New Fixed Point Theorems in G-metric Spaces

Abd-Elhamed GM 1,2 *

1Department of Mathematics, College of Girls, Ain Shams University, Egypt
2Department of Mathematics, College of Science and Humanities Studies, Prince Sattam bin Abdulaziz University, Saudi Arabia

Abstract

We prove new theorems for generalized contractions in the setting of G-metric spaces. Our results extend some results of Moradlou and Aggarwal.

Keywords: Fixed point; Generalized contractions; G-metric spaces

Introduction

The concept of G-metric spaces was introduced by Mustafa and Sims [1-9] in order to extend and generalize the notion of metric spaces. Recently, Mustafa studied many fixed point theorems for various contractive conditions on complete G-Metric spaces [2]. Moradlou [7] and Aggarwal [2] proved some fixed point theorems for generalized contractions in the setting of G-Metric spaces, our results extend a result of Edelstein [5] and a result of Suzuki [10-18].

In this paper, we prove fixed point results for generalized contractions in the setting of G-metric spaces, extend the works of Aggarwal [2] and Moradlou [7].

Preliminaries

We recall some basic definitions and results which are important in the sequel. For details on the following notions we refer to [5]. First we give the definition of a G-metric space.

Definition 2.1: Let X be a non-empty set and G: X ×X × X → R' be a function satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, y, z) for all x, y ∈ X, with x ≠ y;
(G3) G(x, y, z) ≤ G(x, z, z) for all x, y, z ∈ X, with z ≠ y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables)
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

Example 2.1: Let R be the set of all real numbers. Define G: R × R × R → R by G(x, y, z) = |x - y| + |y - z| + |z - x|; for all x, y, z ∈ X. Then it is clear that (R, G) is a G-metric space.

Proposition 2.2: Let (X, G) be a G-metric space. Then for any x, y, z and a ∈ X it follows that:

1. If G(x, y, z) = 0 then x = y = z;
2. G(x, y, z) ≤ G(x, y, y) + G(x, x, z)
3. G(x, y, z) ≤ 2G(y, x, x)
4. G(x, y, z) ≤ G(x, a, z) + G(a, y, z)
5. G(x, y, z) ≤ 2(G(x, y, a) + G(x, a, x, z) + G(a, y, z)),

 G(x, y, z) ≤ G(x, a, a) + G(y, a, a) + G(z, a, a).

Definition 2.3: Let (X, G) be a G-metric space, and (x_n) be a sequence of points of X, we say that (x_n) is G-convergent to x if for any ε > 0, there exists N such that G(x_n, x) < ε, for all n ≥ N.

Proposition 2.4: Let (X, G) be a G-metric space. Then the following are equivalent:

1. (x_n) is G-convergent to x,
2. G(x_n, x) → 0, as n → ∞,
3. G(x_n, x) → 0, as n → ∞,
4. G(x_n, x) → 0, as m, n → 1

Definition 2.5: Let (X, G) be a G-metric space, a sequence (x_n) is called G-Cauchy if given ε > 0, there is n_0 ∈ N such that G(x_n, x_m) < ε for all n, m ≥ n_0;

Definition 2.6: Let (X, G) and (X', G') be G-metric spaces and let f: (X, G) → (X', G') be a function, then f is said to be G continuous at a point a ∈ X, if given ε > 0, there exists δ > 0 such that x, y ∈ X, G(a, x, y) < δ implies G'(f(a), f(x), f(y)) < ε.

A function f is G-continuous on X if, and only if, it is G-continuous at all a ∈ X.

Proposition 2.7: Let (X, G) be a G-metric space. Then the function G(x, y, z) is continuous in all variables.

Definition 2.8: A G-metric space (X, G) is said to be G-complete if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Definition 2.9: A G-metric space (X, G) is said to be a compact G-metric space if it is G-complete and G-totally bounded.

