Noise Filtering Cancer Mortality Data for a Better Assessment of Health-Environment Relationships: Application to the Picardy Region

Mahdi-Salim Saib1,*, Julien Caudeville1, Florence Carre1, Olivier Ganny2, Alain Trugeon3 and Andre Cicolella4

1French National Institute for Industrial Environment and Risks; Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
2University of Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
3University Hospital of Amiens; Place Victor Pauchet Amiens, 80054, France
4Regional Observatory of Health and Social Issues in Picardie (OR2S); 3, rue des Louvels, Amiens, 80036, France

Abstract

Cancer is one of the leading causes of mortality. However, it is necessary to analyze this disease from different perspectives. Cancer mortality maps are used by public health officials to identify areas of excess and to guide surveillance and control activities. However, the interpretation of these maps is difficult due to the presence of extremely unreliable rates, which typically occur for sparsely populated areas and/or for less frequent cancers. The analysis of the relationships between health data and risk factors is often hindered by the fact that these variables are frequently assessed at different geographical scales. Geostatistical techniques that have enabled the process of filtering noise from the maps of cancer mortality and estimating the risk at different scales were recently developed. This paper presents the application of Poisson kriging for the examination of the spatial distribution of cancer mortality in the "Picardy region, France". The aim of this study is to incorporate the size and shape of administrative units as well as the population density into the filtering of noisy mortality rates and to estimate the corresponding risk at a fine resolution.

Keywords: Poisson kriging; Filtering; Cancer mortality

Introduction

One objective of the French National Plan for Health and the Environment (NPHE) is to prevent diseases caused by environmental factors, particularly cancer. In this context, the Cancer Inequalities Regions, Countries and Environment (CIRCE) project aims to quantify how much the socio-economic and environmental factors account for geographical inequalities, here defined mortality due to cancer.

In France, geographical health inequalities are a recent study topic. Previous studies were based on either individual-level surveys [1,2] or spatially aggregated data (administrative unit) from specific regions of France [3]. On a regional scale, data are often available at a fine level of resolution. This allows for building environmental, socioeconomic and health indicators. The following are two illustrative examples of this: (1) Rey et al. [4] built a FDep deprivation index, which was mapped using the most detailed census administrative level (French census tract IRIS); (2) Advances in computational technologies and development of widely accessible georeferenced databases are permitting the connection of information systems such as Geographic Information Systems (GIS) and risk models. Exposure indicators described in Caudeville et al. [5,6] for quantifying human exposure to chemical substances were mapped at a resolution of a 1 km² grid.

Regarding health data, because there is a protection rule for individual patient data, these data are not publicly available. Only aggregated data are available at the level for which the disclosure or reconstruction of the patient identity is impossible. These corresponding levels of these census units may be regions or counties in France. This aggregation unfortunately results in large uncertainty about rates or risks calculated for small or sparsely populated areas. This effect is known as the “small number problem” [7]. Another challenge for epidemiology is the analysis and synthesis of the relationships between spatial data collected at different spatial scales.

The geostatistical approach, in this context, presents a spatial methodology that allows for filtering the noise caused by the small number problem and enables the estimation of mortality risk and the associated uncertainty at different spatial scales.

The geostatistical analysis of disease data has received increasing attention with kriging becoming more popular. Lai performed ordinary kriging on Chinese cancer mortality data of 63 rural counties [8]. To produce a set of contour maps, the spatial structure of the cancer mortality rates was studied but other possible covariates were not incorporated. A first attempt to take into account the discrete nature of cancer data was the use of binomial cokriging which was employed to produce a map of childhood cancer risk in the West Midlands Health Authority Region (WMHAR) of England [9]. The application of this technique to Long Island (USA) data led to negative variogram estimates. To avoid this problem, binomial cokriging was extended to the case when the variance of observed rates is smaller than expected under the binomial model. One geostatistical filtering approach used is modified binomial cokriging which was applied to estimate breast cancer incidence in Long Island, New York [10]. The modified technique was shown to be more flexible and robust concerning the underlying hypothesis that all counties have the same spatial support, and the simulation studies have demonstrated its more accurate estimates [11].

