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Non-associative slave-boson decomposition
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Abstract

An operator constraint for a slave-boson decomposition in t-J model of high temperature
superconductivity is considered. It is shown that the constraint can be resolved by introduc-
ing a non-associative operator. In this case the constraint is an antiassociative generating
relation of a new algebra. Similar constraint is offered for splitting the gluon.
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1 Introduction

Everybody knows that the algebra of non-perturbative operators in quantum theory exists but
nobody knows its exact form. In this paper the idea is discussed that the constraint (2.2) in
t-J model of high-temperature superconductivity is a new generating relation for an algebra of
operators the product of which gives us the electron operator. On the perturbative level the
algebra of quantum fields is defined by canonical (anti)commutative relations. The algebra of
non-perturbative operators should be more complicated and should be generated not only by
canonical (annti)commutative relations but should exist other generating relations as well. In
this paper we discuss the idea that the constraint (2.2) is an antiassociator in a non-associative
algebra of quantum non-perturbative operators.

In [14, 10, 11], the authors apply non-associative algebras to physics; the topics ranging from
algebras of observables in quantum mechanics, to angular momentum and octonions, division
algebras, triple-linear products and Yang - Baxter equations are covered. The non-associative
gauge theoretic reformulation of Einstein’s general relativity theory is also discussed. In [1] one
can also find the review of mathematical definitions and physical applications for the octonions.

2 Operator properties of t-J model

It is widely believed that the low energy physics of high temperature (High-Tc) cuprates (for a
review see [9]) is described in terms of t-J type model, which is given [8] by

H =
∑
i,j

J

(
Si · Sj −

1
4
ninj

)
−
∑
i,j

tij

(
c†iσcjσ + H.c.

)
where tij = t, t′, t′′ for the nearest, second nearest and 3rd nearest neighbor pairs, respectively.
The effect of the strong Coulomb repulsion is represented by the fact that the electron operators
c†iσ and ciσ are the projected ones, where the double occupation is forbidden. This can be written
as the inequality

∑
σ c

†
iσciσ ≤ 1, which is very difficult to handle. A powerful method to treat

this constraint is the so-called slave-boson method [2, 4]. In this approach the electron operator
is represented as

c†iσ = f †iσbi (2.1)
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where f †iσ, fiσ are the fermion operators, while bi is the slave-boson operator. This representation
together with the constraint

f †i↑fi↑ + f †i↓fi↓ + b†ibi = 1 (2.2)

reproduces all the algebra of the electron operators. The physical meaning of the operators f
and b is unclear: do these fields exist or not?

In this paper we would like to show that the constraint (2.2) can be considered as a generating
relation for a new algebra of operators from which the electron operator is constructed.

3 A simple physical consideration

At this stage we ignore all indexes in the constraint (2.2). In this case Eq. (2.2) has the form

f †f + b†b = 1 (3.1)

Now we want to compare this equation with the one of generating relations in a non-associative
algebra proposed in [5, 6]. Let us assume that there exists a non-associative algebra G. The
algebra G is generated with associators and antiassociators (shortly speaking (±)associators).
One of the (−)associators has the form

(Q1Q2)Q3 +Q1 (Q2Q3) = (something) (3.2)

where Qi, i = 1, 2, 3 are non-associative operators and it is the antiassociator (5.2) from Section
5.2. In the simplest case (something) = 1. Let us compare both Eq’s (2.2) and (3.2). It is easy
to see that they are identical if we assign

f † = Q1Q2, f = Q3, b† = Q1, b = Q2Q3 (3.3)

Immediately we can see that by using Eq’s (3.3), Eq. (3.2) can be rewritten in the following
way: (

b†Q2

)
f + b† (Q2f) = 1 (3.4)

here for the simplicity we assume that r.h.s of (3.2) is unity. Eq. (3.4) tells us that the
constraint (3.1) can be resolved in a non-associative algebra by the introduction of a non-
associative operator Q2.

Thus the idea presented here is that the slave-boson decomposition is nothing else than the
decomposition of an associative operator on non-associative operators. Such non-associative
algebra should have an associative subalgebra with the elements c given as

c = f †b (3.5)

where f and b are non-associative operators. In other words, in a non-associative algebra G the
observables c have the slave-boson decomposition (3.5) where non-associative operators f and b
are unobservables quantities.

Now we can restore the spin index σ and write

f †σ = Q1Q2σ, fσ = Q3σ, b† = Q1, b =
∑

σ

Q2σQ3σ

where σ = {↑, ↓} is the spin index. In this case the (−)associator (3.2) has the form

∑
σ

(Q1Q2σ)Q3σ +Q1

(∑
σ

Q2σQ3σ

)
= (something) (3.6)
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Analogously to Eq. (3.4) the non-associative solution of (2.2) is

∑
σ

(
b†Q2σ

)
fσ + b†

(∑
σ

Q2σfσ

)
= (something)

where Q2σ is unknown non-associative operator.
The problem of such interpretation of the constraint (2.2) is evident: does there exist a

non-associative algebra with (−)associators (3.2) and (3.6)?

