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Introduction
One objective of the French National Plan for Health and the 

Environment (NPHE) is to prevent diseases caused by environmental 
factors, particularly cancer. In this context, the Cancer Inequalities 
Regions, Counties and Environment (CIRCE) project aims to quantify 
how much the socio-economic and environmental factors account for 
geographical inequalities, here defined mortality due to cancer.

In France, geographical health inequalities are a recent study topic. 
Previous studies were based on either individual-level surveys [1,2] or 
spatially aggregated data (administrative unit) from specific regions of 
France [3]. On a regional scale, data are often available at a fine level 
of resolution. This allows for building environmental, socioeconomic 
and health indicators. The following are two illustrative examples 
of this: (1) Rey et al. [4] built a FDep deprivation index, which was 
mapped using the most detailed census administrative level (French 
census tract IRIS); (2) Advances in computational technologies 
and development of widely accessible georeferenced databases are 
permitting the connection of information systems such as Geographic 
Information Systems (GIS) and risk models. Exposure indicators 
described in Caudeville et al. [5,6] for quantifying human exposure to 
chemical substances were mapped at a resolution of a 1 km² grid.

Regarding health data, because there is a protection rule for 
individual patient data, these data are not publicly available. Only 
aggregated data are available at the level for which the disclosure or 
reconstruction of the patient identity is impossible. These corresponding 
levels of these census units may be regions or counties in France. This 
aggregation unfortunately results in large uncertainty about rates 
or risks calculated for small or sparsely populated areas. This effect 
is known as the "small number problem" [7]. Another challenge for 
epidemiology is the analysis and synthesis of the relationships between 
spatial data collected at different spatial scales. 

The geostatistical approach, in this context, presents a spatial 
methodology that allows for filtering the noise caused by the small 
number problem and enables the estimation of mortality risk and the 
associated uncertainty at different spatial scales. 

The geostatistical analysis of disease data has received increasing 
attention with kriging becoming more popular. Lai performed ordinary 
kriging on Chinese cancer mortality data of 63 rural counties [8]. To 
produce a set of contour maps, the spatial structure of the cancer 
mortality rates was studied but other possible covariates were not 
incorporated. A first attempt to take into account the discrete nature 
of cancer data was the use of binomial cokriging which was employed 
to produce a map of childhood cancer risk in the West Midlands 
Health Authority Region (WMHAR) of England [9]. The application 
of this technique to Long Island (USA) data led to negative variogram 
estimates. To avoid this problem, binomial cokriging was extended to 
the case when the variance of observed rates is smaller than expected 
under the binomial model. One geostatistical filtering approach 
used is modified binomial cokriging which was applied to estimate 
breast cancer incidence in Long Island, New York [10]. The modified 
technique was shown to be more flexible and robust concerning the 
underlying hypothesis that all counties have the same spatial support, 
and the simulation studies have demonstrated its more accurate 
estimates [11]. 

Another geostatistical technique, Poisson kriging, was recently 
developed to filter noise from the data by accounting for spatially 
varying population sizes and spatial patterns. The methodology 
for estimating a spatial Poisson distribution was first introduced 
by Kaiser et al. [12]. They developed the spatial “auto-models” 
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Abstract
Cancer is one of the leading causes of mortality. However, it is necessary to analyze this disease from different 