Another geostatistical technique, Poisson kriging, was recently developed to filter noise from the data by accounting for spatially varying population sizes and spatial patterns. The methodology for estimating a spatial Poisson distribution was first introduced by Kaiser et al. [12]. They developed the spatial "auto-models"
based on the Poisson distribution to be used to incorporate spatial dependencies among the variables. However, their model is not well suited for irregularly sampled data and interpolation. Monestiez et al. [13,14] introduced Poisson kriging to model spatially heterogeneous observations. The approach applied by Monestiez is similar to binomial cokriging proposed by Oliver except that the count data are assumed to follow a Poisson distribution. Poisson kriging was then generalised to estimate prostate cancer mortality risk in the United States [15], breast and cervix cancer mortality in New England States [16] and cholera and dysentery incidence risk in Bangladesh [17] by incorporating varying population sizes in the processing of cancer data. When the risk values were spatially correlated, simulation studies showed that in most cases, Poisson kriging outperformed other smoothers such as population-weighted estimators and empirical Bayes smoothers [16]. It is not practical to represent each geographic unit by its centroid, especially when geographic units vary greatly in size and shape. The geographical characteristics need to be incorporated for data analysis together with spatially varying population. The framework for Area-to-area (ATA) or Area-to-point (ATP) kriging was first introduced by Kyriakidis for interpolating point values from available areal data [18]. Govaerts modified the ATP estimator to a Poisson estimator and applied ATP Poisson kriging to lung and cervix cancer mortality in counties of the United States [15].

The aim of this paper is to examine the spatial distribution of cancer mortality in the Picardy region using geostatistical methods, which consists of two steps: (a) filtering of the noise in the data based on Poisson kriging (Area to Area-ATA) and (b) mapping of the corresponding risk at a fine resolution (Area to Point-ATP). The approach is illustrated using age-adjusted lip, oral cavity, pharynx and lung cancer mortality rates recorded from 2000-2009.

Materials and Methods

Study area

The region of Picardy consists of 112 counties (Figure 1), which covers an area of approximately 19,500 km² and is located between North Artois, the Ile-de-France in the south, the Bay of the Somme to the west and east Champagne. It covers the departments of Somme, Oise and Aisne. The urbanization rate in this region is far below the national average (60.4% compared to 74% for the whole country). The agricultural sector provides more than 4% of the French agricultural production. This region also has significant industrial activity. Fine and specialty chemicals account for nearly 15% of the jobs in this region and accounts for 40% of industrial employment (26.5% of assets employed in industry against 19.5% nationally).

Data sources

The health data came from the Regional Health Observatory of Picardy [19], where the age-adjusted mortality rates are calculated for each county from 2000 to 2009. Ten years is likely to be more representative in this case than a simple year in order to reduce temporal rate fluctuation. The average population of counties was computed annually by sex and age group for the years 2000 to 2009. These estimates were based on the census population conducted in 1999 and 2009, infant deaths recorded from 2000 to 2009 and the national mortality rates (metropolitan France). The relative proportion of the population in each cell of 1 km² was derived from the INSEE population data and was downloaded from the INSEE (National Institute of Statistics and Economic Studies) website.

Table 1 shows the cumulative, maximum and minimum number of mortality and age-adjusted rates/per 100 000 person-years by county from 2000 to 2009.

Geostatistical approach

Spatial prediction (Area-to-area (ATA) and Area-to-point (ATP))

Poison kriging: The cancer count \(D(v) \) is interpreted as a realization of a random variable \(D(v) \) that is Poisson distributed with a parameter (expected number of counts), which is the product of the population size \(n(v) \), by the local risk \(R(v) \). The local risk \(R(v) \) can be thought of as a noise-filtered mortality rate for area \(v \), which we also refer to as the mortality risk. It is estimated by using a variant of kriging with non-systematic errors, known as Poisson kriging [13]. The aggregation of data into areal units of different shapes and sizes can cause a visual bias. A particular case of ATA kriging is when the prediction support is so small that it can be assimilated to a single point, in which case ATP kriging [15,18] is used to create high-resolution maps of the estimated mortality risk to reduce this visual bias. To account for the shape of geographical units and their heterogeneous population density, the distance between any two counties is here estimated as a population-weighted average of Euclidian distances between points discretizing the pair of counties [20].

