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The integral-differential equations describe many phenomena 
in different field of mechanical and nuclear engineering, chemistry, 
astronomy, biology and potential theory. The resolution of boundary 
problems for these equations are the subject of several papers in 
which the authors have approached in most cases numerical methods: 
Monte Carlo, truncated series of Chebyshev polynomials, the fictitious 
domain method, SN method and the finite element method [1-4]. An 
exact solution was found only in the particular cases. Generally, these 
are obtained with the help of the methods of mathematical analysis, 
abstract functional analysis and the spectral methods [5].

In recent years, the basic ideas of the homotopy, which is a concept 
of the topology and differential geometry, were used to obtain the 
approximate solutions for a wide class of differential, integral and 
integral–differential equations. We mention here the homotopy 
perturbation method (HPM) proposed by Ji-Huan He in 1998 and 
the homotopy analysis method (HAM) proposed by Liao in 1992. The 
perturbation methods approximate the solution of given problem by a 
series of small parameters. Unfortunately, the majority of non-linear 
problems have no small parameters and an unsuitable choice of these 
parameters can lead to bad effects. The new homotopy perturbation 
technique (HPM) embeds a parameter p that ranges from zero to 
one [6,7]. When the embedding parameter is zero, we get a linear 
equation and if it is equal to one, we get the original transport equation. 
This embedding parameter that belongs to the interval (0, 1) can be 
considered as a small parameter. 

The homotopy analysis method (HAM) is one of the most effective 
methods to obtain the exact and approximate series solutions for the 
integral–differential equations [8]. Being a great freedom in choosing of 
the initial guess functions and the auxiliary functions, are proposed for 
these such forms that correspond to the conditions imposed at the ends 
of the spatial interval and thus the algorithm becomes fast convergent. 
In the papers [9-11] is shown that the homotopy perturbation method, 
variational iteration method and Adomian decomposition method are 

only special cases of the homotopy analysis method solutions. Today, a 
new homotopy method is added to the above. With this we can solve the 
multipoint boundary problem for a stationary transport equation in the 
non-homogeneous media. Comparative studies between the solutions 
obtained with the help of mentioned algorithms for a numerical 
example with the appropriate exact solutions illustrate the accuracy and 
computational efficiency of these new methods.
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