4 Splitting the gluon?

The title of this section is the same as the title of Ref. [12] where it is shown that there exists
the decomposition of gluon in Yang-Mills gauge theory similar to the slave-boson decomposition
in High-Tc superconductivity. In Ref. [3] the similar construction (spin-charge separation) for
the gauge boson is offered as well. The physical ground is that in both cases we are dealing
with strong interactions: between electrons in High-Tc superconductivity and gauge bosons in
quantum chromodynamics.

In Ref. [12] the slave-boson decomposition of the SU(2) gauge field Aa
µ (a = 1, 2, 3 and

µ = 0, 1, 2, 3) proceeds as follows [7, 13]: at first the diagonal Cartan component A3
µ = Aµ from

the off-diagonal components A1,2
µ is separated, and combined the latter into the complex field

Wµ = A1
µ + iA2

µ. Then a complex vector field ~eµ with the properties

~eµ~eµ = 0 and ~eµ~e
∗
µ = 1

is introduced; two spinless complex scalar fields ψ1 and ψ2 are introduced as well. The ensuing
decomposition of Wµ is [7]

Wµ = A1
µ + iA2

µ = ψ1~eµ + ψ∗
2~e

∗
µ (4.1)

This is a direct analogue of Eq. (2.2), a decomposition of Wµ into spinless bosonic scalars ψ1,2

which describe the gluonic holons that carry the color charge of the Wµ, and a color-neutral
spin-one vector ~eµ which is the gluonic spinon that carries the statistical spin degrees of freedom
of Wµ.

In Ref. [3] the spin-charge separation of SU(2) gauge potential is given by a little another
way

Aa
µ = eiµΦia (4.2)

where a = 1, 2, 3 is the SU(2) color index; i = 1, 2, 3 is an inner index and µ = 0, 1, 2, 3 is the
Lorentzian index. The decompositions (4.1) and (4.2) are the decompositions of the classical
fields. If we trust the quantum slave-boson decomposition for strongly interacting electrons in
High-Tc superconductivity then we can apply this idea for the strongly interacting SU(3) gauge
potential. In this case the non-perturbative operator ÂB

µ can be decomposed in the following
way

ÂB
µ = êiµΦ̂iB (4.3)

where we follow to the decomposition (4.2); B = 1, · · · , 8 is the SU(3) color index. Following to
the slave-boson idea we assume that there is the constraint∑

i,µ

ê†iµ ê
iµ +

∑
i,B

Φ̂†iBΦ̂iB = 1 (4.4)
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Analogously to (2.2) the resolution of this constraint is a (−) associator∑
i,j,µ,B

(
Φ̂†jBQ̂jiB

µ

)
êiµ +

∑
i,j,µ,B

Φ̂†iB
(
Q̂ijB

µ êjµ
)

= 1 (4.5)

with

ê†iµ =
∑
j,B

(
Φ̂†jBQ̂jiB

µ

)
, Φ̂iB =

∑
j,µ

(
Q̂ijB

µ êjµ
)

where Q̂ijB
µ is an unknown non-associative operator.

In the next section we will present a non-associative algebra where (±)associators are given
on the level of the product of three operators.

5 A non-associative algebra

In this section we will follow [5]. At first we would like to note that: (a) non-associative algebras
proposed in [5, 6] are the operator generalization of the octonions; (b) the full definition of this
algebra is jet unknown and here we give the (±)associators for the product of three operators
only.

5.1 Octonions

In this subsection we give a very short description what are the octonion numbers. Let split-
octonion numbers are denoted as q̃i and Q̃j . In Table 1 we present the multiplication rule of the
split-octonion units q̃i, Q̃j and I.

q̃1 q̃2 q̃3 Q̃1 Q̃2 Q̃3 I

q̃1 −1 q̃3 −q̃2 −I Q̃3 −Q̃2 Q̃1

q̃2 −q̃3 −1 q̃1 −Q̃3 −I Q̃1 Q̃2

q̃3 q̃2 −q̃1 −1 Q̃2 −Q̃1 −I Q̃3

Q̃1 I Q̃3 −Q̃2 1 −q̃3 q̃2 q̃1
Q̃2 −Q̃3 I Q̃1 q̃3 1 −q̃1 q̃2
Q̃3 Q̃2 −Q̃1 I −q̃2 q̃1 1 q̃3
I −Q̃1 −Q̃2 −Q̃3 −q̃1 −q̃2 −q̃3 1

Table 1. The split-octonions multiplication table.