The mortality risk and the associated kriging variance for a unit \(x \) are estimated as:

\[
\hat{r}(x) = \sum_{i=1}^{K} \lambda_i z(v_i) \tag{1}
\]

Kriging variance is computed as follows:

\[
\sigma^2(x) = C_k(x,x) - \sum_{i=1}^{K} \lambda_i C_k(v_i,x) - \mu(x) \tag{2}
\]

where \(x \) represents either an area \(v_j \) (ATA kriging) or a point \(u \) within that area (ATP kriging). The kriging weights \(\lambda_i \) and the Lagrange parameter \(\mu(x) \) are computed by solving the Poisson kriging system of equations:

\[
\sum_{j=1}^{K} \lambda_j \left[C_k(v_i,v_j) + \delta_{ij} \frac{m^i}{n(v_i)} \right] + \mu(x) = C_k(v_i,x) i = 1, \ldots K \tag{3}
\]

\[
\sum_{j=1}^{K} \lambda_j = 1 \tag{4}
\]

where \(\delta_{ij} = 1 \) if \(i=j \) and 0 otherwise. The “error variance” term, \(m^i/n(v_i) \), leads to smaller weights for rates measured over smaller populations. The ATA covariances \(C_k(x,x) \) and ATP covariances \(C_k(v_i,x) \) are approximated as the population-weighted average of the point-support covariance \(C_r(h) \) computed between any two locations discretizing the areas \(v_i \) and \(v_j \), or \(v_i \) and \(u \). An important property of the ATP kriging estimator is its coherence: the population-weighted average of the risk values estimated at the \(P_i \) points \(u_i \) discretizing a given entity \(v_a \) yields the ATA risk estimates for this entity:

\[
\hat{r}(v_a) = \frac{1}{n(v_a)} \sum_{u \in v_a} n(u_i) \hat{r}(u_i) \tag{4}
\]

where \(u \in v_a \) with \(s=1,\ldots,P \), and \(n(u) \) is the population count assigned to the interpolation grid node \(u \). Constraint (4) is satisfied if the same K areal data are used for the ATA kriging of \(\hat{r}(v_a) \) and the ATP kriging of the \(P_i \) risk values.

Deconvolution of the semivariogram of the risk: An important step in the application of the kriging techniques is the inference of

