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Introduction

Detection of malicious executables that are known beforehand 
is usually performed using signature-based techniques. These 
techniques typically rely on the prior explicit knowledge of the 
malicious executable code, which is in turn is represented by one or 
more signatures or rules that are stored in a database. The database is 
frequently updated with new signatures, based on new observations. 
The main disadvantage of these techniques is the inability to detect 
totally new, i.e., un-encountered malicious executables.

The goal of this paper is to provide a technique which can detect 
new malicious executables, whose signatures are unknown yet. The 
main prior art approach for performing such a task is to employ 
machine learning and data mining for the purpose of creating a 
classifier that is able to distinguish between malicious and benign 
executables statically (without actually running them) [1-3]. The 
main drawback of the above approach is its inability to deal with 
obfuscated/encrypted files.

In this paper we introduce a novel technique for the real-time 
detection of new malicious executables that follows dynamic analysis 
(or behavior-based) approach (detection during the execution). 
Traditionally, dynamic analysis approaches have been used in 
intrusion detection systems (IDS) based on anomaly detection [5-11]. 
These systems build models of a normal program behavior during 
a training phase, and then, using the models the systems attempt 
to detect deviations from said normal behavior during a detection 
phase. The main drawback of using these techniques is the necessity 
to perform a complex and frequent retraining in order to separate 
“noise” and natural changes to programs from malicious codes. 
Legitimate program updates may result in false alarms, while malicious 
code actions that seem to be normal may cause missed detections. 
Furthermore, most applications that are based on anomaly detection 
techniques identify malicious behavior of specific processes only. 

Another using of dynamic analysis approach is for malicious 
code classification [12,15] and for detection of variations of known 
malware [18,19]. The techniques proposed in [12,15] can be used to 
classify a given malicious code instance as belonging to one of the 
predefined number of classes, but cannot be used for a new malicious 
code detection in real time. The methods proposed in [18,19] are 
suitable to detect variations of existing malware, but not completely 
new malware.
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Abstract
We present a method for detecting new malicious executables, which comprise the following steps: (a)   in an 

offline training phase, finding a set of system call sequences that are characteristic only to malicious files, when such 
malicious files are executed, and storing said sequences in a database; (b) in a real time detection phase, for each 
running executable, continuously monitoring its issued system calls and comparing with the stored sequences of system 
calls within the database to determine whether there exists a match between a portion of the sequence of the run-time 
system calls and one or more of the database sequences, and when such a match is found, declaring said executable 
as malicious. We have evaluated our method and the preliminary results are promising and justify the use of system 
calls sequences for the purpose of detection of new malicious executables.

In this paper we try to provide a general, real time detection 
method that is more reliable than existing methods. Our method 
comprises of the following steps: (a) in an offline training phase, 
finding a collection of system call sequences that are characteristic 
only to malicious files, when such malicious files are executed, and 
storing said sequences in a database; (b) in runtime, for each running 
executable, continuously monitoring its issued run-time system calls 
and comparing with the stored sequences of system calls within 
the database to determine whether there exists a match between 
a portion of the sequence of the run-time system calls and one or 
more of the database sequences, and when such a match is found, 
declaring said executable as malicious. A major issue in this method 
is finding an optimal set of such sequences. We employ SPADE [4] and 
genetic algorithm (GA) to perform the first step - i.e. finding “behavior 
signatures” (sequences of system calls) that are characteristic to 
malicious executables and not to benign executables and use said 
signatures for the purpose of detection in the second step.

In this paper, we make three main contributions:

• We show that there are “behavioral signatures” (sequences of
system calls) that can be used for detection of new malicious
executables (and not only for classification).

• We present two methods for discovering the signatures above as
well as their evaluation.

• We present overall system for real time malware detection that is
based on the proposed method.

The rest of the paper is structured as following: in Section 2 we
describe related work, in Section 3 we present the overall system 
architecture for real time detection of new malicious executables as 
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well as two methods for discovering “behavior signatures”. Then, 
in Section 4 we describe our data collection and present evaluation 
results and we conclude in Section 5 with results discussion and 
future work.