perspectives. Cancer mortality maps are used by public health officials to identify areas of excess and to guide 
surveillance and control activities. However, the interpretation of these maps is difficult due to the presence of extremely 
unreliable rates, which typically occur for sparsely populated areas and/or less frequent cancers. The analysis of the 
relationships between health data and risk factors is often hindered by the fact that these variables are frequently 
assessed at different geographical scales. Geostatistical techniques that have enabled the process of filtering noise from 
the maps of cancer mortality and estimating the risk at different scales were recently developed. This paper presents 
the application of Poisson kriging for the examination of the spatial distribution of cancer mortality in the "Picardy region, 
France". The aim of this study is to incorporate the size and shape of administrative units as well as the population 
density into the filtering of noisy mortality rates and to estimate the corresponding risk at a fine resolution. 
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based on the Poisson distribution to be used to incorporate spatial 
dependencies among the variables. However, their model is not well 
suited for irregularly sampled data and interpolation. Monestiez et al. 
[13,14] introduced Poisson kriging to model spatially heterogeneous 
observations. The approach applied by Monestiez is similar to binomial 
cokriging proposed by Oliver except that the count data are assumed 
to follow a Poisson distribution. Poisson riging was then generalised to 
estimate prostate cancer mortality risk in the United States [15], breast 
and cervix cancer mortality in New England States [16] and cholera 
and dysentery incidence risk in Bangladesh [17] by incorporating 
varying population sizes in the processing of cancer data. When the 
risk values were spatially correlated, simulation studies showed that 
in most cases, Poisson kriging outperformed other smoothers such as 
population-weighted estimators and empirical Bayes smoothers [16]. 
It is not practical to represent each geographic unit by its centroid, 
especially when geographic units vary greatly in size and shape. The 
geographical characteristics need to be incorporated for data analysis 
together with spatially varying population. The framework for Area-
to-area (ATA) or Area-to-point (ATP) kriging was first introduced 
by Kyriakidis for interpolating point values from available areal data 
[18]. Goovaerts modified the ATP estimator to a Poisson estimator and 
applied ATP Poisson kriging to lung and cervix cancer mortality in 
counties of the United States [15]. 

The aim of this paper is to examine the spatial distribution of 
cancer mortality in the Picardy region using geostatistical methods, 
which consists of two steps: (a) filtering of the noise in the data 
based on Poisson kriging (Area to Area-ATA) and (b) mapping of 
the corresponding risk at a fine resolution (Area to Point-ATP). The 
approach is illustrated using age-adjusted lip, oral cavity, pharynx and 
lung cancer mortality rates recorded from 2000-2009.

Materials and Methods
Study area

The region of Picardy consists of 112 counties (Figure 1), which 
covers an area of approximately 19,500 km² and is located between 
North Artois, the Ile-de-France in the south, the Bay of the Somme to 
the west and east Champagne. It covers the departments of Somme, 
Oise and Aisne. The urbanization rate in this region is far below the 
national average (60.4% compared to 74% for the whole country). The 
agricultural sector provides more than 4% of the French agricultural 
production. This region also has significant industrial activity. Fine and 
specialty chemicals account for nearly 15% of the jobs in this region and 
the automotive industry accounts for 40% of industrial employment 
(26.5% of assets employed in industry against 19.5% nationally). 

Data sources

The health data came from the Regional Health Observatory of 
Picardy [19], where the age-adjusted mortality rates are calculated 
for each county from 2000 to 2009. Ten years is likely to be more 
representative in this case than a simple year in order to reduce 
temporal rate fluctuation. The average population of counties was 
computed annually by sex and age group for the years 2000 to 2009. 
These estimates were based on the census population conducted in 
1999 and 2009, infant deaths recorded from 2000 to 2009 and the 
national mortality rates (metropolitan France). The relative proportion 
of the population in each cell of 1 km² was derived from the INSEE 
population data and was downloaded from the INSEE (National 
Institute of Statistics and Economic Studies) website.

Table 1 shows the cumulative, maximum and minimum number 

of mortality and age-adjusted rates/per 100 000 person-years by county 
from 2000 to 2009.