0201 Anizy-le-Château
0202 Aubenton
0203 Bohain-en-Vermandois
0204 Braine
0205 La Capelle
0206 Le Catellet
0207 Charly
0208 Château Thierry
0209 Chauny
0210 Condé-en-Brie
0211 Coucy-le-Château Auffrique
0212 Craonne
0213 Crécy-sur-Serre
0214 La Fère
0215 Fère-en-Tardenois
0216 Gise
0217 Hirson
0218 Laon Nord
0219 Marie
0220 Moy-de-l’Aisne
0221 Neufchatel-sur-Aisne
0222 Neuilly-Saint-Front
0223 Le Nôtre-sur-Thiérache
0224 Ouchy-le-Château
0225 Ribemont
0226 Roissy-sur-Serre
0227 Sains-Richmont
0228 Saint-Simon
0230 Soissons
0231 Soissons-Nord
0232 Vally-sur-Aisne
0233 Vermand
0234 Vervins
0235 Vic-sur-Aisne
0236 Villers-Cotterets
0237 Wassigny
0238 Laon-Sud
0239 Saint-Quentin-Nord
0240 Saint-Quentin-Sud
0241 Soissons-Sud
0242 Tergnier
0243 Laon
0245 Saint-Quentin
0249 Soissons
0601 Attichy
0602 Auneuil
0604 Beauvais Sud-Ouest
0605 Betz
0606 Breteuil
0607 Chaumont-en-Vexin
0608 Chèvres
0609 Compiegne Nord
0610 Le Coudray-Saint-Germer
0611 Crécy-Nogent-sur-Oise
0612 Crépy-en-Valois
0613 Crévecœur-le-Grand
0614 Estrees-Saint-Denis
0615 Fère-en-Tardenois
0616 Froissy
0617 Grandvilliers
0618 Guiscard
0619 Lassigue
0620 Liancourt
0621 Mainglery-Montigy
0622 Marseille-en-Beauvaisais
0623 Mérigny
0624 Mesty
0625 Nanteuil-le-Haudoin
0626 Neufchâteau
0627 Nivelle
0628 Noailles
0629 Noyon
0630 Pont-Sainte-Maxence
0631 Ressons-sur-Matz
0632 Ridécourt-Dressincourt
0633 Saint-Just-en-Chaussée
0634 Seilles
0635 Songeons
0636 Chantilly
0637 Compiegne-Sud-Est
0639 Montataire
0640 Beauvais-Nord-Ouest
0641 Compiegne Sud-Ouest
0697 Compiegne
0698 Creil
0699 Beauvais
0800 Abbeville Nord
0802 Abbeville Sud
0803 Acheux-en-Amiénois
0804 Ailly-le-Haut-Clocher
0805 Ailly-sur-Noye
0805 Albert
0807 Amiens Ouest
0808 Amiens Nord-Ouest
0809 Amiens-Nord-Est
0810 Amiens-Est
0810 Ault
0812 Bernaville
0813 Boves
0814 Bray-sur-Somme
0815 Chantiers
0816 Comblies
0817 Cooty
0818 Courbe
0820 Crécy-en-Ponthieu
0820 Domart-en-Ponthieu
0821 Doullens
0822 Gamaches
0823 Hallencourt
0824 Ham
0825 Honfleur-le-Bourg
0826 Moliens-Dreuil
0827 Montdidier
0828 Moreuil
0829 Mouy
0830 Nanteuil
0831 Noyon
0832 Picquigny
0833 Picois
0834 Pierrefonds
0835 Poix-de-Picardie
0836 Roesel
0837 Rosses-en-Santerre
0838 Roye
0839 Roye
0840 Saint-Valery-sur-Somme
0841 Villers-Bocage
0842 Amiens Sud-Est
0843 Amiens Sud-Ouest
0844 Amiens Nord
0846 Fréville-Escarbotin
0849 Abbeville
0849 Amiens

Figure 1: Map of the study area.
the point-support variogram $\gamma_R(h)$ or, equivalently, the point-support covariance $C_R(h)$ defined as $C_R(0) - \gamma_R(h)$. This function cannot be estimated directly from the experimental variogram because the latter is computed from areal rate data. The regularized semivariogram of the risk can be estimated as:

$$\hat{\gamma}_R(h) = \frac{1}{2 \sum_{\nu \neq \beta} n(\nu_\alpha) n(\nu_\beta)} \sum_{\nu \neq \beta} n(\nu_\alpha) n(\nu_\beta) \left[z(\nu_\alpha) - z(\nu_\beta) \right]^2 - m^2$$

where, $N(h)$ is the number of pairs of areas (ν_α, ν_β), the population-weighted centroids of which are separated by the vector h. The usual
squared differences \([z(v_\alpha) - z(v_\beta)]^2\) are weighted by a function of their respective population sizes,
\(n(v_\alpha)n(v_\beta)/[n(v_\alpha) + n(v_\beta)]\), which are inversely proportional to their standard deviations.

Results and Discussion

Figure 2 shows the spatial distribution of mortality due to the cancer of lip, oral cavity and pharynx as well as lung cancer, age-adjusted per 100,000 person-years. It should be noted that the population is not evenly distributed throughout the study area (Figure 2a), and the rate calculated for a less populated county tends to be less reliable. This implies that the interpretation of the map must be carried out with caution. The scatter plot at the bottom of Figure 2 illustrates this effect, commonly known as the "small number problem," that translates into the larger spread of mortality rates for smaller populations.

