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Abstract
Biomolecular computing, encompassing computations performed by molecules, proteins and DNA, is a central 

area of focus in Synthetic Biology research and development, which attempt to apply engineering design principles 
in living cells. Two major computation paradigms have been implemented so far in living cells - analog paradigm that 
computes with a continuous set of numbers and digital paradigm that computes with two-discreet set of numbers. 
Here, we analyze the biophysical and technological limits of large-scale gene networks created based on analog and 
digital computation in living cells. More specifically, we calculate the precision of analog systems and the noise margin 
of digital systems in living cells. We conclude that both systems are challenging to operate with low protein levels. 
To overcome this challenge, we show that analog systems should operate with a Hill coefficient smaller than 1 and 
digital systems should be buffered. Furthermore, an analytical description of a biophysical model recently developed 
for positive feedback linearization circuits and used in analog synthetic biology, is presented. Finally, we suggest new 
directions for engineering biological circuits capable of computation.
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Introduction 
Computation has become an integral part of our evolution and 

marks a significant landmark in modern technological revolutions. The 
first abacus “calculator” was invented before 2000 BC and was based 
on counting continuous numbers, a process known today as an analog 
computation. However, scaling the complexity of computation was 
only truly achieved in the last century, when the digital transistor that 
counts discrete values, was invented. Computation based on digital 
design is relatively straightforward, with clear ON and OFF states 
that can and provide reliable results and form the basis for screening. 
Furthermore, digital circuits, with tightly controlled physical 
parameters, can be simply assembled to form complex networks, with 
very low cross-talk between components. The evolution of digital 
computation mainly relies on shrinking the transistor dimensions, 
which have almost reached the fundamental physical limits of scaling 
laws, breaking Moore's law. In contrast to digital design, analog design 
computes with a continuous set of numbers, with each wire carrying 
many bits of information. In addition, it uses the powerful laws of 
physics, that are naturally embodied in analog transistors, to execute 
sophisticated computational functions (e.g. addition, subtraction, 
multiplication, division, logarithms and power laws). The evolution 
of analog computation mainly relies on feedback loops to improve 
precision, attenuate noise and expand the working dynamic range [1]. 

The last decade witnessed major breakthroughs in biophysics and 
genomic technologies. Researchers have successfully applied biophysical 
models, by combining several genes to create basic biological networks 
with predictable behaviors in living cells [2-4]. At the same time, thanks 
to nanotechnology and biotechnology, significant advancements in 
genome DNA engineering and assembly techniques have been achieved 
[5]. An outcome of these advancements is an extraordinary set of 
design rules and engineering tools that enable massive reprogramming 
of the DNA code in living organisms, including humans. This new 
technology, known as "synthetic biology" [6-8], attempts to translate 
engineering design principles to rational biological design [9,10], 
to achieve multi-signal integration and processing in living cells for 
diagnostic, therapeutic and biotechnological applications [11-14]. For 

example, living cells can be programmed to produce pharmaceutical 
compounds that are extremely challenging to synthesize using existing 
methods [11], microbiome bacteria can be programmed to detect and 
respond to changes in clinical homeostatis [12], and gene circuits 
can be engineered to identify and eliminate cancer cells [15]. These 
developments constitute a milestone that marks the beginning of new 
biomolecular computing technologies, based on nano scale-level gene-
circuits in living cells that set an alternative limit to Moore's law.

Early efforts at biomolecular computing have used binding and 
unbinding reactions to represent the "ON/OFF" or "1/0" logic states. 
Consequently, proteins that bind to DNA or promoters and activate high 
levels of gene expression, represent the"1" logic state, while unbound, 
free proteins yield low levels of gene expression, andrepresentthe"0" 
logic state. Many genetic circuits that mimic electronic digital circuits, 
have been constructed to perform Boolean logic gates [16-18], counter 
[19] and memory [20] devices in living cells. However, because signals
in living cells are graded in their nature [21-24] and do not generally
exist in only two possible states, digital paradigms are often an
oversimplified means of describing signals in living cells.  Thus, such
representation can lead to errors in construction and implementation
of genetic circuits and challenge gene-network scaling in living cells
[22,23].