Geostatistical approach

Spatial prediction (Area-to-area (ATA) and Area-to-point (ATP) 
Poisson kriging): The cancer count d(να) is interpreted as a realization 
of a random variable D(να) that is Poisson distributed with a parameter 
(expected number of counts), which is the product of the population 
size n(να), by the local risk R(να). The local risk R(να) can be thought 
of as a noise-filtered mortality rate for area να, which we also refer to 
as the mortality risk. It is estimated by using a variant of kriging with 
nonsystematic errors, known as Poisson kriging [13]. The aggregation 
of data into areal units of different shapes and sizes can cause a visual 
bias. A particular case of ATA kriging is when the prediction support is 
so small that it can be assimilated to a single point, in which case ATP 
kriging [15,18] is used to create high-resolution maps of the estimated 
mortality risk to reduce this visual bias. To account for the shape 
of geographical units and their heterogeneous population density, the 
distance between any two counties is here estimated as a population-
weighted average of Euclidian distances between points discretizing the 
pair of counties [20].

The mortality risk and the associated kriging variance for a unit 
x are estimated as:
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where x represents either an area (να) (ATA kriging) or a point us 
within that area (ATP kriging). The kriging weights (λi) and the 
Lagrange parameter μ(x) are computed by solving the Poisson kriging 
system of equations:
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where δij=1 if i=j and 0 otherwise. The “error variance” term, m*/n(vi), 
leads to smaller weights for rates measured over smaller populations. 
The ATA covariances ( , )

i
sjiR vvC  and ATP covariances CR(vi,x= us) are 

approximated as the population-weighted average of the point-support 
covariance CR(h) computed between any two locations discretizing the 
areas vi and vj, or vi and us. An important property of the ATP kriging 
estimator is its coherence: the population-weighted average of the risk 
values estimated at the Pα points us discretizing a given entity να yields 
the ATA risk estimates for this entity:
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where us∈να with s=1,...,Pα, and n(us) is the population count assigned 
to the interpolation grid node us. Constraint (4) is satisfied if the same K 
areal data are used for the ATA kriging of ˆ( )r vα and the ATP kriging 
of the Pα risk values. 

Deconvolution of the semivariogram of the risk: An important 
step in the application of the kriging techniques is the inference of 

http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees
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0201 Anizy-le-Château                         
0202  Aubenton                                     
0203  Bohain-en-Vermandois              
0204  Braine                                          
0205  La Capelle                                   
0206  Le Catelet                                    
0207  Charly                                           
0208  Château Thierry                           
0209  Chauny                                         
0210  Condé-en-Brie                              
0211Coucy-le-Château Auffrique        
0212  Craonne                                         
0213  Crécy-sr-Serre                               
0214  La Fère                                           
0215  Fère-en-Tardenois                          
0216  Guise                                              
0217  Hirson                                            
0218  Laon Nord  
0219  Marle 
0220  Moy-de-l’Aisne 
0221  Neufchatel-sur-Aisne 
0222  Neuilly-Saint-Front 
0223  Le Nouvion-en-Thiérache 
0224  Oulchy-le-Château  
0225  Ribemont 
0226  Rozoy-sur-Serre 
0227  Sains-Richaumont 
0229  Saint-Simon 
0230  Sissonne   
0231  Soissons-Nord  
0232  Vailly-sur-Aisne 
0233  Vermand 
0234  Vervins 
0235  Vic-sur-Aisne 
0236  Villers-Cotterets 
0237 Wassigny 
0238  Laon-Sud 
0239  Saint-Quentin-Nord 
0240  Saint-Quentin-Sud 
0241  Soissons-Sud 
0242  Tergnier 
0297  Laon 
0298  Saint-Quentin 
0299  Soisson 
 
 
 
 