The highest age-adjusted mortality rates per 100,000 person-years recorded from 2000–2009 for lip, oral cavity and pharynx cancers were more concentrated in the north of the region, but they are generally spread throughout the area, whereas the highest rates of lung cancers were located in the eastern part of the area.

The spatial distribution of population used to avoid the constraints of county geographical boundaries in the estimation is mapped in Figure 3a. This map shows a large variability of population concentration within each county. This variability was taken into account; the geographic centroids are replaced by population-weighted centroids (Figure 3b).

Figure 4 shows the omnidirectional semivariogram of the lip, oral cavity and pharynx, and lung cancer mortality risk computed from county-level rates using an estimator (5). The semivariogram model (see theoretical regularized model in the Figure) is used to estimate the
Figure 4: Semivariogram and the associated deconvolution of the lip, oral cavity and pharynx mortality risk (a) as well as the lung cancer mortality risk (b) computed from county-level rates using an estimator (5).

Figure 5: Maps of the lip, oral cavity and pharynx cancer risk estimated by using ATA Poisson kriging (a), and ATP Poisson kriging (c) with the corresponding prediction variance for ATA (b) and ATP (d).
lip, oral cavity and pharynx, and lung cancer mortality risk and the associated prediction variance at the county-level (ATA kriging) or at the nodes of a 1 km spacing grid (ATP kriging).

The experimental variograms were fit using a spherical model with a range of 12.5 km for lip, oral cavity and pharynx cancer mortality and an exponential model with a range of 26.7 km for lung cancer mortality. Each model was deconvoluted using the iterative method [15]. The deconvoluted variogram model was then used to compute aggregated risk values at the county-level using ATA and ATP kriging, see Figure 3. The kriging estimate is based on the $K=32$ closest observations selected based on population-weighted distance between the counties. The noise due to the small population size was filtered; the original rate map is less smooth than all the other maps.

The lip, oral cavity and pharynx cancer mortality rate varies between 2.81 and 37.40 per 100 000 inhabitants. After the application of Poisson kriging, the minimum rate increased from 2.81 to 8.79 deaths/100 000 inhabitants, and the maximum rate decreased from 37.40 to 24.46 deaths per 100 000 inhabitants. Notably, the high rates recorded in densely populated counties, such as Sains-Richaumont county, (37.40 deaths/100 000 person-years), north of the Aisne department, are strongly smoothed (24.15 deaths/100 000 person-years). The highest rates recorded in densely populated counties, such as Abbeville North county. Conversely, the highest rates recorded in the least populated counties were highly smoothed, for example, Aubenton county (Figure 6).

Compared to Figure 5, the map in Figure 6 shows a rather unfavorable situation in the northwestern region, specifically in the Aisne department, after application of Poisson kriging in terms of lung cancer rates.

The ATP kriging risk maps are viewed as the products of the disaggregation of the ATA kriging risk maps because the ATP risk estimates are non-negative and their sum is equal to the original areal county ATA risk (Table 2). The ATP kriging map shows that high risks
are not confined to a single county but can potentially spread to areas around the county with extreme risk, (i.e., the high cancer mortality risk found in Guise county, spread to the nearby Ribemont county, (Figure 6c), which is why designing prevention strategies should not be performed at the level of a single county without taking into account the associated neighboring areas.

For a county with a large population, the ATA kriging variance map primarily reflects the highest degree of confidence in the estimated mortality risk. However, the distribution of the population can be highly heterogeneous in large counties with contrasted urban and rural areas. This information is taken into account by the kriging process. The ATP kriging variance maps highlight the location of urban centers, such as Amiens county, which are densely populated with low uncertainty in the risk assessment. Incorporating information from the high-resolution population map strengthens the impact of low or high rates in the vicinity of urban areas and helps in reducing the prediction variance around these areas. The variance of the risk estimates decreases as the area of geographical units increases: the grid-level to the county-level. The risk variance estimated for lung cancer at the county-level varies from 9.44 to 50.44 (Figure 6b), and the variance estimated at grid-level varies from 29.88 to 115.78 (Figure 6d). This uncertainty attached to the risk estimate can be incorporated in the analysis of relations along with socioeconomic and environmental factors, such as exposure indicators described in Caudeville et al. [5,6], modeled at a resolution of a 1 km² grid by weighting each estimation according to the inverse of its kriging variance. Thus, rates with a large variance will have a low weight in the analysis [21].