5.2 Quantum (±)associators

In this section we present the quantum (±)associators for the product of three operators. The
anticommutators are

{qiqj}+ = 0, {qiQj}+ = 0, {QiQj}+ = 0, {qiQi}+ = 0

The quantum (±)associators with different indices m 6= n, n 6= p, p 6= m are

{qm, qn, qp}− = (qmqn) qp − qm (qnqp) = 0 (5.1)

{Qm, Qn, Qp}+ = (QmQn)Qp +Qm (QnQp) = εmnpH3,1 (5.2)

{qm, Qn, qp}+ = (qmQn) qp + qm (Qnqp) = εmnpH3,2
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{Qm, qn, Qp}− = (Qmqn)Qp −Qm (qnQp) = εmnpH3,3

{qm, qn, Qp}− = (qmqn)Qp − qm (qnQp) = εmnpH3,4

{Qm, qn, qp}− = (Qmqn) qp −Qm (qnqp) = εmnpH3,5

{qm, Qn, Qp}− = (qmQn)Qp − qm (QnQp) = εmnpH3,6

{Qm, Qn, qp}− = (QmQn) qp −Qm (Qnqp) = εmnpH3,7

where H3,i are operators (but may be they are numbers); Eq. (5.1) means that the quaternionic-
like subalgebra spanned on q1, q2, q3 is the associative algebra. The quantum antiassociators for
the product of three operators, such as q(Qq) or Q(qQ), having two different indices m 6= n are

{qm, Qn, qn}+ = qm (Qnqn) + (qmQn) qn = H3,8(m,n)
{qn, Qn, qm}+ = qn (Qnqm) + (qnQn) qm = H3,9(m,n)
{Qm, qn, Qn}+ = Qm (qnQn) + (Qmqn)Qn = H3,10(m,n)
{Qn, qn, Qm}+ = Qn (qnQm) + (Qnqn)Qm = H3,11(m,n)

The quantum associators, such as q(QQ) or Q(qq), and with two different indices m 6= n are

{qm, Qm, Qn}− = (qmQm)Qn − qm (QmQn) = H3,12(m,n)
{qm, Qn, Qm}− = (qmQn)Qm − qm (QnQm) = H3,13(m,n)
{Qn, Qm, qm}− = (QnQm) qm −Qn (Qmqm) = H3,14(m,n)
{Qm, Qn, qm}− = (QmQn) qm −Qm (Qnqm) = H3,15(m,n)
{Qm, qm, qn}− = (Qmqm) qn −Qm (qmqn) = H3,16(m,n)
{Qm, qn, qm}− = (Qmqn) qm −Qm (qnqm) = H3,17(m,n)
{qn, qm, Qm}− = (qnqm)Qm − qn (qmQm) = H3,18(m,n)
{qm, qn, Qm}− = (qmqn)Qm − qm (qnQm) = H3,19(m,n)

where H3,i(m,n) are operators (but may be they are numbers). The alternativity properties are

{qn, qn, Qm}− = (qnqn)Qm − qn (qnQm) = 0
{qn, Qm, qn}− = (qnQm) qn − qn (Qmqn) = 0
{Qm, qn, qn}− = (Qmqn) qn −Qm (qnqn) = 0

5.3 Self-consistency of quantum (±)associators

The self-consistency of the (±)associators for the product of three operators can be proved
according to the commutative diagram (5.3). For this we permute the first and third factors in
the product a(bc) by following the commutative diagram

a (bc) ................
................

..........................
............

.......................................................... ..........
..

a (cb) (ac) b (ca) b c (ab)............................................. ............ ............................................. ............ ............................................. ............

(ab) c (ba) c b (ac) b (ca) (bc) a (cb) a............................................. ............ ............................................. ............ ............................................. ............ ............................................. ............ ............................................. ............

c (ba)
..................

..................
.......................
............

........................................................................................................................................................................................................................................................................................... ............

(5.3)

In [5, 6] it is shown that the (±)associators with the product of three operators are self-consistent.
On this level it is impossible to define operators H3,i.

6 Outlook

In this paper we have shown that the constraint (2.2) can be resolved by an unexpected man-
ner: the constraint is a generating relation for a new non-associative algebra. The bilinear
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combination of operators of this algebra make up an operator of an observable physical quan-
tity. Probably: (a) such decomposition can be done only in the case if these physical quantities
have strong interaction; (b) there exists an associative subalgebra of the above-mentioned non-
associative algebra where associative operators can be decomposed by non-associative operators
following to the slave-boson way. In [6] such observable physical quantities are called white (col-
orless) operators. One can say that this hypothesized decomposition of an associative operator
on non-associative operators (similar Eq’s (2.1) and (4.3)) is in some sense the generalization of
quark confinement hypothesis: in both cases we have observable physical quantities which are
build from unobservable quantities.
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