{n}),\nabla T_{k}(u_{n})\right)-a\left(x,t,T_{k}(u_{n}),\nabla T_{k}(a_{j}^{k})\chi_{j,s}\right)\right] \\ \times \left[\nabla T_{k}(u_{n})-\nabla T_{k}(a_{j}^{k})\chi_{j,s}\right] dxdt$

$$\begin{split} &+ \int\limits_{\left\{ \left| T_{k}\left(u_{n}\right)-T_{k}\left(a_{j}^{k}\right)\right|_{s}\right| < \eta \rangle} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}^{k}\right)\right) \left[\nabla T_{k}\left(a_{j}^{k}\right)\chi_{j,s} - \nabla T_{k}(u)\chi_{s}\right] dxdt \\ &+ \int\limits_{\left\{ \left| T_{k}\left(u_{n}\right)-T_{k}\left(a_{j}^{k}\right)\right|_{s}\right| < \eta \rangle} \left[a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(a_{j}^{k}\right)\chi_{j,s}\right) - a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u\right)\chi_{s}\right) \right] \nabla T_{k}\left(u_{n}\right) dxdt \\ &- \int\limits_{\left\{ \left| T_{k}\left(u_{n}\right)-T_{k}\left(a_{j}^{k}\right)\right|_{s}\right| < \eta \rangle} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(a_{j}^{k}\right)\chi_{j,s}\right) \nabla T_{k}\left(a_{j}^{k}\right)\chi_{j,s} dxdt \\ &+ \int\limits_{\left\{ \left| T_{k}\left(u_{n}\right)-T_{k}\left(a_{j}^{k}\right)\right| < \eta \rangle} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u\right)\chi_{s}\right) \nabla T_{k}\left(u\right)\chi_{s} dxdt \end{split}$$

 $\leq I_{1}(n, j, \mu, s) + I_{2}(n, j, \mu, s) + I_{3}(n, j, \mu, s) + I_{4}(n, j, \mu, s) + I_{5}(n, j, \mu, s)$ (12)

We shall go to limit as n, j, μ and s $\rightarrow \infty$ in the last fifth integrals of the last side. Starting with I₁, we have [19].

$$I_1(n,j,\mu,s) \leq C\eta + \varepsilon(n,j,\mu,s) - \int\limits_{\left\{ \left| T_k(u_n) - T_k(\alpha_j^k) \right|_s \right| \le \eta \right\}} a\left(x,t,T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s} \right) \nabla T_k(\alpha_j^k) \chi_{j,s} dxdt$$

since

$$\begin{split} a \Big(x, t, T_k (u_n), \nabla T_k (\alpha_j^k) \chi_{j,s} \Big) \chi_{\left\{ T_k (u_n) - (\alpha_j^k)_n \right\} \subset \eta} & \rightarrow a \Big(x, t, T_k (u), \nabla T_k (\alpha_j^k) \chi_{j,s} \Big) \chi_{\left\{ T_k (u) - (\alpha_j^k)_n \right\} \subset \eta} in \left(\mathbb{E}_{\psi}(Q) \right)^n \\ \text{while} \end{split}$$

 $\nabla T_k(u_n) \rightarrow \nabla T_k(u)$ weakly

We deduce then that

$$\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(\alpha_{j}^{k}\right)_{u}\right|<\eta\right\}}a\left(x,t,T_{k}\left(u_{n}\right),\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right]dxdt$$

$$= \int\limits_{\left(\left|T_{k}\left(u_{n}\right)-T_{k}\left(\alpha_{j}^{k}\right)_{\mu}\right| < \eta\right)} a\left(x, t, T_{k}\left(u\right), \nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right) \left[\nabla T_{k}\left(u\right) - \nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right] dxdt + \varepsilon(n)$$

which gives by letting $j \to \infty$ and using the modular convergence of $\nabla T_k \left(\alpha_j^k \right)$

$$\begin{split} &\int a\left(x,t,T_{k}(u),\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right)\left[\nabla T_{k}(u)-\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right]dxdt + \varepsilon(n) \\ &\left[T_{k}\left(u_{s}\right)-T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}\right]dxdt + \varepsilon(n) \\ &= \int_{Q}a\left(x,t,T_{k}(u),\nabla T_{k}(u)\chi_{s}\right)\left[\nabla T_{k}(u)-\nabla T_{k}(u)\chi_{s}\right]dxdt + \varepsilon(j) = \varepsilon(j) \end{split}$$