Several authors have already addressed the spatial relationships between health data and environmental data. One of the issues faced by spatial epidemiologists and for exposure assessment is the combination of data measured for very different spatial scales and with different levels of reliability. In reality, the analysis of cancer mortality maps is often hindered by the presence of noise caused by unreliable extreme rates computed from sparsely populated geographic units. A number of approaches have been developed to improve the reliability of risk estimates [22,23]. The most commonly used are Bayesian methods [24], which are commonly referred to as the BYM model. Bayesian methods prohibit any change of scales, an operation that is easily attached to the risk estimate can be incorporated in the analysis of relations along with socioeconomic and environmental factors, such as exposure indicators described in Caudeville et al. [5,6], modeled at a resolution of a 1 km² grid by weighting each estimation according to the inverse of its kriging variance. Thus, rates with a large variance will have a low weight in the analysis [21].

The analysis of age-adjusted lip, oral cavity and pharynx cancer mortality by county.

\[
\begin{array}{ccc}
\text{Mean} & \text{Min} & \text{Max} \\
\hline
\text{Amiens county} & & \\
\text{Observed rates} & 21.66 & \\
\text{ATA Poison kriging} & 20.85 & \\
\text{ATP Poison kriging} & 20.39 & 19.89 & 20.82 \\
\hline
\text{Sains-Richaumont county} & & \\
\text{Observed rates} & 37.40 & \\
\text{ATA Poison kriging} & 24.15 & \\
\text{ATP Poison kriging} & 24.28 & 22.52 & 25.23 \\
\end{array}
\]

Table 2: Summary of Kriging Estimates for Lip, oral cavity and pharynx cancer mortality by county.

The analysis of age-adjusted lip, oral cavity, pharynx, and lung cancer mortality rates illustrated the benefits of Poisson kriging: the incorporation of the high-resolution population map for filtering the noise caused by small, sparsely populated areas and the estimation of the risk and associated uncertainty at fine spatial scales. The approach should facilitate the analysis of relationships between health data and putative covariates (i.e., environmental, socio-economic, or demographic factors) that are typically measured over different spatial scales [26]. These covariates could also be used directly as secondary information in area-to-point kriging, leading to more detailed risk maps at finer scale [37]. An important consideration in the interpretation of this study is that ATP kriging cannot actually create higher resolution data from areas (ATP kriging cannot realistically be a replacement for data collected at different scales). Whilst such kriging methods can provide another useful visualisation and analysis technique, they are not a substitute for higher resolution data. The original data is subject to the MAUP “modifiable area unit problem” [28,29], and therefore, the results of any analysis using this data will also have this limitation.

Conclusion

Characterizing spatial disparities in cancer mortality is a requirement for the reduction of diseases that are leading causes of death. The analysis of cancer mortality maps is often hindered by the presence of noise in mortality data, which is caused by low population densities with drastic variations in cancer rates. The methodology that we applied was based on geostatistics. It allows for both filtering noise caused by the “small number problem” and estimating the mortality risk at a fine resolution, while also taking into account the size and shape of county as well as the distribution of the population in each county. This methodology is more reliable for characterizing spatial disparities in cancer mortality, allowing for an estimation of the risk and the associated uncertainty on different scales. This form of Poisson kriging will facilitate the analysis of the relationships of cancer mortality rates with environmental and socio-economic data measured on very different supports.

Acknowledgment

The authors wish to acknowledge the financial support by the French Environment and Energy Management Agency ADEME and the French Picardy Region provided within the framework of the CIRCE project. References

19. http://www.or2s.fr/Portals/0/Autres%20sanitaire/Rap%20CIRCEnew.pdf