Related Work

Static analysis approach

In recent years several approaches for detecting unknown 
malware based on its binary code have been presented. In [2] the 
authors introduced the idea of applying machine learning methods 
(ML) on binary code. They used program header, string features and
byte sequence features to represent instances (malicious and benign
programs) and developed three classifiers (rule-based classifier, Naïve
Bayes and Multi-Naïve Bayes) to classify new (unseen) instances.
They compared the accuracy of these methods to the accuracy of
the signature-based method (antivirus) and show that all of the ML
methods are more accurate than the signature-based method. In
[3] the authors construct a representative profile for malicious and
benign classes, composed of the common n-grams. New files are
compared to both profiles and matched to the most similar, using
the k nearest neighbor (KNN) method. In [1] the authors used a vector
of n-grams to represent malicious and benign files and presented a
comprehensive evaluation of IBk, TFIDF, naive Bayes, SVM, decision
trees, boosted naive Bayes, boosted SVM, and boosted decision tree
classifiers. The authors indicated that the results of their n-gram
study were better than those presented by [2] and boosted decision
tree classifier out-performed the others.

Behavior-based approach

While static analysis consists of examining the code of programs 
to determine properties of the dynamic execution of these 
programs without running them, behavior-based approach considers 
monitoring the execution of a program to detect malicious behavior.

The use of system calls: One common way to represent program 
behavior is to use a system calls sequences. Following is an example 
of the trace produced by sTrace [20] utility for Windows:

Sequences of system calls are used by several malware detection/
classification systems and will also be used in our method (see below).

Anomaly detection systems: Typically, the systems belonging 
to this category build models of normal program behavior and 
then attempt to detect deviations from the normal model in the 
observed behavior. Variety of anomaly detection methods utilizing 
this approach has been proposed [5-11]. Forrest [5], for example, 
introduced a simple anomaly detection method based on monitoring 
the system calls issued by privileged processes. During the training 
phase, the proposed system records short system call sequences that 
represent a normal process behavior (“self”) into Normal Dictionary. 
During detection phase, actual system call sequences are compared 
with the Normal Dictionary. An alarm is raised if no match is found. 

Another approach, proposed in [6] is based on the idea that rare 
system calls sequences are suspicious. The authors suggest ranking 
each system call sequence by comparing how often the sequence 
occurs in normal instances with how often it is expected to occur 
during attack. Sequences occurring frequently during attack are 
declared as suspicious. 

Several data mining techniques for studying system call sequences 
have been proposed. Lee and others [7,8] proposed a method for 
describing “normal” system call sequences by a (small) set of rules that 

cover the common elements in those sequences. During detection, 
sequences violating the rules are considered as anomalies. The main 
advantage of anomaly detection techniques is their ability to detect 
new, previously un-encountered malicious codes. The main drawback 
of using these techniques is the necessity to perform a complex and 
frequent retraining in order to separate “noise” and natural changes 
to programs from malicious codes. Legitimate program updates may 
result in false alarms, while malicious code actions that seem to be 
normal may cause missed detections. Furthermore, most applications 
that are based on anomaly detection techniques identify malicious 
behavior of specific processes only. Another common drawback of 
the anomaly detection methods presented above is their inability 
to cope with mimicry attacks [9,10]. A mimicry attack is an attack 
where the attacker can inject exploit code that imitates the system 
call sequence of a legitimate program run while performing malicious 
actions. Mutz and others [11] claims to overcome mimicry attacks by 
using a method that analyzes the arguments of system calls in order 
to prevent evasion and improve detection accuracy.

Behavior-based malware classification: Another application of 
dynamic analysis approach is in a malware classification domain.  Lee 
et al. [12] proposed a malicious code classification technique which 
is based on clustering of system call sequences. Malicious programs 
of various classes are represented as sequences of system calls. A 
K-medoid Clustering algorithm, as described in [13], is applied to
the sequences in order to map the input into a predefined number
of different classes. The distance between sequences is defined by
the minimum “cost” required in order to transform one sequence
of system calls to another sequence of system calls, by applying
a set of predefined operations. The process results in a classifier,
which includes plurality of medoids, wherein each medoid is a best
representative of each cluster. The classification of new objects is
performed using the nearest neighbor classification method as
described in [14]. A new object is compared to all medoids, and
receives a class label of the closest one.

In [15] Bayer et al. proposed to generalize the malware’ execution 
traces “into behavioral profiles, which characterize the activity of 
a program in more abstract terms”. After the profiles have been 
created, the analyzed samples are clustered according to their 
behavioral profile. This technique produces more precise results than 
previous approaches. 

The techniques above can be used to classify a given malicious 
code instance as belonging to one of the predefined number of 
classes, but cannot be used for a new malicious code detection in 
real time. 

Behavior-based malware detection: In [18], the authors propose 
a method for automatic creation of specification of malware 
behavior. They introduce the concept of malware specification 
called Malspec. Malspec is a directed acyclic graph (DAG) where each 
node corresponds to a (relevant) system call invocation and edges 
represent dependences between arguments of different system 
calls. Malspec is extracted by contrasting the execution behavior of 
a known malware against the execution behaviors of a set of benign 
programs. The authors proposed the algorithm that creates the 
system-call graphs from execution traces, and derives a Malspec by 
computing the minimal differences between the system-call graphs 
of a malware sample and of multiple benign programs. The authors 
show that Malspecs can be converted to templates/signatures used 
by malware detectors to detect variations of a certain malware.
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In [19], authors pointed out that Malspecs do not encode data 
flow dependencies between system call parameters, and that using 
Malspecs for detection without verifying these dependencies would 
lead to a large number of false alarms. They propose an approach that 
builds a behavior graph for analyzed malicious program where nodes 
are (interesting) system calls and edges represent a data dependency 
between the system calls. Then, they extract the program slices 
responsible for such dependences. For detection, they execute the 
extracted program slices to match them against the runtime behavior 
of an unknown program.

Both methods above are suitable to detect variations of existing 
malware, but not completely new malware.

Our Method
Our method determines and assigns sequences of system calls as 

representing the behavior of malicious programs. This is performed 
during a learning/training phase. During a detection phase, which is 
performed in real time, the method identifies malicious executables 
by comparing their own run time sequences of system calls with 
said stored (in the database) sequences of system calls that are 
characteristic to only malicious executables. Figure 1 is a flow 
diagram illustrating the process for detecting malicious executables. 
During the training phase (101), which is performed off-line, an “M 
determining module” (102) operates to determine M-sequences of 
system calls that are characteristic only to malicious executables, and 
not to any benign program. This module produces an “M database” 
(103) which includes the collection of M-sequences, as determined.
The M database (103) forms an input data to comparator (104). During
the runtime monitoring phase (105), the comparator continuously
receives inputs relating to the system calls that are issued by the
currently running executables, compares them separately with each
of the sequences stored in the M database. If with respect to a
specific running program a match is found with one or more of the
M-sequences, this specific executable is declared as malicious and
can be terminated. Otherwise, as long as no such an alert signal is
issued, this running file is considered as benign.

We developed our system for the MS-Windows operating system 
but the same ideas can work for other OSs. Presently there are 
about 1100 different system calls for Windows operating systems. 
We define an M-sequence as a sequence of system calls occurring 
one after another in time, but not necessarily consecutive. This is 
the common definition for a sequence that is used generally in Data 
mining. 

Figure 2 describes the training phase process for determining the 
database of M-sequences. The process comprises accumulation of n 
executables that are known to be malicious, and m executables that 
are known to be benign. In steps 201 and 202, each of said benign 
and malicious executables is executed, and runtime sequence of 
system calls is recorded for each of said executables. The result is two 
datasets, Mr dataset which contains n records of “raw” sequences 
relating to malicious executables, and Br dataset which contains 
m records of “raw” sequences relating to benign executables. The 
length of each of said n and m sequence records (within Mr and Br) 
is relatively long (we discuss this issue in the Evaluation section). It 
should be noted that there is no necessity for having a same sequence 
length for all the various “raw” recorded sequences within either Mr 
and/or Br datasets. In step 203, a set S of all frequent sequences in Mr 
which do not appear within any of the sequences in Br is determined. 
To perform this task we use the SPADE algorithm [4] and genetic 

algorithm (GA) discussed in the sections 3.1 and 3.2, but other 
approaches can be applied as well. In step 204 we reduce the set 
S to minimal set Smin that matches all the sequences (files) in Mr. 
This reduced set forms the database M. The result of the completion 
of the procedure of Figure 2 is the database M, which contains a 
collection of sequences of system calls that are characteristic to 
only malicious executables. The database M is used in runtime for 
detecting malicious executables, in a manner as was described above 
with respect to Figure 1.

