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Commentary
Recent study entitled with “functional dynamics of neutrophils after

ischemic stroke” by Cai et al. has documented the important impact of
neutrophil functions on stroke outcomes [1]. The authors
demonstrated that neutrophil counts in the peripheral blood could be
an early indicator of stroke outcomes. Neutrophil phenotypic shift, its
self-clearance by microglia/macrophage, formation of neutrophil extra
cellular traps (NETs) could all affect neuronal survival in stroke lesion.
This work presents a dynamic and functional role of neutrophils in
ischemic stroke.

Firstly, neutrophil, as forerunner in stroke lesion, reaches the first-
hand danger-associated signals and infiltrates into stroke lesion in
large scale, plays a vital role in the pathophysiological process of
ischemic stroke [2-4]. Nevertheless, due to the sensitivity and short
half-life of neutrophil, study on biological characteristics of neutrophils
is difficult. As a result, advance of work on neutrophil functions is slow
and our knowledge on the neutrophil behavior in stroke lesion is
limited. The authors have performed a set of thorough investigation on
the temporal and spatial dynamics of neutrophil after stroke, which has
provided detailed and valuable information of the time courses of
neutrophil behavior. Nevertheless, with the mentioned difficulty, the
work by Cai et al., was mostly descriptive. Mechanical study in depth
on neutrophil functions, including phenotypic shift, cross-talk with
cells within stroke lesion, formation of NETs, etc., deserves a further
investigation.

Secondly, the authors depicted time courses of neutrophil
phenotypic shift after stroke. Phenotype of macrophage is controlled by
multiple cell signaling, such as PPARγ pathway and STATs family
[5-9]. Since previous studies have demonstrated that type II
neutrophils (N2) was correlated with improved stroke outcomes
[10,11], transcriptional factors that drive neutrophil phenotypic shift
are worth studying in depth. It will be interesting to compare the
similarity and difference between neutrophils and neutrophil/IL-17+
cells since the latter also involves in organ damage [12]. Additionally,
regulatory T cells can target immune cells and non-immune cells
[13-18], it will be very interesting to learn if regulatory T cells affect the
phenotypic shift and function of neutrophils and then affect the
outcome of stroke in the future. As far as we know, the benefits of N2
lies mainly on that the population facilitates self-clearance by
microglia/macrophage. Therefore, alteration in metabolism, cell
structure and cytoplasmic movement during neutrophil phenotypic
shift and its crosstalk with microglia/macrophage are worth exploring.
Dynamics of neutrophil phenotypic shift and its clearance by

microglia/macrophage described by the authors should have afforded
the basis.

Thirdly, formation of NETs is a process that combats invading
microbes [19]. Surprisingly, NETs formation has been discovered in
lesion of aseptic inflammation recently [20,21]. In the current study,
the authors have documented the presence of NETs in stroke lesion,
and further confirmed the detrimental role of NETs to neuronal
survival. However, what triggers the formation of NETs, whether and
how NETs contributes to progression of post-stroke neural
inflammation, what is the impact of NETs to its self-clearance by
microglia/macrophage, and so on still remain elusive. It has been
reported that bio-markers of NETs pointed to worse stroke outcomes
[22]. Thus, inhibiting NETs formation or accelerating clearance of
NETs should be a promising therapeutic strategy for ischemic stroke.
Exploring the mechanisms of NETs formation in stroke lesion is of
vital significance.

In conclusion, neutrophil could be a key therapeutic target for
stroke although our current knowledge on biological activities and
features of this cell population is still insufficient. The current study has
offered a basic information of neutrophil functions and behaviors
alteration in stroke lesion. Nevertheless, many questions remain to be
answered so as to better understand the irritable cell roles and to break
a new pathway for stroke treatment.
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