
Open AccessISSN: 2229-8711

Global Journal of Technology and OptimizationPerspective
Volume 13:5, 2022

*Address for Correspondence: Byron Yu, Department of Biomedical 
Engineering, University of Tokyo, Chome Hongo, Bunkyo City, Tokyo, Japan; 
E-mail: yu.byron@up.ac.za

Copyright: © 2022 Yu B. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

Date of Submission: 03 May, 2022, Manuscript No. GJTO-22-70927; Editor 
Assigned: 05 May, 2022, PreQC No. P-70927; Reviewed: 10 May, 2022, QC No. 
Q-70927; Revised: 15 May, 2022, Manuscript No. R-70927; Published: 20 May, 
2022, DOI: 10.37421/2229-8711.2022.13.297

Nonlinear Communication Network Engineering via Software 
Packages
Byron Yu*
Department of Biomedical Engineering, University of Tokyo, Chome Hongo, Bunkyo City, Tokyo, Japan

Introduction

One of the most complex human-made systems is a complex software 
system, although little is actually understood about the construction of 
"excellent" software. Here, we examine several Java-based software systems 
from a network science approach. The study shows that network theory can 
offer a significant set of methods for the exploratory examination of substantial, 
intricate software systems. We also include a number of software engineering 
applications and suggest other network-based quality indicators for software 
design, effectiveness, reusability, vulnerability, controllability, and other 
factors. One of the most advanced systems ever developed by humans is a 
complex software system. The true structure and quantitative characteristics 
of massive software systems are, however, little understood. For instance, 
one is concerned with how "excellent" software is in the context of software 
engineering. The framework most suited for analysing the structure of complex 
systems like software projects may be networks. Additionally, examination of 
various networks has already led to some important discoveries in the past 
ten years due to their straightforward and understandable nature. Although 
the usage of software networks is not new, network analysis is still seldom 
ever employed in the field of software engineering. Thus, the major goal of this 
study is to provide several network analysis approaches and demonstrate how 
they may be used in software engineering, development, and understanding 
[1,2].

Description

Nodes in the network can represent project packages, software classes, 
methods, and functions, or they can represent single lines of code thanks to 
Java's object-oriented perspective. Here, we use class dependency networks, 
where nodes stand in for classes and linkages denote various relationships 
between them. The latter is supported by the subsequent factors. First off, 
since networks are only marginally impacted by the developer's subjective 
preferences because they are simply built from the signatures of various 
classes, functions, and fields inside them. Second, project packages and 
the mesoscopic structures of class dependency networks align, enabling a 
range of software engineering applications. Third, these networks are related 
to the information flow between various software project components and 
also line up with how humans understand object-oriented software. Within 
class dependency networks, packages of the software system reflect in 
several structural modules. For instance, various parsers, transformers, or 
plugins frequently organise into functional modules that correspond to groups 
of nodes with similar connection patterns, whereas visualisation classes 

frequently aggregate into communities of highly linked nodes. In contrast, a 
clear community structure denotes a software system with a highly modular 
structure, and properly maintained functional modules are associated with 
classes in a project that have distinct functional duties. Software packages 
were compared to network modules found using the MM and GP structural 
module identification techniques as well as the MO and CP community 
discovery methodologies [3,4].

According to analysis, functional and general structural modules, including 
communities, best represent the package structure of the software systems 
under examination. The next section just skims the surface of the various 
network analysis techniques' applications due to space restrictions. Future 
research will concentrate on a more in-depth analysis and the creation of 
supplementary implementations that might be quickly used in reality. a software 
project abstraction using network structural module discovery. In addition to 
encapsulating class dependencies that go beyond the packages selected by 
the developers, one may designate a full hierarchy of modules that is compatible 
with the package hierarchy. In addition to enhancing understanding, disclosed 
hierarchy makes it possible to foresee relationships between project classes. 
Software package restructuring can also use network module discovery 
methods. To uncover the underlying functional structure, one can use a 
community identification technique to show highly modular structure. The next 
section just skims the surface of the various network analysis techniques' 
applications due to space restrictions. Future research will concentrate on a 
more in-depth analysis and the creation of supplementary implementations that 
might be quickly used in reality. a software project abstraction using network 
structural module discovery. In addition to encapsulating class dependencies 
that go beyond the packages selected by the developers, one may designate 
a full hierarchy of modules that is compatible with the package hierarchy. In 
addition to enhancing understanding, disclosed hierarchy makes it possible to 
foresee relationships between project classes. Software package restructuring 
can also use network module discovery methods. To uncover the underlying 
functional structure, one can use a community identification technique to show 
highly modular structure [5].

Conclusion

In this thorough investigation of software networks built from Java source 
code, we investigate macroscopic network characteristics connected to the 
structural layout of the relevant software project. To identify the most important 
and susceptible software classes, we then do a microscopic node-level 
analysis of the networks. Finally, we examine mesoscopic network structural 
components and demonstrate how they might be used in project refactoring. 
We demonstrate, among other things, how difficult it is to regulate software 
systems despite the fact that they are very susceptible to processes like bug 
spread. Only 17 percent of the Java namespace, however, may be used to 
govern the Java language. Additionally, we include a number of network-based 
quality indicators that may be used to rate the design, reusability, robustness, 
controllability, and other aspects of software projects. The study reveals 
network analysis in this way.

Acknowledgement

None.

mailto:yu.byron@up.ac.za


Global J Technol Optim, Volume 13:5, 2022Yu B

Page 2 of 2

How to cite this article: Yu, Byron. “Nonlinear Communication Network 
Engineering via Software Packages.” Glob J Tech Optim 13 (2022): 297.

Conflict of Interest

The authors reported no potential conflict of interest.

References 
1.	 Zhang, Lanlan, Martina Hub, Sarah Mang and Ralf O. Floca. "Software for 

quantitative analysis of radiotherapy: Overview, requirement analysis and design 
solutions." Com Meth Prog Biomed 110 (2013): 528-537. 

2.	 van den Berghe, Alexander, Riccardo Scandariato and Wouter Joosen. "Towards a 
systematic literature review on secure software design." Proc Doc Sym Int Sym Eng 
Soft Sys 965 (2013): 48-54. 

3.	 Henninger, Scott and Victor Corrêa. "Software pattern communities: Current 
practices and challenges." Proc Conf Pat Lang Prog (2007): 1-19.

4.	 Šubelj, Lovro, and Marko Bajec. "Software systems through complex networks 
science: Review, analysis and applications." Proc Doc Sym Int Sym Eng Soft Sys 
(2012): 9-16. 

5.	 Petersen, Kai, Robert Feldt, Shahid Mujtaba and Michael Mattsson. "Systematic 
mapping studies in software engineering." Int Conf Eval Ass Soft Eng 12 (2008): 
1-10.

https://www.sciencedirect.com/science/article/pii/S0169260713000783
https://www.sciencedirect.com/science/article/pii/S0169260713000783
https://www.sciencedirect.com/science/article/pii/S0169260713000783
https://lirias.kuleuven.be/1577836?limo=0
https://lirias.kuleuven.be/1577836?limo=0
https://dl.acm.org/doi/abs/10.1145/1772070.1772087
https://dl.acm.org/doi/abs/10.1145/1772070.1772087
https://dl.acm.org/doi/abs/10.1145/2384416.2384418
https://dl.acm.org/doi/abs/10.1145/2384416.2384418
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/EASE2008.8
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/EASE2008.8