6001  Attichy                                                         
6002  Auneuil                                
6004  Beauvais Sud-Ouest             
6005  Betz                                      
6006  Breteuil                                
6007  Chaumont-en-Vexin             
6008  Clermont                              
 6009  Compiègne Nord                   
6010  Le Coudray-Saint-Germer    
6011  Creil-Nogent-sur-Oise           
6012  Crépy-en-Valois                    
6013  Crèvecoeur-le-Grand            
6014  Estrées-Saint-Denis                
6015 Formerie                               
6016  Froissy                                    
6017  Grandvilliers                         
 6018  Guiscard                                
6019  Lassigny 
6020  Liancourt 
6021  Maignelay-Montigny 
6022  Marseille-en-Beauvaisis 
6023  Méru 
6024  Mouy 
6025  Nanteuil-le-Haudoin 
2026  Neuilly-en-Thelle 
2027  Nivillers 
6028  Noailles 
6029  Noyon 
6030  Pont-Sainte-Maxence 
6031  Ressons-sur-Matz 
6032  Ribécourt-Dreslincourt 
6033  Saint-Just-en-Chaussée 
6034  Senlis 
6035  Songeons 
6036  Chantilly 
6037  Compiègne-Sud-Est 
6039  Montataire 
6040  Beauvais-Nord-Ouest 
6041  Compiègne Sud-Oest 
6097  Compiègne 
6098  Creil 
6099  Beauvais 
 
      
 
 
 
 

8001   Abbeville Nord 
8002   Abbeville Sud 
8003   Acheux-en-Amiénois 
8004  Ailly-le-Haut-Clocher 
8005  Ailly-ser-Noye 
8006  Albert 
8007  Amiens Ouest 
8008  Amiens Nord-Ouest 
8009  Amiens-Nord-Est 
8010  Amiens-Est 
8011  Ault 
8012  Bernaville 
8013  Boves 
8014  Bray-sur-Somme 
8015  Chaulnes 
8016  Combles 
8017  Conty 
8018  Corbie 
8019  Crécy-en-Ponthieu 
8020  Domart-en-Ponthieu 
8021  Doullens 
8022  Gamaches 
8023  Hallencourt 
8024  Ham 
8025  Homoy-le-Bourg 
8026  Molliens-Dreuil 
8027  Montdidier 
8028  Moreuil 
8029  Moyenneville 
8030  Nesle 
 8031  Nouvion 
8032  Oisemont 
8033  Péronne 
8034  Picquigny 
8035  Poix-de-Picardie 
8036  Roisel 
8037  Rosières-en-Santerre 
8038  Roye 
8039  Rue 
8040Saint-Valery-sur-Somme 
8041  Villers-Bocage 
8042  Amiens Sud-Est 
8043  Amiens Sud-Ouest 
8044  Amiens Nord 
8046  Friville-Escarbotin 
8098  Abbeville 
8099  Amiens 
 

 

Figure 1: Map of the study area.
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the point-support variogram γR(h) or, equivalently, the point-support 
covariance CR(h) defined as CR(0)–γR(h). This function cannot be 
estimated directly from the experimental variogram because the latter 
is computed from areal rate data. The regularized semivariogram of the 
risk can be estimated as:
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where, N(h) is the number of pairs of areas (να,νβ), the population-
weighted centroids of which are separated by the vector h. The usual 
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0           10     20km

128.94 to 138.63

119.255 to 128.94

109.56 to 119.255

99.87 to 109.56
90.18 to 99.87

80.49 to 90.18

70.81 to 80.49

61.11 to 70.81

51.42 to 61.11

41.73 to 51.42

33.94 to 37.4
30.49 to 33.94
27.03 to 30.49
23.57 to 27.03
20.11 to 23.57

16.65 to 20.11
13.19 to 16.65
9.73 to 13.19
6.27 to 9.73
2.81 to 6.27

13.5 to 14

13 to 13.5

12.5 to 13
12 to 12.5

11.5 to 12

11 to 11.5
10.5 to 11

10 to 10.5
9.5 to 10

9 to 9.5

0           10     20km

0           10     20km

(a) 

Figure 2: (a) Map of log population density. Geographic distribution of age-adjusted mortality rates per 100,000 person-years recorded over 
the period 2000–2009 for: (b) lip, oral cavity and pharynx; (c) lung cancer mortality. The bottom scatter plots illustrate: (d) the age-adjusted 
mortality rates for lip, oral cavity and pharynx cancers plotted against population density and (e) the age-adjusted mortality rates of pleura 
cancers plotted against population density.