To date, engineered artificial logic gates in living cells have been 
proven difficult to scaledue to cellular resource limitations, a lack of 
orthogonal genetic devices, high leakage levels of synthetic genetic 
devices and the absence of suitably sharp input-to-output transfer 
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functions [22,23]. Recently, genetic circuits have been constructed 
based on analog design [24]. Such gene circuits take advantage of the 
complex operations already naturally present in living cells, to execute 
sophisticated computational functions. For example, analog genetic 
circuits exploit positive feedback loops to implement logarithmically 
linear sensing, addition, division [24] and negative feedback loops 
while performing square-root calculations to determine chemical 
concentrations [24]. Analog genetic circuits involve fewer components 
and resources, and execute more complex operations than their digital 
counterparts [21,24,25]. For example, an analog adder can be achieved 
by simply combining two parallel circuits, where each accepts different 
input molecules and produces common output molecules [24]. This lies 
in sharp contrast to digital adders, which sum two “1” binary numbers, 
and require another stage to hold the new bit “Carry out” (“10”). For 
instance, a 4-bit digital adder may require more than 30 synthetic 
parts to operate, and at the same time, would place a substantial 
metabolic burden on a cell [21]. By analogy to electronics, noise in 
biological systems [26,27] can set the physical and technological limits 
of engineered analog-design large-scale gene networks based in living 
cells. For an in-depth analysis of the pros and cons of analog versus 
digital computation in living cells and electronics, readers are referred 
to excellent reviews on the subject [1,25]. 

In the present article, we analyze the biophysical and technological 
limits of large-scale gene networks created based on analog and digital 
computation in living cells.  The working dynamic range, noise margin, 
basal (leakage) level of biological parts, sharpness of input-to-output 

transfer functions and copy number of synthesized proteins/molecules 
are assessed. In the second part of this paper, we analyze analog 
computation in living cells. We close the work with suggestions for 
future directions for engineering computation functions in living cells.

Accuracy of Analog Systems in Living Cells
Figure 1a shows two computational elements in living cells; in the 

first one, the biochemical reaction occurs at the protein-DNA level. 
It includes an input protein signal (x) that binds to a promoter and 
activates transcriptional and translational processes to synthesize 
an output protein signal (z). In the second element, the biochemical 
reaction occurs at the chemical/protein-protein level. Both bio-
computing elements can be described by a Michael is–Menten enzyme–
substrate binding reaction via a Hill function, given by:
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( )
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where, Kd is a dissociation constant of a biochemical reaction (Kd=K-

1/K1), z0 is the basal level of binding, zmax is the maximum protein 
concentration achieved by the system, and n is the Hill coefficient, 
describing cooperativity. Figures 1b and 1c describe the input-to-output 
transfer function of Equation 1, which includes two regions: an analog 
continuous mode and a digital mode. In the analog mode, the function 
can be described by a log-linear transduction ( )log( / dz vs y x K= , while 
in the digital mode, it can be viewed as two discreet values ("0" and "1").
Equation 1 can be approximated at x=Kd or (y=0), using Taylor series, as:

 

 
 

 
Figure 1: (a) Basic bio-computing elements in living cells, including a protein that binds to a promoter and an inducer that binds a promoter (k1 is the forward 
rate of the binding reaction, k-1 is the reverse rate of the binding (unbinding) reaction) (b) Analog mode: input-to-output transfer function of equation 1 (blue line) 
and log-linear function at y=0 (black line) (c) Digital mode: Equation 1 represents two logic states "0/1" (d) Noise analysis of log-linear analog systems, (e) Total 
noise is the sum of amplified extrinsic noise and intrinsic noise in a log-linearanalog systems.
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Log-linear transduction, known as Weber's Law, is widely used 
in natural systems, such as audition, vision and cells [28], and offers 
advantages over linear-linear transduction. For example, small changes 
in the output of log-linear systemsare proportional to small changes in 
the input signals divided by their intensity (Δz∝Δx/x), demonstrating a 
memory element in the system. In contrast linear-linear systems show 
proportionality between small changes in the output and small changes 
in the input signals only (Δz∝Δx). The input dynamic range (IDR) in 
an analog mode is defined as (Figure 1b):
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x
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                   (3)