Main Results

Our main results are follows:

Theorem 3.1: Let (X, G) be a complete G-metric space and T be a mapping on X. Assume that there exist r ∈ [0, 1), (b+c) ∈ (0, 1), a ∈ [0, 1]
\[(a+b+c)r^2+r\leq \frac{1}{2} + \frac{1}{6r}\frac{1}{\sqrt{6}}\]
and
\[a+(2a+b+c)r\leq 1, if \ r = \left[\frac{1}{\sqrt{6}}\right]^{-1}\]
such that
\[aG(x,Tx,Tx) + bG(y,Tx,Ty) + cG(z,Ty,Tz)G(x,y,z)\]
implies
\[G(Tx,Ty,Tz)\leq \gamma M(x,y,z)\] for all \(x,y,z \in X\)

where \(M(x,y,z) = \max\{G(x,y,z),G(x,Tx,Ty),G(y,Ty,Tz),G(z,Tz,Tx)\}\).

Then there exist a unique fixed point \(w\) of \(T\). Moreover
\[G(Tw,Tw,Tw) = \max\{G(Tw,w,w)\}\]
by hypothesis, we get
\[\lim n_{\rightarrow \infty} T^n w = w\] for all \(x \in X\) and \(T\) is \(G\)-continuous at \(w\).

Proof: Since \(aG(x,Tx,Tx) + bG(x,Tx,Ty) + cG(Tx,Ty,Tx) = aG(x,Tx,Tx)\) holds for every \(x \in X\), by hypothesis, we get
\[G(Tx,Tx,Tx) \leq \gamma M(x,y,z)\]
where
\[M(x,y,z) = \max\{G(x,y,z),G(x,Tx,Ty),G(y,Ty,Tz),G(z,Tz,Tx)\}\]

if \(M(x,y,z) = \max\{G(x,y,z),G(x,Tx,Ty),G(y,Ty,Tz),G(z,Tz,Tx)\}\) and \(G(x,y,z)\) is a complete \(G\)-metric space, \((3.4)\) holds for every \(x \in X, T\) is \(G\)-continuous at \(w\).

If \(w \rightarrow \infty\), we get
\[G(Tw,Tw,Tw) = \max\{G(Tw,w,w)\}\]
then
\[G(Tw,Tw,Tw) = aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\]
which is a contradiction. Hence
\[G(Tw,Tw,Tw) = aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\]

In the third case, if \(\frac{1}{6} \leq \gamma \leq \frac{1}{\sqrt{6}}\), we assume
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
which is a contradiction. Hence
\[G(Tw,Tw,Tw) = aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\]

In the third case, if \(\frac{1}{\sqrt{6}} \leq \gamma \leq 1\) we assume that there exist an integer \(k\) such that
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
for all \(n \geq k\). Using the rectangle inequality, the proposition (2.2), and the inequalities (3.3), we get
\[aG(Tw,w,w) + (b+c)G(Tw,Tw,Tw)\leq \frac{aG(Tw,w,w)}{1-r}\]
Thus
\[G(u_n,\ldots,u_n,w) = \frac{n}{1-r} G(u_n,\ldots,u_n,w) + \frac{m}{1-r} G(u_n,\ldots,u_n,w) \]
so,
\[G(u_n,\ldots,u_n,w) \leq G(u_n,\ldots,u_n,w) + G(u_n,\ldots,u_n,w) \]
\[\leq \frac{n}{1-r} G(u_n,\ldots,u_n,w) + \frac{m}{1-r} G(u_n,\ldots,u_n,w) \]
\[\leq G(u_n,\ldots,u_n,w), \text{for all } n \geq \lambda \]

a contradiction. Hence there exist a subsequence \((u_{n_k})\) of \((u_n)\) such that
\[aG(u_{n_k},u_{n_k},u_{n_k}) + dG(u_{n_k},u_{n_k},u_{n_k}) \leq G(u_{n_k},u_{n_k},w) \]
for all \(k \geq 1\).