Cancer 
mortality

Numbers of 
cases

Age-adjusted rates/per 100 000 
person-years

Lip, oral cavity and pharynx cancer mortality
Cumulative 1327 16.26
Minimum 1 2.81
Maximum 128 37.4

lung cancer mortality
Cumulative 7338                                                  97.89 
Minimum 11 41.37
Maximum 534 138.63

Table 1: Cumulative, maximum and minimum number of mortality and age-
adjusted rates/per 100 000 person-years by county, 2000-2009.
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squared differences 2[ ( ) ( )]z v z vα β−  are weighted by a function of 

their respective population sizes, ( ) ( ) / [ ( ) ( )]n v n v n v n vα β α β+ , 

which are inversely proportional to their standard deviations. 

Results and Discussion
Figure 2 shows the spatial distribution of mortality due to the cancer 

of lip, oral cavity and pharynx as well as lung cancer, age-adjusted per 
100 000 person-years. It should be noted that the population is not 
evenly distributed throughout the study area (Figure 2a), and the rate 
calculated for a less populated county tends to be less reliable. This 
implies that the interpretation of the map must be carried out with 
caution. The scatter plot at the bottom of Figure 2 illustrates this effect, 
commonly known as the "small number problem," that translates into 
the larger spread of mortality rates for smaller populations.

The highest age-adjusted mortality rates per 100 000 person-years 
recorded from 2000–2009 for lip, oral cavity and pharynx cancers were 
more concentrated in the north of the region, but they are generally 
spread throughout the area, whereas the highest rates of lung cancers 
were located in the eastern part of the area.

The spatial distribution of population used to avoid the constraints 
of county geographical boundaries in the estimation is mapped 
in Figure 3a. This map shows a large variability of population 
concentration within each county. This variability was taken into 
account; the geographic centroids are replaced by population-weighted 
centroids (Figure 3b).

Figure 4 shows the omnidirectional semivariogram of the lip, oral 
cavity and pharynx, and lung cancer mortality risk computed from 
county-level rates using an estimator (5). The semivariogram model 
(see theoretical regularized model in the Figure) is used to estimate the 

(a) 

 
 

(b) 

      

6.61 to 11.47
6.018 to 6.61
5.67 to 6.018
5.39 to 5.67
5.15 to 5.39
4.9 to 5.15
4.62 to 4.9
4.28 to 4.62
3.53 to 4.28
0 to 3.53 0        10     20km

Centroids:
Geographic
Population-weighted

0        10     20km

Figure 3: Distribution of the Log population per 1 km² grid cell allocated from the INSEE data (a) and geographic and population-weighted 
centroids (b).
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Deconvolution model

Experimental model

Theoretical regularized model

Distance (m)

Deconvolution model

Experimental model

Theoretical regularized model

Distance (m)0.0                                 200000.0

0.0                                   90000.0

γ
γ

Figure 4: Semivariogram and the associated deconvolution of the lip, oral cavity and pharynx mortality risk (a) as well as the lung cancer 
mortality risk (b) computed from county-level rates using an estimator (5).

Lip, oral cavity and pharynx cancer mortality 

                                                
(a)         (b) 

               
 

   (c)        (d) 

          
 

22.6 to 24.15
21.07 to 22.6
19.53 to 21.07
18 to 19.53
16.46 to 18
14.93 to 16.46
13.39 to 14.93
11.86 to 13.39
10.30 to 11.86
8.79 to 10.32

22.67 to 13.87

11.47 to 22.67

10.26 to 11.47

9.06 to 10.26

7.86 to 9.06

6.65 to 7.86
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4.25 to 5.45

3.04 to 4.25

1.84 to 3.04

(a) (b)

(d)(c)