Where ( ) 0 0.8maxz x x z a= - =  and ( ) 0 0.2minz x x z a= - = . Under 
there definitions, the error between the log-linear analog function (Eq. 
2) and a Hill function (Eq. 1) at the limits of the IDR, is less than 5%.  
By substituting xmax and xmin in equation 3, IDR is then given by:

1.2IDR
n

»                    (4)

Equation 4 shows that by decreasing the Hill coefficient or the 
sharpness of the input-output transfer function of the binding reaction, 
one can increase the log-linear range. In natural biological systems, 
the Hill coefficient typically ranges between 1 and 4 [26], and then the 
IDR varies between 1 to 0.25 orders of magnitude.  Recently, Danial 
et al. showed that by implementing a graded positive feedback loop in 
synthetic biological systems, one can increase the IDR by 4 orders of 
magnitudes [24]. 

Signals often originate from the transport of discrete random 
carriers in systems; in electronics, it is a drift/diffusion of electrons 
[1], in physics, it is the movement of photons and in biology, it is the 
diffusion of biochemical molecules and proteins [27,29]. Naturally, 
these signals propagate through networks with random fluctuations, 
which can be described by a Poisson process, generating shot noise 
that scales as the square-root of the molecular count [27]. Here, we 
analyze the design rules, determined by laws of cellular noise, which 
set the performance limits of analog and digital biological systems. 
Typically, there are two orthogonal sources of noise in any biological 
system [29,30]. The first source is the intrinsic noise, generated by the 
system itself, and the second source is the extrinsic noise, generated by 
random fluctuations in the input or another environmental parameter. 
A stochastic model for cellular intrinsic noise may be greater than 
Poisson process, with addition of burst size (bint) is given by [27]: 

( ),int int1z b Zs = + ×                                 (5)

The burst size in a gene expression model is the average number 
of proteins synthesized ( )Z per mRNA transcript. In a simple enzyme–
substrate binding reaction, the cellular intrinsic noise is given by 
a Poisson process only. For simplicity, we assume that the system is 
operated at x=Kd and then, if z=zmax/2 is substituted in equation 5, we 
get:

( ) max
,int int1

2z
zbs = + ×                   (6)

The gain of an analog system in a log-linear mode, amplifies random 
fluctuations in the input signal (Figure 1d). Then, the contribution of 
extrinsic noise (σy) on the output signal at x=Kd in a log-linear mode is 
expressed by:
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The input y, is described by a log-linear function with input x, and 
therefore, the noise of y at x=Kd is a function of the noise of x (σx), and 
is given by:

d
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The input x, is a number of proteins or chemical molecules and 
thus, its noise (σx) can be described by a Poisson process, with addition 
of burst size (bext) ( )( )1 .x ext db Ks = + . By substituting the last term of 
σx in Equation 8, we get:

1 ext
y

d

b
K

s
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=                    (9)

Equations 8 and 9 reveal that the noise in log-linear systems scales 
as the inverse of the square root of the molecular count, in contrast to 
linear-linear systems, where the noise scales as the square-root of the 
molecular count ( )x xs µ . It is simple to show that the gain of a log-
linear system at y=0 (or x=Kd) is equal to:

( )
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By substituting Equations 9 and 10 into Equation 7, we find that the 
contribution of the extrinsic input noise on the output signal is:
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,
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4
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Because the intrinsic and extrinsic noise or thogonally contribute 
to the total noise of the system (σz) [27], the total noise can be given by:

2 2
,int ,z z z exts s s= +                  (12)