By hypothesis, we get \(G(T_{w_n},T_{w_n},T_{w_n}) \leq rM(u_n,\ldots,u_n,w)\), for all \(k \geq 1\), where
\[M(u_n,\ldots,u_n,w)=\max\{G(u_n,\ldots,u_n,w),G(u_n,\ldots,u_n,T_{w_n}),G(w,T_{w_n},T_{w_n})\} \]

By taking the limit as \(k \to \infty\), we obtain that \(G(w,T_{w_n},T_{w_n}) \leq rG(w,T_{w_n},T_{w_n}), \text{so } G(T_{w_n},T_{w_n}) = 0\), which is a contradiction. Thus there exists an integer \(n_0\) such that \(T_{w_n} \to w\) as \(n \to \infty\).

Theorem 3.2: Let \((X,d)\) be a compact \(G\)-metric space and \(T\) be a mapping on \(X\). Assume that
\[aG(x,T_{x_n},T_{x_n}) + bG(y,T_{y_n},T_{y_n}) + cG(z,T_{z_n},T_{z_n}) \leq G(x,y,z) \]
implies
\[G(T_{x_n},T_{y_n},T_{z_n}) < M(x,y,z) \text{ for all } x,y,z \in X \]
where \(M(x,y,z) = \max\{G(x,y,z),G(x,T_{x_n},T_{x_n}),G(y,T_{y_n},T_{y_n}),G(z,T_{z_n},T_{z_n})\}\) and \(a>0, b>0, c>0, 3a+2(b+c) < 1, 2(b+c) < 1\). Then \(T\) has a unique fixed point.

Proof: If we consider \(\beta=\min\{G(x,T_{x_n},T_{x_n}) : x \in X\}\), then there exists a sequence \((x_n)\) in \(X\) such that \(\lim_{n \to \infty} G(x_n,T_{x_n},T_{x_n}) = \beta\). Since \(X\) is compact \(G\)-metric space, there exists \(v \in X\) such that a sequence \((x_n)\) is \(G\)-converges to \(v \in X\), and \((T_{x_n})\) \(G\)-converges to \(v \in X\). We assume \(\beta>0\). Hence, by the continuity of the function \(G\), we have
\[\beta = \lim_{n \to \infty} G(x_n,T_{x_n},T_{x_n}) = G(v,v,v) = \lim_{n \to \infty} G(x_n,w,w) \]
(3.9)

Since
\[\lim_{n \to \infty} aG(x_n,T_{x_n},T_{x_n}) + (b+c)G(v,v,v) = \beta < \lim_{n \to \infty} G(x_n,w,w) = \beta \]
(3.10)

we can choose a positive integer \(N\) such that
\[aG(x_n,T_{x_n},T_{x_n}) + (b+c)G(v,v,v) < G(x_n,w,w) \]
for all \(n \geq N\).

By hypothesis, \(G(T_{x_n},T_{x_n},T_{w_n}) < \lambda M(x_n,w,w)\), holds for \(n \geq N\); where
\[M(x_n,w,w)=\max\{G(x_n,w,w),G(x_n,T_{x_n},T_{x_n}),G(w,T_{w_n},T_{w_n})\} \]

this implies
\[G(w,T_{w_n},T_{w_n}) = \lim_{n \to \infty} G(T_{x_n},T_{x_n},T_{w_n}) < \lim_{n \to \infty} M(x_n,w,w) = \max_{x \in X} \frac{\beta}{\beta} G(v,v,v) = G(w,T_{w_n},T_{w_n}) \]

is impossible, then \(G(w,T_{w_n},T_{w_n}) < \beta\). From the definition of \(\beta\) we obtain \(\beta=G(w,T_{w_n},T_{w_n})\).

Since \(aG(w,T_{w_n},T_{w_n}) + (b+c)G(T_{w_n},T_{w_n},T_{w_n}) < G(x_n,T_{x_n},T_{x_n})\), for all \(n \geq N\) we get
\[G(T_{x_n},T_{x_n},T_{w_n}) < \lambda M(x_n,w,w) = \max\{G(x_n,w,w),G(x_n,T_{x_n},T_{x_n}),G(w,T_{w_n},T_{w_n})\} = G(x_n,T_{x_n},T_{x_n}) \]

By using the rectangle inequality, we have
\[G(w,T_{x_n},T_{x_n}) < G(w,T_{x_n},T_{x_n}) + G(T_{x_n},T_{x_n},T_{x_n}) = G(T_{x_n},T_{x_n},T_{x_n}) \]

for all \(n \geq N\).

