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Abstract

We present a method for detecting new malicious executables, which comprise the following steps: (a)

in an

offline training phase, finding a set of system call sequences that are characteristic only to malicious files, when such
malicious files are executed, and storing said sequences in a database; (b) in a real time detection phase, for each
running executable, continuously monitoring its issued system calls and comparing with the stored sequences of system
calls within the database to determine whether there exists a match between a portion of the sequence of the run-time
system calls and one or more of the database sequences, and when such a match is found, declaring said executable
as malicious. We have evaluated our method and the preliminary results are promising and justify the use of system
calls sequences for the purpose of detection of new malicious executables.
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Introduction

Detection of malicious executables that are known beforehand
is usually performed using signature-based techniques. These
techniques typically rely on the prior explicit knowledge of the
malicious executable code, which is in turn is represented by one or
more signatures or rules that are stored in a database. The database is
frequently updated with new signatures, based on new observations.
The main disadvantage of these techniques is the inability to detect
totally new, i.e., un-encountered malicious executables.

The goal of this paper is to provide a technique which can detect
new malicious executables, whose signatures are unknown yet. The
main prior art approach for performing such a task is to employ
machine learning and data mining for the purpose of creating a
classifier that is able to distinguish between malicious and benign
executables statically (without actually running them) [1-3]. The
main drawback of the above approach is its inability to deal with
obfuscated/encrypted files.

In this paper we introduce a novel technique for the real-time
detection of new malicious executables that follows dynamic analysis
(or behavior-based) approach (detection during the execution).
Traditionally, dynamic analysis approaches have been used in
intrusion detection systems (IDS) based on anomaly detection [5-11].
These systems build models of a normal program behavior during
a training phase, and then, using the models the systems attempt
to detect deviations from said normal behavior during a detection
phase. The main drawback of using these techniques is the necessity
to perform a complex and frequent retraining in order to separate
“noise” and natural changes to programs from malicious codes.
Legitimate program updates may result in false alarms, while malicious
code actions that seem to be normal may cause missed detections.
Furthermore, most applications that are based on anomaly detection
techniques identify malicious behavior of specific processes only.

Another using of dynamic analysis approach is for malicious
code classification [12,15] and for detection of variations of known
malware [18,19]. The techniques proposed in [12,15] can be used to
classify a given malicious code instance as belonging to one of the
predefined number of classes, but cannot be used for a new malicious
code detection in real time. The methods proposed in [18,19] are
suitable to detect variations of existing malware, but not completely
new malware.

In this paper we try to provide a general, real time detection
method that is more reliable than existing methods. Our method
comprises of the following steps: (a) in an offline training phase,
finding a collection of system call sequences that are characteristic
only to malicious files, when such malicious files are executed, and
storing said sequences in a database; (b) in runtime, for each running
executable, continuously monitoring its issued run-time system calls
and comparing with the stored sequences of system calls within
the database to determine whether there exists a match between
a portion of the sequence of the run-time system calls and one or
more of the database sequences, and when such a match is found,
declaring said executable as malicious. A major issue in this method
is finding an optimal set of such sequences. We employ SPADE [4] and
genetic algorithm (GA) to perform the first step - i.e. finding “behavior
signatures” (sequences of system calls) that are characteristic to
malicious executables and not to benign executables and use said
signatures for the purpose of detection in the second step.

In this paper, we make three main contributions:

* We show that there are “behavioral signatures” (sequences of
system calls) that can be used for detection of new malicious
executables (and not only for classification).

* We present two methods for discovering the signatures above as
well as their evaluation.

* We present overall system for real time malware detection that is
based on the proposed method.

The rest of the paper is structured as following: in Section 2 we
describe related work, in Section 3 we present the overall system
architecture for real time detection of new malicious executables as
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well as two methods for discovering “behavior signatures”. Then,
in Section 4 we describe our data collection and present evaluation
results and we conclude in Section 5 with results discussion and
future work.