If we substitute  the values of intrinsic and extrinsic noise, i.e., 
Equations 6 and 11, respectively, into the last formula, we find that the 
total noise in the output of the analog signal in biochemical reactions is 
given by: 
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Any small change in the input (Δy), within the IDR range, is 
amplified by the gain of the system and yields a change in the output 
(Δz=gain·Δy, Figure 1d and 1e). Biological systems have a log-linear 
transduction and therefore, the change of the output (Δz) as a response 
to change in the input (Δy=Δx/x) at x=Kd, is given by:

max
4

nzz yD = ×D                    (14)

Forimproved performance of analog systems, we require that 
changes in output are larger than the total noise of the system (Δz>σz) 
(Figure 1d). Thus, the minimum change in the input (Δymin) is given by: 

( ) ( )int
min 2
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8 1 1 ext

d

b b
y

Kn z

× + +
D = +

×
                (15)

Equation 15 suggests that increasing the Hill coefficient (n), or the 
sharpness of input-to-output transfer function, of analog biological 
systems improves their performance. However, as we have shown in 
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Equation 4, the IDR is reduced for high values of n, thereby affecting 
system performance (e.g., for a high value of n, the IDR can be smaller 
than the minimum change in the input (Δymin), thereby reducing the 
system’s performance). Therefore, we define the precision of an analog 
system, which is equivalent to the signal-to-noise ratio, as the number 
of levels that the system can distinguish in the presence of noise. This 
can be calculated as the ratio of IDR (Equation 4) and minimum 
changes in the input (Equation 15):

( ) ( )min 2int

max

1#
8 1 1

level
ext

d

IDRN
y b b

n
z K

º »
D + +

+ ×
                     (16)

Equation 16 represents the precision of analog systems in a log-
linear mode, when we consider the contribution of extrinsic/intrinsic 
noise and the input dynamic range. The equation suggests that for high 
molecular counts or protein copies, the precision of the system will 
be enhanced. It also shows the contribution of extrinsic noise, which 
depends on a Hill coefficient, and the contribution of intrinsic noise, 
which is independent of a Hill coefficient. We now analyze Equation 
16 under two different conditions, in accordance with the proposed 
basic bio-computing elements in living cells (Figure 1a). In a chemical/
protein-protein reaction, the dissociation constant is often larger 
than the maximum protein copy number (zmax<<Kd), and therefore, 
Equation 16 can be approximated as:

( )
max

int
#

8 1levl
zN

b
»

+
                 (17)

In this case, the intrinsic noise can be viewed as the fluctuations 
in chemical/protein-protein binding and protein synthesis.  While 
Equation 17 is only an approximation, it describes the precision 
of analog systems when the extrinsic noise is small. Under these 
conditions, the precision of the system is set only by the maximum 
protein copy number achieved by the system and by the intrinsic noise 
(Figure 2a ), independent of IDR. 

Analog systems can be alternative to their digital counterparts 
(1 bit of output precision) when operating with 4 to 8 levels of 
information (equivalent to 2-3 bits of output precision), which, based 
on our analysis (Figure 2a), can be achieved with 1000 proteins copies 
or molecular counts. In Escherichia coli, 1000 molecule counts is equal 
to a concentration of 1μM, which is typically the levels of signaling 

proteins [31] (e.g., it was found that there are roughly 100 copies of 
EnvZ per cell and around 3500 copies of OmpR).

Protein-DNA biochemical reactions that involve transcription and 
translation processes, often operate with low protein copy numbers 
[31]. For such systems with both intrinsic and extrinsic noise sources, 
precision in a log-linear mode is described by Equation 16.  For 
simplicity, we rearranged Equation 16 and assumed that the number 
of input and output protein copies are equal (Kd=Zmax/2) and the burst 
size for intrinsic and extrinsic noise is also equal (bint=bext=b): 

( ) ( )
max

2
#

8 1 1
level

zN
b n

»
+ × +

              (18)

The burst sizerelies on the translation rate, number of amino acids 
(aa) in the synthesized protein and on mRNA half time. Typically, 
in Escherichia coli, the translation rate ranges between 10-20aa/sec, 
depending on growth conditions [31], and mRNA half time is around 
3-5 min [31].  Therefore, the burst size in Escherichia coli, can range 
between 3-15. Figure 2b shows that, to achieve proper performance 
of analog systems based on protein-DNA biochemical reactions with 
4-8 levels of information (2-3 bits of precision), the effective Hill 
coefficient should be smaller than one. The measured Hill coefficient in 
natural biological system is often higher than one, therefore, there are 
challenges in creating analog genetic circuits. 