0                10          20 cm

0                10          20 cm 0                10          20 cm

0                10          20 cm

39.07 to 42.28

35.86 to 39.07

32.66 to 35.86

29.45 to 32.66

26.24 to 29.45

23.03 to 26.24

19.83 to 23.03

16.62 to 19.83

13.41 to 16.62

10.21 to 13.41

23.94 to 25.82
22.06 to 23.94
20.18 to 22.06
18.3 to 20.18
16.42 to 18.3
14.54 to 16.42
12.66 to 14.54
10.78 to 12.66
8.91 to 10.78
7.03 to 8.91

Figure 5: Maps of the lip, oral cavity and pharynx cancer risk estimated by using ATA Poisson kriging (a), and ATP Poisson kriging (c) with the 
corresponding prediction variance for ATA (b) and ATP (d).
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lip, oral cavity and pharynx, and lung cancer mortality risk and the 
associated prediction variance at the county-level (ATA kriging) or at 
the nodes of a 1 km spacing grid (ATP kriging).

The experimental variograms were fit using a spherical model with 
a range of 12.5 km for lip, oral cavity and pharynx cancer mortality and 
an exponential model with a range of 26.7 km for lung cancer mortality. 
Each model was deconvoluted using the iterative method [15]. The 
deconvoluted variogram model was then used to compute aggregated 
risk values at the county-level using ATA and ATP kriging, see Figure 
3. The kriging estimate is based on the K=32 closest observations 
selected based on population-weighted distance between the counties. 
The noise due to the small population size was filtered; the original rate 
map is less smooth than all the other maps. 

The lip, oral cavity and pharynx cancer mortality rate varies between 
2.81 and 37.40 per 100 000 inhabitants. After the application of Poisson 
kriging, the minimum rate increased from 2.81 to 8.79 deaths/100 000 
inhabitants, and the maximum rate decreased from 37.40 to 24.46 
deaths per 100 000 inhabitants. Notably, the high rates recorded in 
sparsely populated counties, such as Sains-Richaumont county, (37.40 
deaths/100 000 person-years), north of the Aisne department, are 
strongly smoothed (24.15 deaths/100 000 person-years). The highest 

rates recorded in densely populated counties, such as Abbeville North 
county, (26.60 deaths/100 000 person-years), remain almost the same 
after smoothing (24.90 deaths/100 000 person-years). The map shows 
that the situation is favorable in the south of the region, and it is rather 
unfavorable in the northeast and northwest (Figure 5).

The lung cancer mortality rate varied from 41.70 to 138.63 per 100 
000 inhabitants. The rate, after application of Poisson kriging ranged 
from 79.53 to 104.3 per 100 000 inhabitants. The highest rates recorded 
in densely populated counties remained the same after smoothing, 
such as Abbeville North county. Conversely, the highest rates recorded 
in the least populated counties were highly smoothed, for example, 
Aubenton county (Figure 6).

Compared to Figure 5, the map in Figure 6 shows a rather 
unfavorable situation in the northwestern region, specifically the in the 
Aisne department, after application of Poisson kriging in terms of lung 
cancer rates. 

The ATP kriging risk maps are viewed as the products of the 
disaggregation of the ATA kriging risk maps because the ATP risk 
estimates are non-negative and their sum is equal to the original areal 
county ATA risk (Table 2). The ATP kriging map shows that high risks 

   Lung cancer mortality 

                                        
(a)                                                                                                  (b) 

 
                                        (c)                                                                                       (d) 

        

102.17 to 104.66
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Figure 6: Maps of the lung cancer risk estimated by using ATA Poisson kriging (a), and ATP Poisson kriging (c) with the corresponding 
prediction variance for ATA (b) and ATP (d).
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are not confined to a single county but can potentially spread to areas 
around the county with extreme risk, (i.e., the high cancer mortality 
risk found in Guise county, spread to the nearby Ribemont county, 
(Figure 6c), which is why designing prevention strategies should not 
be performed at the level of a single county without taking into account 
the associated neighboring areas. 