Related Work
Static analysis approach

In recent years several approaches for detecting unknown
malware based on its binary code have been presented. In [2] the
authors introduced the idea of applying machine learning methods
(ML) on binary code. They used program header, string features and
byte sequence features to represent instances (malicious and benign
programs) and developed three classifiers (rule-based classifier, Naive
Bayes and Multi-Naive Bayes) to classify new (unseen) instances.
They compared the accuracy of these methods to the accuracy of
the signature-based method (antivirus) and show that all of the ML
methods are more accurate than the signature-based method. In
[3] the authors construct a representative profile for malicious and
benign classes, composed of the common n-grams. New files are
compared to both profiles and matched to the most similar, using
the k nearest neighbor (KNN) method. In [1] the authors used a vector
of n-grams to represent malicious and benign files and presented a
comprehensive evaluation of IBk, TFIDF, naive Bayes, SVM, decision
trees, boosted naive Bayes, boosted SVM, and boosted decision tree
classifiers. The authors indicated that the results of their n-gram
study were better than those presented by [2| and boosted decision
tree classifier out-performed the others.

Behavior-based approach

While static analysis consists of examining the code of programs
to determine properties of the dynamic execution of these
programs without running them, behavior-based approach considers
monitoring the execution of a program to detect malicious behavior.

The use of system calls: One common way to represent program
behavior is to use a system calls sequences. Following is an example
of the trace produced by sTrace [20] utility for Windows:

Sequences of system calls are used by several malware detection/
classification systems and will also be used in our method (see below).

Anomaly detection systems: Typically, the systems belonging
to this category build models of normal program behavior and
then attempt to detect deviations from the normal model in the
observed behavior. Variety of anomaly detection methods utilizing
this approach has been proposed [5-11]. Forrest [5], for example,
introduced a simple anomaly detection method based on monitoring
the system calls issued by privileged processes. During the training
phase, the proposed system records short system call sequences that
represent a normal process behavior (“self”) into Normal Dictionary.
During detection phase, actual system call sequences are compared
with the Normal Dictionary. An alarm is raised if no match is found.

Another approach, proposed in [6] is based on the idea that rare
system calls sequences are suspicious. The authors suggest ranking
each system call sequence by comparing how often the sequence
occurs in normal instances with how often it is expected to occur
during attack. Sequences occurring frequently during attack are
declared as suspicious.

Several data mining techniques for studying system call sequences
have been proposed. Lee and others [7,8] proposed a method for
describing “normal” system call sequences by a (small) set of rules that
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cover the common elements in those sequences. During detection,
sequences violating the rules are considered as anomalies. The main
advantage of anomaly detection techniques is their ability to detect
new, previously un-encountered malicious codes. The main drawback
of using these techniques is the necessity to perform a complex and
frequent retraining in order to separate “noise” and natural changes
to programs from malicious codes. Legitimate program updates may
result in false alarms, while malicious code actions that seem to be
normal may cause missed detections. Furthermore, most applications
that are based on anomaly detection techniques identify malicious
behavior of specific processes only. Another common drawback of
the anomaly detection methods presented above is their inability
to cope with mimicry attacks [9,10]. A mimicry attack is an attack
where the attacker can inject exploit code that imitates the system
call sequence of a legitimate program run while performing malicious
actions. Mutz and others [11] claims to overcome mimicry attacks by
using a method that analyzes the arguments of system calls in order
to prevent evasion and improve detection accuracy.

Behavior-based malware classification: Another application of
dynamic analysis approach is in a malware classification domain. Lee
et al. [12] proposed a malicious code classification technique which
is based on clustering of system call sequences. Malicious programs
of various classes are represented as sequences of system calls. A
K-medoid Clustering algorithm, as described in [13], is applied to
the sequences in order to map the input into a predefined number
of different classes. The distance between sequences is defined by
the minimum “cost” required in order to transform one sequence
of system calls to another sequence of system calls, by applying
a set of predefined operations. The process results in a classifier,
which includes plurality of medoids, wherein each medoid is a best
representative of each cluster. The classification of new objects is
performed using the nearest neighbor classification method as
described in [14]. A new object is compared to all medoids, and
receives a class label of the closest one.