Finally

$$I_{1}(n, j, \mu, s) \leq C\eta + \varepsilon(n, j, \mu, s) + \varepsilon(n, j) = \varepsilon(n, j, \mu, s, \eta)$$
(13)

For what concerns $I_2^{},$ by letting $n \to \infty,$ we have

a

$$I_{2}(n, j, \mu, s) = \int_{\{\left|T_{k}(u_{a}) - T_{k}(\alpha_{j}^{k})\right| < \eta\}} h_{k} \left[\nabla T_{k}(\alpha_{j}^{k})\chi_{j,s} - \nabla T_{k}(u)\chi_{s}\right] dxdt + \epsilon(n)$$

since

$$(x, t, T_k(u_n), \nabla T_k(u_n)\chi_{j,s})\chi_{\{|T_k(u_n) - (\alpha_j^k)_{\mu}| \leq \eta\}} \rightarrow h_k for \ \sigma(\Pi L \psi, E_{\varphi})$$

while

$$\begin{split} &\chi_{\{\left|T_{k}(u_{n})-\left(\alpha_{j}^{k}\right)_{n}\right|<\eta\}}\left[\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}-\nabla T_{k}(u)\chi_{s}\right]\rightarrow\\ &\chi_{\left|\left|T_{k}(u)-\left(\alpha_{j}^{k}\right)_{n}\right|<\eta\}}\left[\nabla T_{k}\left(\alpha_{j}^{k}\right)\chi_{j,s}-\nabla T_{k}(u)\chi_{s}\right]strongly\ in\ \left(E_{\varphi}(Q)\right)^{\prime} \end{split}$$

By letting now $j \rightarrow \infty,$ and using Lebesgue theorem, we deduce then that

$$I_2(n, j, \mu, s) = \epsilon(n, j)$$
 (14)

Similar tools as above, give

$$I_3(n, j, \mu, s) = \varepsilon(n, j)$$

$$I_4(n, j, \mu, s) = -\int_{\Omega} a(x, t, T_k(u), \nabla T_k(u)) \nabla T_k(u) + \varepsilon(n, j, \mu, s)$$

$$I_{5}(n, j, \mu, s) = \int a(x, t, T_{k}(u), \nabla T_{k}(u)) \nabla T_{k}(u) + \varepsilon(n, j, \mu, s)$$

Combining (11),(12),(13),(14) and (15) we have

$$\int\limits_{\Omega_{r}} \left[\left(a \left(x, t, T_{k} \left(u_{n} \right), \nabla T_{k} \left(u_{n} \right) \right) - \left. a \left(x, t, T_{k} \left(u_{n} \right), \nabla T_{k} \left(u \right) \right) \right) \times \left(\nabla T_{k} \left(u_{n} \right) - \left. \nabla T_{k} \left(u \right) \right) \right]^{\delta} dx dt$$

$$\leq C \left(meas \left\{ \left| T_k \left(u_n \right) - T_k \left(\alpha_j^k \right)_{\mu} \right| < \eta \right\} \right)^{\delta} + C(\varepsilon(n, j, \mu, s, \eta))^{1}$$

and by passing to the limit sup over n, j, μ , s and η

 $\lim_{n \to \infty} \int_{Q} \left[\left[a \left(x, t, T_k(u_n), \nabla T_k(u_n) \right) - a \left(x, t, T_k(u_n), \nabla T_k(u) \right) \right] \times \left[\nabla T_k(u_n) - \nabla T_k(u) \right] \right]^{\delta} dx dt = 0$

and thus, there exists subsequence also denote by (u_n) such that

 $\nabla u_n \rightarrow \nabla ua. e. in Q_r$

and since r is arbitrary, we have

$$\nabla u_n \to \nabla u \ a. \ e \ in \ Q$$

On the other hand, thanks to (3), (6) and (10), we deduce that

$$\int_{Q} D \circ H^{-1}\left(s, \frac{|a(x,t,u_n \nabla u_n)|}{\beta}\right) dx dt \leq \int_{\Omega} D\left(x, |\nabla u_n|\right) dx dt \leq C$$

Hence

$$\begin{aligned} a \Big(x, t, u_n, \nabla u_n \Big) &\to a(x, t, u, \nabla u) \\ \text{weakly for } \sigma \Big(\Pi L_{D \circ H^{-1}}, \Pi E_{\overline{D \circ H^{-1}}} \Big) \end{aligned}$$