For a county with a large population, the ATA kriging variance 
map primarily reflects the highest degree of confidence in the 
estimated mortality risk. However, the distribution of the population 
can be highly heterogeneous in large counties with contrasted urban 
and rural areas. This information is taken into account by the kriging 
process. The ATP kriging variance maps highlight the location of urban 
centers, such as Amiens county, which are densely populated with low 
uncertainty in the risk assessment. Incorporating information from the 
high-resolution population map strengthens the impact of low or high 
rates in the vicinity of urban areas and helps in reducing the prediction 
variance around these areas. The variance of the risk estimates decreases 
as the area of geographical units increases: the grid-level to the county-
level. The risk variance estimated for lung cancer at the county-level 
varies from 9.44 to 50.44 (Figure 6b), and the variance estimated at 
grid-level varies from 29.88 to 115.78 (Figure 6d). This uncertainty 
attached to the risk estimate can be incorporated in the analysis of 
relations along with socioeconomic and environmental factors, such 
as exposure indicators described in Caudeville et al. [5,6], modeled at 
a resolution of a 1 km² grid by weighting each estimation according to 
the inverse of its kriging variance. Thus, rates with a large variance will 
have a low weight in the analysis [21].

Several authors have already addressed the spatial relationships 
between health data and environmental data. One of the issues faced by 
spatial epidemiologists and for exposure assessment is the combination 
of data measured for very different spatial scales and with different 
levels of reliability. In reality, the analysis of cancer mortality maps is 
often hindered by the presence of noise caused by unreliable extreme 
rates computed from sparsely populated geographic units. A number 
of approaches have been developed to improve the reliability of risk 
estimates [22,23]. The most commonly used are Bayesian methods 
[24], which are commonly referred to as the BYM model. Bayesian 
methods prohibit any change of scales, an operation that is easily 
conducted within the framework of kriging. Goovaerts and Gebreab 
[25] conducted a simulation-based evaluation of the performance of 
geostatistical and full Bayesian disease-mapping models, and they 
found that the geostatistical approach yielded smaller prediction errors 
and more precise and accurate probability intervals and that it allowed 
for better discrimination between counties with high and low mortality 
risks. 

The analysis of age-adjusted lip, oral cavity, pharynx, and lung 
cancer mortality rates illustrated the benefits of Poisson kriging: the 

incorporation of the high-resolution population map for filtering the 
noise caused by small, sparsely populated areas and the estimation of 
the risk and associated uncertainty at fine spatial scales. The approach 
should facilitate the analysis of relationships between health data 
and putative covariates (i.e. environmental, socio-economic, or 
demographic factors) that are typically measured over different spatial 
scales [26]. These covariates could also be used directly as secondary 
information in area-to-point kriging, leading to more detailed risk maps 
at finer scale [27]. An important consideration in the interpretation of 
this study is that ATP kriging cannot actually create higher resolution 
data from areas (ATP kriging cannot realistically be a replacement for 
data collected at different scales). Whilst such kriging methods can 
provide another useful visualisation and analysis technique, they are 
not a substitute for higher resolution data. The original data is subject 
to the MAUP "modifiable area unit problem" [28,29], and therefore, the 
results of any analysis using this data will also have this limitation.

Conclusion
Characterizing spatial disparities in cancer mortality is a 

requirement for the reduction of diseases that are leading causes of 
death. The analysis of cancer mortality maps is often hindered by the 
presence of noise in mortality data, which is caused by low population 
densities with drastic variations in cancer rates. The methodology that 
we applied was based on geostatistics. It allows for both filtering noise 
caused by the "small number problem" and estimating the mortality 
risk at a fine resolution, while also taking into account the size and 
shape of county as well as the distribution of the population in each 
county. This methodology is more reliable for characterizing spatial 
disparities in cancer mortality, allowing for an estimation of the 
risk and the associated uncertainty on different scales. This form of 
Poisson kriging will facilitate the analysis of the relationships of cancer 
mortality rates with environmental and socio-economic data measured 
on very different supports. 
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