In [15] Bayer et al. proposed to generalize the malware’ execution
traces “into behavioral profiles, which characterize the activity of
a program in more abstract terms”. After the profiles have been
created, the analyzed samples are clustered according to their
behavioral profile. This technique produces more precise results than
previous approaches.

The techniques above can be used to classify a given malicious
code instance as belonging to one of the predefined number of
classes, but cannot be used for a new malicious code detection in
real time.

Behavior-based malware detection: In [18], the authors propose
a method for automatic creation of specification of malware
behavior. They introduce the concept of malware specification
called Malspec. Malspec is a directed acyclic graph (DAG) where each
node corresponds to a (relevant) system call invocation and edges
represent dependences between arguments of different system
calls. Malspec is extracted by contrasting the execution behavior of
a known malware against the execution behaviors of a set of benign
programs. The authors proposed the algorithm that creates the
system-call graphs from execution traces, and derives a Malspec by
computing the minimal differences between the system-call graphs
of a malware sample and of multiple benign programs. The authors
show that Malspecs can be converted to templates/signatures used
by malware detectors to detect variations of a certain malware.
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In [19], authors pointed out that Malspecs do not encode data
flow dependencies between system call parameters, and that using
Malspecs for detection without verifying these dependencies would
lead to a large number of false alarms. They propose an approach that
builds a behavior graph for analyzed malicious program where nodes
are (interesting) system calls and edges represent a data dependency
between the system calls. Then, they extract the program slices
responsible for such dependences. For detection, they execute the
extracted program slices to match them against the runtime behavior
of an unknown program.

Both methods above are suitable to detect variations of existing
malware, but not completely new malware.

Our Method

Our method determines and assigns sequences of system calls as
representing the behavior of malicious programs. This is performed
during a learning/training phase. During a detection phase, which is
performed in real time, the method identifies malicious executables
by comparing their own run time sequences of system calls with
said stored (in the database) sequences of system calls that are
characteristic to only malicious executables. Figure 1 is a flow
diagram illustrating the process for detecting malicious executables.
During the training phase (101), which is performed off-line, an “M
determining module” (102) operates to determine M-sequences of
system calls that are characteristic only to malicious executables, and
not to any benign program. This module produces an “M database”
(103) which includes the collection of M-sequences, as determined.
The M database (103) forms an input data to comparator (104). During
the runtime monitoring phase (105), the comparator continuously
receives inputs relating to the system calls that are issued by the
currently running executables, compares them separately with each
of the sequences stored in the M database. If with respect to a
specific running program a match is found with one or more of the
M-sequences, this specific executable is declared as malicious and
can be terminated. Otherwise, as long as no such an alert signal is
issued, this running file is considered as benign.

We developed our system for the MS-Windows operating system
but the same ideas can work for other OSs. Presently there are
about 1100 different system calls for Windows operating systems.
We define an M-sequence as a sequence of system calls occurring
one after another in time, but not necessarily consecutive. This is
the common definition for a sequence that is used generally in Data
mining.

Figure 2 describes the training phase process for determining the
database of M-sequences. The process comprises accumulation of n
executables that are known to be malicious, and m executables that
are known to be benign. In steps 201 and 202, each of said benign
and malicious executables is executed, and runtime sequence of
system calls is recorded for each of said executables. The result is two
datasets, Mr dataset which contains n records of “raw” sequences
relating to malicious executables, and Br dataset which contains
m records of “raw” sequences relating to benign executables. The
length of each of said n and m sequence records (within Mr and Bp
is relatively long (we discuss this issue in the Evaluation section). It
should be noted that there is no necessity for having a same sequence
length for all the various “raw” recorded sequences within either Mr
and/or Brdatasets. In step 203, a set S of all frequent sequences in Mr
which do not appear within any of the sequences in Bris determined.
To perform this task we use the SPADE algorithm [4] and genetic
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algorithm (GA) discussed in the sections 3.1 and 3.2, but other
approaches can be applied as well. In step 204 we reduce the set
S to minimal set Smin that matches all the sequences (files) in Mr.
This reduced set forms the database M. The result of the completion
of the procedure of Figure 2 is the database M, which contains a
collection of sequences of system calls that are characteristic to
only malicious executables. The database M is used in runtime for
detecting malicious executables, in a manner as was described above
with respect to Figure 1.