Going back to approximate equations 8 and using $v\in \mathsf{D}(\mathsf{Q})$ as the test function, one has

$$-\int_{Q} u_{n} \frac{\partial v}{\partial t} dx dt + \int_{Q} a \Big(x, t, u_{n}, \nabla u_{n} \Big) \nabla v dx dt = < f_{n}, v >$$

In which we can pass to the limit since we have [20,21]. $u_n \rightarrow u \ strongly \ in \left(E_{\gamma}(Q)\right)^n for \ every \ \gamma \ll \ \phi \in P_{\omega}$

This completes the proof of Theorem 1.

Acknowledgement

None.

Conflict of Interest

None.

References

- Oubeid, Mohamed Leimne Ahmed, A. Benkirane and M. Sidi El Vally. "Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces." Bol da Soc Parana de Mat 33 (2015): 193-225.
- Oubeid, ML Ahmed, A. Benkirane and M. Sidi El Vally. "Parabolic equations in Musielak-Orlicz-Sobolev spaces." Int J Anal Appl 4 (2014): 174-191.
- Oubeid, ML Ahmed, A. Benkirane and M. Sidi El Vally. "Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces." J Abstr Differ Equ Appl 4 (2013): 43-57.
- Benkirane, A. and M. Sidi El Vally. "An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces." Bull Belg Math Soc 20 (2013): 57-75.
- Benkirane, A., J. Douieb and M. Ould Mohamedhen Val. "An approximation theorem in Musielak-Orlicz-Sobolev spaces." *Comment Math* 51 (2011).
- Benkirane, A. and M. Val. "Some approximation properties in Musielak-Orlicz-Sobolev spaces." Thai J Math 10 (2012): 371-381.
- Benkirane, A. and M. Sidi El Vally. "Variational inequalities in Musielak-Orlicz-Sobolev spaces." Bull Belg Math Soc 21 (2014): 787-811.
- Boccardo, L. "Elliptic and parabolic differential equations with measured data." Bollettino dell'Unione Matematica Italiana A 11 (1997): 439.
- 9. Boccardo, Lucio and Thierry Gallouet. "Non-linear elliptic and parabolic equations involving measure data." J Funct Anal 87 (1989): 149-169.
- Boccardo, Lucio, Andrea Dall'Aglio, Thierry Gallouet and Luigi Orsina. "Nonlinear parabolic equations with measure data." J Funct Anal 147 (1997): 237-258.
- Donaldson, Thomas. "Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems." J Differ Equ 16 (1974): 201-256.
- Elmahi, A. "Compactness results in inhomogeneous Orlicz-Sobolev spaces." In Partial Differ Equ Appl, CRC Press (2002): 220-235.
- 13. Elmahi, Abdelhak. "Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces." *Electron J Differ Equ* (2002): 203-220.
- Elmahi, A. and D. Meskine. "Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces." Nonlinear Anal Theory Methods Appl 60 (2005): 1-35.
- Elmahi, A. and D. Meskine. "Parabolic equations in Orlicz spaces." J London Math Soc 72 (2005): 410-428.
- 16. Elmahi, A. and D. Meskine. "Strongly nonlinear parabolic equations with natural growth terms and L1 data in Orlicz spaces." *Port Math* 62 (2005): 143-184.
- Meskine, Driss. "Parabolic equations with measure data in Orlicz spaces." J Evol Equ 5 (2005): 529-543.
- 18. Robert, Jacques. "Equations d'évolution paraboliques fortement non linéaires." Ann Sc Norm Super Pisa - Cl Sci 1 (1974): 247-259.
- Porretta, Alessio. "Existence results for nonlinear parabolic equations via strong convergence of truncations." Ann Mat Pura Appl 177 (1999): 143-172.
- 20. Musielak, J. "Orlicz Spaces, Lectures Notes in Math., 1034." (1983).
- El Vally, M. Sidi. "Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces." Adv Dyn Syst Appl 8 (2013): 115-124.

How to cite this article: Oubeid, M. L. Ahmed, A. Benkirane and M. Sidi El Vally. "Nonlinear Parabolic Equations Involving Measure Data in Musielak-Orlicz-Sobolev Spaces." *J Generalized Lie Theory App* 18 (2024): 426.