Analog Computation in Living Cells
The first step toward implementation of synthetic analog 

computation in living cells, is to broaden the input dynamic range 
of genetic synthetic parts. Protein-DNA interactions typically have 
a narrow dynamic range, spanning 0.5 - 1 orders of magnitude. The 
input dynamic range of genetic parts is set by the cooperative binding 
of proteins to DNA and is often positive, with a Hill coefficient larger 
than one. This would mean that once one protein is bound to a DNA 
binding site, its affinity for other proteins increases. By contrast, a 
negative cooperative binding reaction has a Hill coefficient smaller 
than 1. Dainal et al. [24] implemented a positive feedback loop and 
decoy binding sites to shunt the proteins away from their target binding 
site, and achieved a Hill coefficient smaller than 1, with a very wide 
input dynamic range. Comprehensive biophysical and biochemical 
reaction models that fit their experimental results were presented 
[24]. In this article, we show a new analytical model that can explain 

 

(a) (b) 

Figure 2: Noise Tolerance Analysis for reliable analog computation in living cells. 
(a) The figure shows the precision of analog systems in a log-linear mode, when we take into account the contribution of intrinsic noise and input dynamic range 
(Equation 17) (b) The figure shows the precision of analog systems in a log-linear mode, when we take into account the contribution of extrinsic/intrinsic noise 
and input dynamic range (Equation 18).
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the contribution of a shunt on an open loop and positive feedback 
loop. Figure 3a describes a transcription factor x(TF) that binds to m 
identical promoters. The m-1 binding reactions act as a decoy or shunt 
pathway for the transcription factors. For simplicity, we assume that the 
Hill coefficients for all the promoters are equal to 1. The biochemical 
reaction model of this system is presented in Figure 3b and its solution 
in steady state is given by:

1
1

1 1

1

Pr

Pr Pr Pr

Pr

rf
b

d

f b

T b

x P
K

x x m

ì ×ïï =ïïïïïï = -íïïï = - ×ïïïïïî
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- ×
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                 (19)

where Pr is the total number of target promoters, Prf is the number of 
free target promoters, Prb is the number of target promoters occupied 
by transcription factors, xT is the total number of transcription factors 
and Kd is the dissociation constant of the binding reaction. Equation 19 
can be viewed as a Michael is–Menten (MM) model (equation 1) with a 
negative feedback (Figure 3c). The addition of decoy or shunt pathways 
increases the strength of the negative feedback loop and shifts the 
switch point of input-output transfer function to higher values (Figure 
3d). If we fit the simulation results of Equation 19 to a Hill function, 
we find that the effective dissociation constant scales with the number 
of shunt reactions (Figure 3e; Kdeff=m·Kd). For a very large number of 
shunt reactions or very strong negative feedback loops, Equation 19 
can be approximated as a linear-linear function (Figure 3d), with a very 
weak signal and is given by:

max 1 0rfz z P z×= +                   (20.1)

max 0
T

d

xz z z
m K

= +
×

×                  (20.2)

Equation 20 represents the copy number of synthetized proteins 
in an open loop and shunt circuit. To amplify the weak signal of the 
open loop circuit, a positive feedback loop regulating only the target 
promoter, was included [24]. Figure 4a shows the new positive feedback 
loop and shunt circuit. Danial et al. used external inducers (e.g., AHL 
as a quorum sensing molecule or arabinose) to trigger the positive 
feedback loop and shunt. A simple model of the circuit is presented 
in Figure 4b and includes three elements: (1) a linear circuit that 
demonstrates the contribution of shunt reactions (Equation 20), (2) a 
positive feedback loop, and (3) a multiplication operator. The inducer-
transcription factor binding reaction is modeled by a multiplication 
between the transcription factor and Hill function (xT=z*f(In)). By 
substituting the last expression into Equation 20, we can express the 
solution of a graded positive feedback loop and shunt circuit as:

( )
0

max1 n
d

zz z f I
m K

=
- ×

×
                (21)

We can distinguish between two cases: (1) a very strong (zmax/
m·Kd>>1) positive feedback loop, which yields a sharp input-output 
transfer function. In this case, the inducer-output protein transfer 
function is set by the transcription factor–promoter binding reaction 
and inducer-transcription factor binding reaction. The solution in this 
case is obtained by substituting xT=z*f(In) into Equation 19 (Figure 
4c). (2) A graded positive feedback (zmax/m·Kd<<1), which yields a log-
linear transduction between input and output (Figure 4c). This can be 
achieved by increasing the number of shunted biochemical reactions, 
or by decreasing the binding efficiency of transcription factors to the 
promoter, or decreasing the translation/transcription rates of proteins 
affecting zmax. In this case, the inducer-output protein transfer function 
is set by the inducer-transcription factor binding reaction only and is 
given by:

 

Figure 3: (a) Open loop and shunt circuit: a transcription factor binds to m identical promoters, (b) biochemical reaction model of an open loop and shunt circuit, 
(c) a schematic model includes Michaelis–Menten and a negative feedback for the open loop and shunt circuit (d) Simulation results show the contribution of 
shunt biochemical reactions on the activity of the target promoter (e) The simulation results show the contribution of the shunt biochemical reactions on the 
effective dissociation constant.  
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Figure 4c shows that the reduction of zmax/m·Kd broadens the input 
dynamic range of the positive feedback circuit. We can see that our 
analytical model fits (Equation 22) the exact model constructed based 
on biochemical reactions. The positive feedback loop and shunt circuit 
cannot widen the input dynamic range (IDR) more than the dynamic 
range of the inducer-transcription factor binding reaction (Figure 
4d). The maximum signal that can be achieved in such a system is 
z=z0·(1+zmax/m·Kd), and therefore, the addition of shunt biochemical 
reactions decreases the signal output. A simple explanation was 
provided by Danial et al. [24], who suggest that the shunt creates 
several binding sites that delay the saturation of the transcription 
factor-binding site reaction at the target promoter. At the same time, as 
the inducer concentration increases, the positive feedback loop enables 
continuous production of just enough transcription factors. 

Synthetic analog parts that operate in a log-linear mode with a 
wide input dynamic range, can be simply integrated into more complex 
circuits for higher order functions [24]. For example, a genetic analog 
adder has been constructed in living cells by simply combining two 
analog synthetic parts (e.g., positive feedback loop and shunt) that 
each accept different input molecules and produce the same output 
molecules [24]. The addition operator was achieved by summing up 
the common diffusion fluxes of output molecules [24].  This operation 
is equivalent to Kirchhoff's current law in electronics. By contrast, a 
genetic digital adder cannot be constructed using the same principle 
that exploits a common output signal, since every wire in digital design 
represents only a bit of information, and would require an additional 
stage to hold the carry out. For example, building a half 1 bit adder in 
bacteria requires7 synthetic parts [32-34]. Analog computation presents 

an alternative to digital computation when the number of synthetic parts is 
limited. An analog subtractor can be constructed using the same principles 
applied for the analog adder [26]. The analog subtractor has two log-linear 
stages that produce common output proteins, one stage with a positive 
slope and another stage with a negative slope. Danial et al. [24] has used a 
LacI repressor to implement an analog stage with a negative slope. 