SPADE

SPADE [4] is an algorithm for fast mining of sequential patterns in
large databases. Given a database and a minimal support value, SPADE
efficiently generates all sequences that repeat (i.e., frequent) in the
database with a support equal to or grater than a minimal support
value. In our implementation we enumerate frequent sequences in
Mr for the 1%<minSupp<100% and take a minimal set of sequences
that matches all the sequences in Mr (malicious files’ traces) and no
sequence in Br (benign files’ traces).

SPADE uses lattice approach [16] to enumerate all frequent
sequences. When we run our implementation of SPADE against a
dataset we have created, we found that the lattice for our domain
is too large to search. One of the examples we ran had 30 frequent
1-sequences and lattice depth of around 50, and the process was
stopped after running three weeks and still searching in the first sub-
lattice, the one that has the first frequent 1-sequence as its root. We
had no choice but to limit the size of the lattice. This was done via
limiting the number of system calls between first and last system call in
the sequence. The idea can be thought of as a sliding window, where
the user defines the window size. This strategy proved to reduce the
processing time drastically. The disadvantage is that we are able to
enumerate frequent sequences of limited length. In our experiments
we get reasonable runtime for signature length less or equal to 15.
We observed that as the signatures length increases the performance
of our approach increases as well (we discuss the evaluation results
in details in the section 4.1). This observation motivated us to use
another approach to enumerate frequent sequences of arbitrary
length.

In order to improve the performance of our approach, we employ
Genetic Algorithm (GA), presented in the section 3.2. It allows us to

101
\ M determining module 102 =)

M Database 103\

105 H JL

System call IDs File IDs
:} 104 Comparator
Figure 1:
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search for larger signatures that, as we’ll show later, produce better
results.

Genetic Algorithm: Genetic Algorithms (GA) are based on
the Darwinian principle of evolution i.e. the natural selection,
also known as “Survival of the fittest” and can be used to solve
computational problems. The mechanism of evolution is perfectly
suited to be applied on the problems that require searching after an
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optimal solution among a lot of potential solutions in the searching
space. Genetic algorithms typically used to provide a well enough
approximate solution to the problems that can’t be solved accurately
in reasonable time.

* We have developed GA for mining frequent sequences of system
calls. The input to the algorithm is two datasets (Mr and Br),
signatures obtained by the SPADE as described in the Section
3.1, and the desirable signature length (N). The output is a set of
signatures of size N that matches all malicious files in Mr and any
benign file in Br. We start from a random population of signatures
oflength N, conducted from the signatures obtained by SPADE and
populated randomly with system calls to get the desirable length
N. Next step is to calculate a score for each signature. We define
score of individual to be a number of malicious files matched
by this individual (signature). We assign the score “0” to those
individuals that match one or more benign files. Next, we perform
the cross over and the mutation operations and calculate score
for new individuals. We use the following cross over methodsFirst
half of new signature is taken from signature 1, second half from
signature 2

¢ All even indexes from signature 1, all odd indexes from signature 2

Mutation is defined as replacing (with a certain probability) of
system call in the signature by another system call.

Finally, we sort all original individuals as well as the obtained off
springs by the score value. The best individuals together with some
new random signatures (another parameter to algorithm; we need
this step in order to prevent a converge to a local maximum) comprise
the new generation, which is given a score. The steps above are
performed repeatedly for specified number of times (generations). At
the end of the process we choose the minimal number of individuals
(signatures) from the final population which matches all the malicious
files in Mr and any of benign files in Br.