SPADE

SPADE [4] is an algorithm for fast mining of sequential patterns in 
large databases. Given a database and a minimal support value, SPADE 
efficiently generates all sequences that repeat (i.e., frequent) in the 
database with a support equal to or grater than a minimal support 
value. In our implementation we enumerate frequent sequences in 
Mr for the 1%≤minSupp≤100% and take a minimal set of sequences 
that matches all the sequences in Mr (malicious files’ traces) and no 
sequence in Br (benign files’ traces). 

SPADE uses lattice approach [16] to enumerate all frequent 
sequences. When we run our implementation of SPADE against a 
dataset we have created, we found that the lattice for our domain 
is too large to search.  One of the examples we ran had 30 frequent 
1-sequences and lattice depth of around 50, and the process was
stopped after running three weeks and still searching in the first sub-
lattice, the one that has the first frequent 1-sequence as its root. We
had no choice but to limit the size of the lattice. This was done via
limiting the number of system calls between first and last system call in
the sequence. The idea can be thought of as a sliding window, where
the user defines the window size. This strategy proved to reduce the
processing time drastically. The disadvantage is that we are able to
enumerate frequent sequences of limited length. In our experiments
we get reasonable runtime for signature length less or equal to 15.
We observed that as the signatures length increases the performance
of our approach increases as well (we discuss the evaluation results
in details in the section 4.1). This observation motivated us to use
another approach to enumerate frequent sequences of arbitrary
length.

In order to improve the performance of our approach, we employ 
Genetic Algorithm (GA), presented in the section 3.2. It allows us to 
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search for larger signatures that, as we’ll show later, produce better 
results.

Genetic Algorithm: Genetic Algorithms (GA) are based on 
the Darwinian principle of evolution i.e. the natural selection, 
also known as “Survival of the fittest” and can be used to solve 
computational problems. The mechanism of evolution is perfectly 
suited to be applied on the problems that require searching after an 

optimal solution among a lot of potential solutions in the searching 
space. Genetic algorithms typically used to provide a well enough 
approximate solution to the problems that can’t be solved accurately 
in reasonable time. 

• We have developed GA for mining frequent sequences of system
calls. The input to the algorithm is two datasets (Mr and Br),
signatures obtained by the SPADE as described in the Section
3.1, and the desirable signature length (N). The output is a set of
signatures of size N that matches all malicious files in Mr and any
benign file in Br. We start from a random population of signatures
of length N, conducted from the signatures obtained by SPADE and
populated randomly with system calls to get the desirable length
N. Next step is to calculate a score for each signature. We define
score of individual to be a number of malicious files matched
by this individual (signature). We assign the score “0” to those
individuals that match one or more benign files. Next, we perform
the cross over and the mutation operations and calculate score
for new individuals. We use the following cross over methodsFirst
half of new signature is taken from signature 1, second half from
signature 2

• All even indexes from signature 1, all odd indexes from signature 2

Mutation is defined as replacing (with a certain probability) of
system call in the signature by another system call.

Finally, we sort all original individuals as well as the obtained off 
springs by the score value. The best individuals together with some 
new random signatures (another parameter to algorithm; we need 
this step in order to prevent a converge to a local maximum) comprise 
the new generation, which is given a score. The steps above are 
performed repeatedly for specified number of times (generations). At 
the end of the process we choose the minimal number of individuals 
(signatures) from the final population which matches all the malicious 
files in Mr and any of benign files in Br. 

Evaluation

Figure 3 describes an evaluation environment we used to create 
datasets (Mr and Br). We use a virtual machine (VMware) that is 
booted with a kernel mode monitor agent, prior to the execution of 
each target file. Each executable is executed for 5 minutes. During 
this exemplary 5 minutes period, a running file typically invokes 
between 500 to 10,000 system calls. We take only those files that 
invoke at least 1000 system calls. The monitor agent intercepts and 
monitors all system calls in kernel mode and produces the datasets 
Mr (640 files) and Br (570 files). Each file is represented by first 1000 
invoked system calls.

We acquired the malicious files from the VX Heaven website [17]. 
The files in the benign set, including executable and DLL (Dynamic 
Linked Library) files, were gathered from machines running Windows 
XP operating system in our campus. 

To evaluate our method, we ran four-fold cross-validation 
(three folds for the training and one for the testing). We measure 
the true positives (TP) and the false positive (FP) rates as a function 
of signature length and average the results. Following subsections 
present the obtained results for SPADE and GA separately.

SPADE Evaluation

Figure 4 presents the evaluation results for signature length 
increasing from 4 till 15.  From the figure we can see that short 
signatures tend to be more common, matching both malicious and 

Figure 3:

Figure 4:

Figure 5:
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benign files. As signature length increases the TP rate almost do not 
changes but the FP rate decreases. Signatures of length 15 produce 
the best results. We achieved a training accuracy of 100%. For given 
dataset we have discovered 28 characteristic sequences of length 15 
that match 87% of malicious executables (from the testing set), with 
7% false alarms.

GA Evaluation

We omit here the evaluation of GA parameters - we got the best 
results for number of generations equal to 15000, population size 
equal to 500, mutation probability equal to 0.1, and percentage 
of random individuals added to each generation equal to 10%. The 
following figure presents the evaluation results for signature length 
increasing from 15 till 70. Each next run takes the previously obtained 
signatures as input and populate them randomly to get the desirable 
signature length Figure 5.

First of all we can see the decrease of FP rate as the signature 
length increases. Secondly we can see the increase (or at least not 
decrease) in TP rate in the range 15<=SignatureLength<=45 and 
the decrease in TP rate for SignatureLength>45. This is because long 
signatures tend to be more file specific (over fitting).

A Signature length of 45 gave the best results – the highest TP 
rate and the lowest FP rate. However there is a tradeoff between the 
signature length and the detection time – as the signature length 
increases the detection time increases as well.

Our approach is based on the assumption that there is a 
similarity between certain groups of malware in terms of sequences 
of invoked system calls and these sequences do not present in any 
benign file. We can expect that the more benign files we have in 
the dataset, the better the FP rate we will receive. In order to justify 
this assumption we made several runs, all with the same parameters, 
but having different datasets. We took the original dataset which 
had 570 benign files and 640 malicious files, and formed four more 
datasets from the original dataset, each has 70 benign files less than 
its predecessor (meaning 500,430,360,290 benign files), but the same 
number of malicious files (640). In the graph below, we can see that 
the more benign files we have in the dataset, the FP rate decreases. 
This suggests that if we have more and variable benign files we’ll get 
a better accuracy Figure 6.

In order to increase the TP rate we plan to improve the 
performance by finding correlations between the found characteristic 
sequences using additional data mining techniques (and not use each 
feature separately).

Conclusion

In this paper we show that there are “behavioral signatures” 
(sequences of system calls) that can be used for real time detection of 
new malicious executables. We present two methods for discovering 
the signatures above as well as their evaluation. Finally, we present 
overall system for real time malware detection that based on 
proposed method.

We used relatively small datasets for our evaluation. We plan to 
enlarge it up to 10000 malicious files and 10000 benign files. Also 
each file in the dataset was represented by first 1000 system calls 
only (due to the computation complexity). We believe that for the 
larger dataset with more system calls for each file we’ll receive the 
better results. Also we plan to improve the performance by finding 
correlations between the found characteristic sequences using 
various data mining techniques.

Our goal was to show the reliability of our method. We show that 
the larger dataset of benign files will reduce the false positive rate. 
Large enterprises, such as antivirus providers could apply our method 
on large datasets, thus producing more practical results.
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