Noise Margin of Digital Systems in Living Cells
Figure 1c describes the input-to-output transfer function of 

Equation 1 in a digital mode, as ( ) ( )( )maxlog log log / log / ds z z vsy x K- = = . 
It can be viewed at two discretelevels (low and high):

H H

L L

s y y
s

s y y
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                  (23)

This device demonstrates a buffer logic gate operating in its extreme 
regions. This is exactly the opposite of its use as an analog device, where 
it operates in a log-linear region, at the middle of the transfer function 
(x=Kd). Digital logic gates utilize the gross nonlinearity exhibited by 
biochemical reactions in living cells. With these observations, the low-
level output (sL) does not depend on the exact value of the input signal 
(y) as long as it does not exceed the low-level input (yL). Similarly, 
we observe that high-level output (sH) does not depend on the exact 
value of the input signal (yL), as long as its value does not fall below 
the high-level input (yH). When the input signal is higher than the low-
level input and lower than the high-level input (yL<y<yH), the output 
increases and the logic gate enters its transition region, where the 
device can only act as an analog device. Similarly, we can define the 
logic levels for others logic gates. Ideal digital logic gates have a zero 
width of transition region and infinite sharpness of input-to-output 
transfer functions (very high Hill coefficient), operating in the middle 
of their transfer function at x=Kd (yL=yH=0), with maximum gain. 

 

Figure 4: (a) Positive feedback loop and shunt circuit: the transcription factor is produced by its own promoter and binds to m identical promoters (b) A 
schematic model of positive feedback and shunt circuit includes a linear part (c) Simulation and analytical results showing a graded positive feedback loop (d) 
A schematic model for the input dynamic range of positive feedback shows the contribution of shunt biochemical reactions.
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(a)                                                                            (b) 

 
                                                 (c) 

 
                                        (d) 

Figure 5: (a) Input noise margin analysis for digital circuits in living cells (Equation 26) (b) Contribution of intrinsic noise to the output noise margin in digital 
circuits in living cells (c) Contribution of noise margin on cascading digital circuits in living cells (d) Output noise margin analysis for digital circuits in living cells 
(Equation 29).   

However, the presence of intrinsic and extrinsic noise in biological and 
electronic systems limits the performance of ideal logic gates and drives 
a transition region with an input noise margin (INM) and output noise 
margin (ONM):

( )log /H L H LINM y y x xº - =  

( )log /H L H LONM s s z zº - =                     (24)

The minimum INM will be set by the extrinsic noise of the input 
system and is given by:

1 ext

d

bINM
K
+

³                (25)

In Equation 24, we assumed that the buffer logic gate operates 
at x=Kd (INM>σY). As we have shown, the transition region (or 
IDR in analog systems) is set by a Hill coefficient. For simplicity, we 
approximate the INM≈1/n (Equation 4). Then, Equation 25 can be 
given by:

1
d

ext

Kn
b

£
+

                    (26)

Equation 26 is demonstrated in Figure 5a, which shows that for a 
low level of input protein (or a low dissociation constant; for simplicity 
we assumed that Kd=Zmax/2), the digital logic gate should operate with 
a very high input noise margin and a low Hill coefficient. Under these 
conditions, the system has a graded behavior, acting as an analog 
system. Our analysis has shown that noise limits the performance 
of both analog and digital systems in living cells, rendering them 
extremely challenging to operate with low level of proteins. 
Alternatively, operating with a high level of input proteins can improve 
the performance of digital systems and reduce the INM. However, 
it increases the output noise margin. To quantify this insensitivity 
property, we consider the situation that often occurs in digital systems, 
where one buffer logic gate drives another buffer logic gate (Figure 5b). 
In this case, the digital cascade can only operate properly when the low-
level output (sL) of the first stage is lower than the input level (yL) of the 
second stage and when the high-level output (sH) of the first stage is 
higher than the input level (yH) of the second stage. The output of the 
first stage often includes an intrinsic noise which sets the limits on the 
performance of the cascade (Figure 5b), and therefore we can write:

L L sLy s s³ +                 (27.1)

