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Commentary
In the last decade, important progress has been made with regard 

to clinical recovery in patients with disabling neurological conditions 
such as ischemic and hemorrhagic stroke. Until recently, the lack of 
effective treatment for stroke left patients with impaired cognition and 
severe physical disability with no hope of clinical recovery. Nowadays, 
rehabilitation represents a growing field that applies the knowledge 
from medicine, neuroscience, psychology and bioengineering that has 
allowed patients with neurological disability due to stroke to increase 
their life expectancy and enjoy a better quality of life [1].

Despite the advancement in neurointerventional surgery and 
medical treatment options (e.g., tissue plasminogen activator) applied 
within a few hours of stroke onset, stroke remains the main cause of 
permanent disability in Europe and the USA [2]. Early rehabilitative 
interventions such as intensive physiotherapy, neuropsychological 
rehabilitation or application of cutting-edge technologies, including 
robot-assisted therapy are associated with a high degree of physical 
and cognitive recovery. However, not all patients achieve considerable 
improvement of their neurofunctional disorders, and current functional 
indexes are unable to predict clinical outcome after rehabilitation. Thus, 
an important clinical question in stroke is whether specific measures of 
neural function can help predict which patients will benefit to a greater 
or lesser extent from rehabilitative interventions. 

In an attempt to answer this question, new research looks at 
changes in neuronal reorganization or functional connectivity 
dynamics following neurorehabilitation in patients with stroke [2,3]. 
It is known that after focal lesions, cerebral networks reorganize 
themselves both functionally and structurally to compensate for the 
effects of the lesion and for those of remote areas. Hence the analysis 
of functional connectivity can help us to understand the effect of stroke 
on cerebral networks and why some patients make a better recovery 
than others [4]. The aim of this work is to discuss the potential role of 
functional connectivity and brain network reorganization in predicting 
neurorehabilitation outcomes after stroke.

Motor outcomes
Clinical examination and neuropsychological assessments show 

limited value to predict post-stroke rehabilitation outcome. It has been 
proposed that neuroimaging and functional measures may potentially 
have a role in clinical decision making for rehabilitation therapy after 
stroke [3]. A recent review of the use of non-invasive brain stimulation 
techniques to monitor and modulate the excitability of intracranial 
neuronal circuits highlights that transcranial magnetic stimulation can 
produce lasting effects on brain motor function. Of note, functional 
connectivity between premotor and primary motor cortex assessed 
with fMRI has been found predictor of good clinical response to 
transcranial magnetic stimulation [5]. These findings suggest that 
cortical stimulation may be a promising approach to improve synaptic 
dysfunction and functional reorganization of motor networks after 
stroke, enhancing clinical recovery [2]. In support to this view, other 
studies exploring the effects of robotic therapy on brain function pointed 
out that motor recovery after stroke is best predicted by neuroimaging 
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measures, including interhemispheric functional connectivity within 
the motor network [3]. Based on these studies, a successful motor 
recovery produced by conventional physiotherapy, robot-assisted 
therapy, or transcranial magnetic stimulation over the motor cortex is 
likely mediated by cortical network reorganization. These interventions, 
however, have none or little effects on neurocognitive deficits, which are 
common manifestations of cortical stroke. 

Cognitive Outcomes
A recent line of research indicates that intensive neurocognitive 

rehabilitation appears to be of value in the recovery from stroke-related 
cognitive symptoms such as neglect after right hemisphere infarction 
[6]. Cognitive training using virtual reality games has successfully 
achieved improvements in attention and memory functions in 
patients with stroke [7]. Moreover, low-frequency repetitive magnetic 
stimulation over the contralesional opercular area has demonstrated to 
be effective in language recovery in patients with post-stroke aphasia 
[8]. A combined intensive language training and transcranial magnetic 
stimulation is thought to improve clinical recovery, although the long-
term effects of the magnetic cortical stimulation are yet unknown 
[9]. These studies are clinically relevant with regard to therapeutic 
effects of cognitive training and cortical stimulation. However, they 
do not address the question of a possible role for functional network 
organization in the neuropsychological improvement observed after 
cognitive rehabilitation in stroke. 

A study using electroencephalography (EEG) provides support to 
the notion that functional connectivity is disrupted by focal ischemic 
lesions, and that this disruption underlies cognitive impairment. 
Compared to healthy subjects, patients with ischemic stroke exhibited 
decreased alpha coherence between the perilesional area and cortical 
regions critical to the behavioral deficits (e.g., language, motor, 
executive functions) observed in their clinical and neuropsychological 
assessments. This functional abnormality predicted cognitive 
performance, suggesting a role for alpha band connectivity in the 
processing of cognitive functions [10]. These findings are consistent 
with the fact that alpha band coherence of clinically dysfunctional 
areas like the right parietal lobe is able to predict the effects of cortical 
stimulation on parietal network functions, including visuospatial 
attention [5]. 

Using fMRI, a functional disintegration of the Default Mode 
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Network (DMN) associated with cognitive deficits has been found three 
months after stroke [11]. The DMN is a brain circuit that is specifically 
active during rest and temporally deactivated during performance of 
sensorimotor or cognitive tasks. This intrinsic functional organization 
during rest allows the brain to allocate resources and ready itself for 
changes in internal and external environments [12]. Functional and 
structural connectivity abnormalities of the DMN have consistently 
been reported in cognitive disorders [12,13]. This evidence paves the 
way for the investigation of network reorganization related to recovery 
induced by neurocognitive rehabilitation in stroke. 

Functional Connectivity – Evidence from our Group
Using magneto encephalography (MEG), our group has evaluated 

how cognitive interventions may induce reorganization of functional 
brain networks and predict improvement of cognitive functions in 
patients with focal brain insult, in particular traumatic brain injury 
[14]. Prior to rehabilitation, the patients showed increased functional 
connectivity in slow frequencies (i.e., delta band) and decreased 
connectivity in the alpha band, as measured with coherence. These 
results indicate a shift towards slow rhythms in brain connectivity 
typically seen after brain damage. After the rehabilitative intervention, 
patients showed a reduction in the number and strength of local 
and long-range connections in delta band that correlated with 
improvements in cognitive functioning. Interestingly, this occurred 
in parallel with a recovery in alpha band connectivity (i.e., increase 
in number and strength of alpha band connections) which correlated 
positively with improvements in neuropsychological test performance 
and with increased autonomy in daily competences. 

Using a graph theory approach, we were able to describe how 
the architecture of neural networks in patients with traumatic brain 
injury changes from a random organization to a more “small world” 
configuration, recovering a number of hubs closely linked to network 
efficiency [15]. We additionally used data mining methods to predict the 
post rehabilitation state of these patients, and found that rehabilitation 
discriminated several patients from healthy controls based on their 
cognitive performance.

Conclusion
Taking together, EEG/MEG evidence from stroke and traumatic 

brain injury suggests that alpha band functional connectivity might 
represent a reliable predictor of clinical improvement induced by 
neurorehabilitation or cortical stimulation. The topographic distribution 
of changes in alpha functional connectivity may vary depending on the 
location of the stroke lesion and the specific cognitive functions affected 
or the deficits targeted by the rehabilitation. Nevertheless, resting-state 
DMN connectivity may be involved as a sign of intrinsic functional 
network reorganization after stroke rehabilitation. Overall, brain 
functional connectivity could be considered as an important method for 
evaluating and monitoring the process of recovery after brain damage, 
and for predicting patients that will benefit to a greater extent from 
specific rehabilitative interventions. Studies aiming to identify brain 
connectivity and plasticity changes induced by neurorehabilitation in 
stroke are strongly encouraged.
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