Evaluation

Figure 3 describes an evaluation environment we used to create
datasets (Mr and Br). We use a virtual machine (VMware) that is
booted with a kernel mode monitor agent, prior to the execution of
each target file. Each executable is executed for 5 minutes. During
this exemplary 5 minutes period, a running file typically invokes
between 500 to 10,000 system calls. We take only those files that
invoke at least 1000 system calls. The monitor agent intercepts and
monitors all system calls in kernel mode and produces the datasets
Mr (640 files) and Br (570 files). Each file is represented by first 1000
invoked system calls.

We acquired the malicious files from the VX Heaven website [17].
The files in the benign set, including executable and DLL (Dynamic
Linked Library) files, were gathered from machines running Windows
XP operating system in our campus.

To evaluate our method, we ran four-fold cross-validation
(three folds for the training and one for the testing). We measure
the true positives (TP) and the false positive (FP) rates as a function
of signature length and average the results. Following subsections
present the obtained results for SPADE and GA separately.

SPADE Evaluation

Figure 4 presents the evaluation results for signature length
increasing from 4 till 15. From the figure we can see that short
signatures tend to be more common, matching both malicious and
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benign files. As signature length increases the TP rate almost do not
changes but the FP rate decreases. Signatures of length 15 produce
the best results. We achieved a training accuracy of 100%. For given
dataset we have discovered 28 characteristic sequences of length 15
that match 87% of malicious executables (from the testing set), with
7% false alarms.

GA Evaluation

We omit here the evaluation of GA parameters - we got the best
results for number of generations equal to 15000, population size
equal to 500, mutation probability equal to 0.1, and percentage
of random individuals added to each generation equal to 10%. The
following figure presents the evaluation results for signature length
increasing from 15 till 70. Each next run takes the previously obtained
signatures as input and populate them randomly to get the desirable
signature length Figure 5.

First of all we can see the decrease of FP rate as the signature
length increases. Secondly we can see the increase (or at least not
decrease) in TP rate in the range 15<=SignatureLength<=45 and
the decrease in TP rate for SignatureLength>45. This is because long
signatures tend to be more file specific (over fitting).

A Signature length of 45 gave the best results — the highest TP
rate and the lowest FP rate. However there is a tradeoff between the
signature length and the detection time — as the signature length
increases the detection time increases as well.

Our approach is based on the assumption that there is a
similarity between certain groups of malware in terms of sequences
of invoked system calls and these sequences do not present in any
benign file. We can expect that the more benign files we have in
the dataset, the better the FP rate we will receive. In order to justify
this assumption we made several runs, all with the same parameters,
but having different datasets. We took the original dataset which
had 570 benign files and 640 malicious files, and formed four more
datasets from the original dataset, each has 70 benign files less than
its predecessor (meaning 500,430,360,290 benign files), but the same
number of malicious files (640). In the graph below, we can see that
the more benign files we have in the dataset, the FP rate decreases.
This suggests that if we have more and variable benign files we’ll get
a better accuracy Figure 6.
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In order to increase the TP rate we plan to improve the
performance by finding correlations between the found characteristic
sequences using additional data mining techniques (and not use each
feature separately).

Conclusion

In this paper we show that there are “behavioral signatures”
(sequences of system calls) that can be used for real time detection of
new malicious executables. We present two methods for discovering
the signatures above as well as their evaluation. Finally, we present
overall system for real time malware detection that based on
proposed method.

We used relatively small datasets for our evaluation. We plan to
enlarge it up to 10000 malicious files and 10000 benign files. Also
each file in the dataset was represented by first 1000 system calls
only (due to the computation complexity). We believe that for the
larger dataset with more system calls for each file we'll receive the
better results. Also we plan to improve the performance by finding
correlations between the found characteristic sequences using
various data mining techniques.

Our goal was to show the reliability of our method. We show that
the larger dataset of benign files will reduce the false positive rate.
Large enterprises, such as antivirus providers could apply our method
on large datasets, thus producing more practical results.
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