H H sHy s s£ -                (27.2)
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Because the relation between the output s and output z is described 
by a log-linear function, the noise of output s is given by /s z Zs s=
and ( )int1 /s b Zs = + .   Subtracting Equation 27.2 from Equation 27.1, 
i.e., substituting the noiseof the output sand assumed that zH>>zL gives:

int1

L

b
Z

ONM INM +
» +                (28)

To better understand Equation 28, we will cascade three identical 
buffer logic gates with zL=10 and bint=9 (Figure 5c). The resulting 
output noise margin of every layer i is larger than its input noise margin 
by one order of magnitude (ONMi=INMi+1), and the output noise 
margin of the last layer is larger than the input noise margin of the first 
layer by three orders of magnitudes (ONM3=INM1+3). For example, 
constructing a cascade of three logic layers, with an initial input noise 
margin of one order of magnitude, causes the last stage to have a very 
wide input dynamic range spanning 4 order of magnitudes (Figure 5c). 
Alternatively, we can increase the low-level output to 100 molecules, 
achieving ONM≈INM, however in this case, the high-level output is 
set to very high values. The basal level (z0) in synthetic biological parts, 
is often very large, and therefore, it sets the low-level output of digital 
systems (zL≈z0).If we substitute the INM in Equation 25 into Equation 
28, we find other important relations:

int

0

1 1ext

d

b bONM
K Z
+ +

= +              (29.1)

i

0

nt11 bONM
n Z

+
» +                            (29.2)

The last two equations quantify how the output noise margin of 
digital systems in living cells relates to intrinsic and extrinsic noise 
sources, Hill coefficient, basal level and molecule counts. Based on 
our analysis, in contrast to analog systems, the basal level is extremely 
important in determining the performance of digital systems (Figure 5d). 

Digital computation in living cells have been widely used in 
synthetic biology and have been reviewed in several articles [7,8,33]. In 
this article, we briefly reviewed and discussed two key synthetic digital 
devices that were implemented in living cells. In the AND logic gate, 
output is only high if all inputs are high. The devices were constructed 
in bacteria [34,18], yeast [35] and mammalian cells [15], using a binding 
reaction between two synthetic parts regulated by input promoters. For 
example, Nissim et al. [18] constructed a system with two inputs that 
are duplicates of endogenous promoters that regulate the expression of 
a two-hybrid system, with one part fused to an activation domain, and 
the other to a binding domain. Together, they form a transcriptional 
complex that can bind a synthetic output promoter to express an 
output gene. By design, output is only generated if both endogenous 
promoters are active in the cell above a specific threshold. In the OR 
logic gate, output is high if at least one input is high. This device was 
constructed using two promoters that regulate the same gene [16]. 
Taking different approaches, several groups have constructed logic 
gates and memory using recombinase proteins [20].

Summary
Synthetic and Systems Biology have recently learned to exploit 

analog and digital genetic circuits for computation and decision 
making. In this work, we analyzed the precision of analog systems 
(Equation 18) and the noise margin of digital systems (Equation 29). 
We demonstrated that the performance of analog and digital systems 
in living cells is significantly impacted by extrinsic and intrinsic noise 

sources. We showed that both systems are challenging to operate with 
low protein levels and that both systems require optimization. For 
example, analog computation operates with Hill coefficients smaller 
than 1and cascading of digital systems increases the input noise margin, 
conditions under which the digital system has a graded behavior acting 
as an analog system. We also have shown that, in contrast to analog 
systems, the basal level is extremely important in determining the 
performance of digital systems. Furthermore, we argue that, compared 
to digital design, analog computation is very efficient in its use of 
synthetic parts, however, embedded digital systems can operate reliably 
with low molecular counts. Therefore, biological systems that integrate 
both analog and digital circuits may provide an alternative strategy 
for scaling the complexities of computation in living cells [24,25]. 
Although this design is widely used in electronics, in such contexts, 
it mostly aims to convert analog signals to a two-logic states and not 
to build efficient systems. Therefore, in our opinion, a hybrid analog-
digital architecture in living cells should take a different approach than 
in electronics.
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