Thus \((T_{x_n})\) is \(G\)-convergent to \(w\) as \(n \to \infty\). Hence \(T\) is \(G\)-continuous at \(w\).

Now, we give a fixed point theorem on compact \(G\)-metric spaces.

Theorem 3.3: Let \((X,d)\) be a compact \(G\)-metric space and \(T\) be a mapping on \(X\). Assume that
\[aG(x,T_{x_n},T_{x_n}) + bG(y,T_{y_n},T_{y_n}) + cG(z,T_{z_n},T_{z_n}) < G(x,y,z) \]
implies
\[G(T_{x_n},T_{y_n},T_{z_n}) < M(x,y,z) \text{ for all } x,y,z \in X \]
where \(M(x,y,z) = \max\{G(x,y,z),G(x,T_{x_n},T_{x_n}),G(y,T_{y_n},T_{y_n}),G(z,T_{z_n},T_{z_n})\}\) and \(a>0, b>0, c>0, 3a+2(b+c) < 1, 2(b+c) < 1\). Then \(T\) has a unique fixed point.
\[G(T^{m+1}x_{n},T^{m+1}x_{n}) + \frac{a}{1-d'}G(T^{m}x_{n},T^{m}x_{n}) \leq \frac{a}{1-d'} G(T^{m}x_{n},T^{m}x_{n}) + d' G(T^{m}x_{n},T^{m}x_{n}) \]

(3.11)

We put \(\gamma = \max \{ \eta(1,0), \ldots, \eta(n) \} \). Then by the inequality (3.11) we have

\[G(x_{n},x_{n}) \leq \frac{a}{1-d'} G(T^{m}x_{n},T^{m}x_{n}) + d' G(T^{m}x_{n},T^{m}x_{n}), \]

(3.12)

which is a contradiction, therefore there exist \(\varepsilon \in \mathbb{X} \) such that \(Tz = \varepsilon \). Fix \(\varepsilon \in \mathbb{X} \) with \(\varepsilon \neq x_{n} \). Then

\[G(x_{n},Tz) + \frac{(b+c)G(x_{n},x_{n})}{2(b+c)} \leq G(x_{n},x_{n}) \leq G(x_{n},x_{n}) \]

(3.13)

Using rectangular inequality and proposition (2.2), we get

\[G(x_{n},x_{n}) \leq \frac{a}{1-d'} G(T^{m}x_{n},T^{m}x_{n}) + d' G(T^{m}x_{n},T^{m}x_{n}) \]

(3.14)

Similarly, we obtain

\[G(Tx_{n},x_{n}) \leq \frac{a}{1-d'} G(Tx_{n},x_{n}) + d' G(Tx_{n},x_{n}) \]

(3.15)

Since \(G(x_{n},Tx_{n}) \leq G(x_{n},w_{n}) + G(w_{n},Tx_{n}) = G(x_{n},w_{n}) + 2G(w_{n},Tx_{n}) \), by using the inequalities (3.14) and (3.15),

\[G(x_{n},Tx_{n}) \leq \frac{a}{1-d'} \frac{2p}{1-d'} + \frac{a}{1-d'} \frac{2p}{1-d'} G(x_{n},Tx_{n}) \]

(3.16)

Since \(\lim_{p \to +\infty} \frac{2pd'}{1-d'} = 0 \), and \(\frac{3a}{1-d'} \frac{2pd'}{1-d'} < 1 \) we can choose \(p \) satisfying

\[\frac{3a}{1-d'} + \frac{2pd'}{1-d'} + \frac{4p(1-d')}{1-d'} < 1. \]

Then

\[G(x_{n},Tx_{n}) < G(x_{n},Tx_{n}) \]

References: