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Introduction
Human exposure to arsenic is primarily a result of inhalation of 

metal particles in air, ingestion of contaminated food and through 
drinking water. Intake of inorganic arsenic over a long duration 
can lead to chronic arsenic poisoning (arsenicosis). It is known now 
that inorganic arsenic has toxic effects at both high and low levels of 
exposure. Chronic exposure to arsenic-contaminated water and food 
can have adverse effects on various organs that may lead to development 
of cancer in skin, liver, lung and bladder [1-5]. It is believed that 
damage due to arsenic is closely associated with oxidative stress 
induced by arsenic. As reported in earlier studies, arsenic is known to 
cause generation of free radicals, like reactive oxygen species (ROS) 
and reactive nitrogen species (RNS), as well as metabolic intermediates 
like dimethyl arsenic (DMA) peroxy radical [6-11].

Brain is one of the critical organs particularly susceptible to 
the damaging effects of ROS, as it has a limited capacity to detoxify 
ROS owing to low glutathione-producing capacity of neuronal cells 
[12], and also because of its high metabolic rate as well as relatively 
reduced capacity for cellular regeneration as compared to other organs. 
In addition, arsenic can easily cross the blood–brain barrier [13,14]; 
therefore making the brain highly susceptible to arsenic exposure and 
also to the resultant ROS induced oxidative stress.

Quercetin, a member of the flavonoids family, is ubiquitously 
present in food items including vegetables, fruits, tea and wine. It 
is a powerful antioxidant, which can prevent oxidative injury and 
cell death by chelating metal ions, scavenging oxygen radicals, and 
protecting against lipid peroxidation (LPO) [15]. With its chelating 
effect, quercetin scavenges free radicals, thereby preventing oxidative 
damage to DNA and also to cell membranes thus stabilizing lipid 
membranes by preventing LPO by free radicals [16,17]. Additionaly, 
quercetin is also known to decrease ROS production, increases both 
Mn SOD (manganese superoxide dismutase) activity and glutathione 

levels and also suppresses over-expression of the inducible form of 
nitric oxide synthase (iNOS).

An important property of quercetin which could be relevant with 
regard to its protective role in arsenic induced neurotoxicity is that, it 
is able to cross the blood brain barrier [18]. Therefore, quercetin could 
be a potent nutrient that can access the brain and may protect it from 
disorders associated with oxidative stress [19]. Since, brain damage due 
to arsenic is expected to be caused mainly by oxidative stress, so role 
of quercetin in such a condition needs to be explored. Therefore, the 
present study was designed to evaluate the protective role of quercetin, 
if any, during arsenic induced neurotoxicity.

Material and Methods
Chemicals 

All the chemicals and reagents used in the present study were of 
reagent grade. Sodium arsenite (NaAsO2) and quercetin were purchased 
from Sigma-Aldrich (USA). All other chemicals such as nicotinamide 
adenine dinucleotide phosphate (NADPH), bovine serum albumin 
(BSA), trichloroacetic acid (TCA), thiobarbituric acid (TBA), ethylene 
diamine tetra-acetic acid ( EDTA), Triton X-100, 5, 5'-Dithiobis-(2-
Nitrobenzoic Acid) (DTNB), 1-chloro-2, 4-dinitrobenzene (CDNB), 
reduced glutathione (GSH), nitro blue tetrazolium chloride (NBT), 
glutathione reductase (GR) and hydrogen peroxide (H2O2), were purchased 
from Sisco Research Labs (India) and Hi-media chemicals (India).
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Glutathione peroxidase (GPx)

GPx activity was measured by using method described by Paglia 
and Valentine’s [22]. The reaction mixture contained 2.65 ml of 50 
mmol/l phosphate buffer (pH 7), 0.1 ml of 150 mM GSH solution, 0.1 
ml GR (10 mg/ml), 0.1 ml of 3 mM NADPH-Na salt, 0.1 ml 50 mmol/l 
H2O2 solution and 0.02 ml of tissue homogenate. The GPx activity was 
monitored as a decrease in absorbance due to the consumption of 
NADPH, which absorbs at 340 nm. The GPx activity was expressed as 
nano moles of NADPH consumed/min/mg protein using an extinction 
coefficient of 6.22 x 10-3 mM-1 cm-1.

Reduced glutathione (GSH)

GSH levels were determined according to the method of Ellman 
et al. [23]. 0.1 ml of TCA was added to 500 µl of tissue homogenate. 
After mixing the contents, the precipitated proteins were separated 
by centrifugation at 2000 x g for 15 min. 500 µl of the supernatant 
obtained, was diluted in a test tube to 1.0 ml with sodium phosphate 
buffer. To this, 2.0 ml of freshly prepared DTNB was added. The yellow 
color developed was read immediately at 412 nm. The GSH contents 
were expressed in term of µmol of GSH/g tissue.

Glutathione reductase (GR)

GR activity was measured by continuous rate determination 
method using a UV spectrophotometer [24]. To 3 ml cuvette, 2.6 
ml of phosphate buffer, 0.15 ml of NADPH and 0.15 ml of oxidised 
glutathione (GSSG) were added. The reaction was initiated by the 
addition 0.2 ml of sample to the cuvette and the decrease in absorbance 
at 340 nm was followed for 5 min at 25°C. The enzyme activity was 
calculated using the molar coefficient for NADPH of 6.22 x 10-3 mM-1 
cm-1 and was expressed as µmoles of NADPH oxidised/min/mg of 
protein.

Glutathione-s-transferase (GST)

The enzyme activity of GST was determined by using the method 
of Habig et al. [25].The sample buffer was prepared by mixing 650 µl 
of phosphate buffer, 25 µl CDNB and 25 µl GSH. To the above sample 
buffer, 10 µl of tissue homogenate was added and the absorbance was 
measured at 340 nm for 3 min. The activity was expressed as µmoles of 
CDNB conjugate formed min-1 mg-1 of protein by using the extinction 
coefficient of 9.6 mM-1cm-1. 

Superoxide dismutase activity (SOD)

Superoxide dismutase activity was estimated following the method 
of Kono [26] wherein, the reduction of NBT was inhibited by SOD 
and measured at 560 nm. The reaction was initiated by addition of 
hydroxylamine hydrochloride to the reaction mixture containing NBT 
and PMF of brain homogenate. The results were expressed as units per 
mg of protein with one unit of enzyme defined as the amount of SOD 
required to inhibit the rate of reaction by 50%.

Catalase (CAT)

Catalase activity was assessed by following the method of Luck H 
[27], whereby the breakdown of H2O2 was measured at 240 nm. Briefly, 
the assay mixture consisted of 3ml of H2O2 phosphate buffer (0.0125 
M; H2O2) and 0.05 ml PMF of brain homogenate. The change in the 
absorbance was observed at 240 nm as a result of H2O2 decomposition. 
The amount of H2O2 decomposed was calculated on the basis of molar 
coefficient of H2O2 (0.0394 M-1 cm-1) and the results were expressed as 
µmoles of H2O2 decomposed/min/mg protein.

Animals

Healthy male Sprague Dawley (S.D.) rats in the weight range 
of 150-200 g were obtained from the central animal house of 
Punjab University, Chandigarh, India. The animals were housed in 
polypropylene cages under a hygienic bed of husk (regularly changed) 
in a well-ventilated animal room. Throughout the treatment period, 
the animals were provided with standard animal palliated feed 
obtained from Ashirwad Industries, Kharar, Punjab, India and were 
also provided with water ad libitum. Before treatment, the rats were 
acclimatized to experimental conditions for a period of one week. All 
the procedures were done in accordance with ethical guidelines for care 
and use of laboratory animals, which were approved by Institutional 
Animal Ethics Committee (IAEC), Punjab University Chandigarh, India.

Grouping of animals

Rats of age 7-8 weeks were segregated into following four groups 
and each group consisted of 10 animals. Animals in group I served as 
normal controls, and was given standard laboratory feed and water ad 
libitum throughout the period of experimentation. Group II animals 
were given arsenic daily in the form of NaAsO2 in drinking water at a 
dose of 100 mg/L [20]. The animals in Group III were given quercetin 
orally every day in drinking water through intubation gavage at a dose 
of 50 mg/kg body weight [19]. The animals in Group IV were given a 
combined treatment of arsenic as well as quercetin in a similar manner 
as was given to Group II and Group III animals, respectively. The study 
was carried out for a total duration of 2 months.

Sample preparation

After 2 months of treatment period, the animals from all the 
treatment groups were sacrificed using overdose of ether anesthesia. 
After dissection, the brains were immediately removed, washed in 
ice-cold isotonic saline and a small portion of the brain (cerebellum) 
was fixed in formalin saline (10%) for histological examination using 
light microscope. The remaining cerebellar tissue was used to prepare 
the tissue homogenate. Tissue homogenates (10% w/v) were prepared 
in ice-cold 10 mM phosphate-buffered saline (PBS), 0.15 M sodium 
chloride (NaCl), pH 7.4. The homogenates were centrifuged at 2000 
g for 10 min at 4°C to obtain crude homogenates, which were free of 
cell debris and nuclear pellets. A fraction of the crude homogenate was 
then re-centrifuged at 10,000 g for 30 min at 4°C, to obtain the post-
mitochondrial supernatants (PMS).Crude homogenates were used for 
LPO and reduced glutathione (GSH) estimation and PMS fractions 
were used to carry out the estimations of the remaining oxidative 
stress parameters namely, glutathione peroxidase (GPx), glutathione 
transferase (GST), glutathione reductase (GR), superoxide dismutase 
(SOD), iNOS and catalase.

Lipid peroxidation (LPO)

Lipid peroxidation was assayed by using the method of Wills, 1966 
[21]. Briefly, 0.5 ml of tissue homogenate was diluted to 1.0 ml using 
Tris-HCl buffer (0.1 M, pH 7.4). The reaction mixture was incubated at 
37°C for 2 hrs with constant shaking. At the end of the incubation, 1.0 
ml of TCA (10 %, w/v) was added and then after thorough mixing, the 
reaction mixture was centrifuged at 800 rotations per min (rpm) for 10 
min. To 1.5 ml supernatant, 1.5 ml TBA (0.67 % w/v) was added. Color 
was developed by placing the test tubes at 100°C for 10 min in a boiling 
water bath. The samples were cooled and diluted with 1.0 ml distilled 
water. The optical density was recorded at a wavelength of 535nm.The 
results were expressed as nano moles of malonedialdehyde (MDA) 
formed/min/mg of protein.
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Nitric oxide synthase (NOS)
Nitric oxide synthase activity was determined in terms of nitric 

oxide (NO) production. The estimation was carried out by using 
the method of Radassi et al. [28]. NO production was estimated by 
measuring nitrite, a stable metabolic product of NO, using Griess 
reagent. To 0.10 ml of tissue homogenates, 0.100 ml of Griess reagent 
was added into the ELISA plate. The ELISA plate was then incubated 
in dark at 37°C for 30 min. Pink color thus obtained was read at 540 
nm on an ELISA plate reader. The amount of nitrite produced was 
determined by a standard curve prepared by using sodium nitrite as 
reference standard. Results were expressed as nM of nitrite/g tissue.

Protein determination
Protein content was determined by the method of Lowry et al. [29] 

by using bovine serum albumin as protein standard.

Histological study
For various histological studies, small sections of cerebellum from 

each of the normal control and treated animals were taken, washed in 
ice-cold 0.9% NaCl and fixed in the buffered formalin for about 24 to 
28 hours. After fixation, the tissues were dehydrated by using ascending 
grades of alcohol. Dehydrated tissue were embedded in paraffin wax 
(58-60°C) after subjecting them to different treatments as described in 
the procedure by Pearse [30]. Tissue sections of 5-7 microns thickness 
were cut using microtome and were stained using H/E stain [31] and 
viewed under light microscope for histological changes.

Statistical Analysis
The results of all the experiments conducted during the current 

study are depicted in the form of tables and figures represented as 
Mean ± SD. The results of different treatments have been compared 
with normal controls. Additionally, the results obtained from arsenic 
treatment group were compared with combined arsenic+ quercetin 
treatment group. The statistical significance of the values has been 
determined by using analysis of variance (ANOVA), followed by 
Newman Keul’s test. All statistical analyses were performed using SPSS 
14 software. P values of less than and equal to 0.001, 0.01, and 0.05 were 
considered to indicate statistically significant differences.

Results
Arsenic treatment for a total duration of two months significantly 

increased (p ≤ 0.01) the levels LPO in cerebellum as compared to 
normal control groups (Table 1). When arsenic treated rats were co-
treated with quercetin, the MDA levels were observed to be within the 
normal range. Quercetin treatment when given to normal rats did not 
reveal any significant effect on lipid peroxidation. 

A significant increase (p ≤ 0.001) in the enzyme activity of catalase 
in cerebellum was observed after arsenic treatment when compared 
with normal control group (Table 2). Quercetin alone and combined 
arsenic + quercetin did not show any significant change in the 
enzyme activity of catalase when compared to normal control group. 
However, when catalase activity in combined arsenic + quercetin was 
compared with arsenic treated rats, a significant decrease (p ≤ 0.001) 
was observed; thereby indicating that simultaneous treatment with 
quercetin brought the enzyme activity of catalase within normal limits. 
The activities of antioxidant enzymes SOD and GPx were found to be 
significantly decreased (p ≤ 0.001 in SOD; p ≤ 0.05 in GPx) in brain 
after arsenic treatment when compared to normal controls (Table 2). 
Quercetin alone did not show any significant change in both SOD 
and GPx activities when compared to normal rats, however when co-
administration to arsenic treated animals, a significantly increase 

(p ≤ 0.001) in the SOD enzyme activity was observed when compared 
with arsenic treated group, although the activity was still significantly 
lower in comparison to normal group. Further, no significant change 
in the GPx activity was observed after combined arsenic + quercetin 
administration when compared to arsenic treated group.

As shown in Table 3, the enzyme activities of GST and GR 
were also decreased significantly (p ≤ 0.001 in GST and p ≤ 0.01 in 
GR) after arsenic treatment when compared with normal control 
group. Combined arsenic + quercetin treatment, did not cause any 
significant change in the activities of GST or GR when compared to 
arsenic treated group. Both the enzyme activities in the combined 
treatment group were significantly lower than control levels. Also 
quercetin alone did not show any significant change in the activities 
of GST and GR when compared to normal rats. The GSH content was 
found to be significantly decreased (p ≤ 0.01) after arsenic treatment 
when compared to normal control rats (Table 3). Quercetin alone and 
combined arsenic + quercetin did not show any significant change in 
GSH levels when compared to normal controls. However, combined 
arsenic + quercetin treatment significantly increased (p ≤ 0.05) the 
levels of GSH when compared to arsenic treated animals.

A significant reduction (p ≤ 0.001) in the NOS activity was observed 
after arsenic treatment when compared to normal control group (Table 
4). Quercetin alone did not show any significant change in the NOS 
activity when compared to normal rats. Interestingly, the combined 
arsenic + quercetin treatment significantly increased (p ≤ 0.01) the 
NOS activity in brain when compared to arsenic treated rats.

As shown in the Figure 1, the tissue sections obtained from 
normal control rats showed normally nucleated neurons, glial cells 
and pyramidal cells arranged in several layers. Arsenic treated sections 
showed marked alterations in the histo-architecture of glial cells, which 
were enlarged showing nuclear pyknosis and moderate cytoplasmic 
vacuolization. Quercetin co-administration to arsenic treated rats, 
showed an appreciable improvement in the overall histo-architecture 

Groups LPO (nmol MDA formed/min/mg 
protein)

Normal control 37.1 ± 8.9
Arsenic 53.1 ± 10.2y

Quercetin 29.7 ± 7.3
Arsenic + Quercetin 30.5 ± 7.8c

All the values are expressed as Means ± S.D; n=6 for each group.
xp ≤ 0.05, yp ≤ 0.01, zp ≤ 0.001 by Newman- Keuls test when the values are 
compared with normal control group.
ap ≤ 0.05, bp ≤ 0.01, cp ≤ 0.001 by Newman- Keuls test when the values of Arsenic 
+ Quercetin treated group are compared with Arsenic treated group.
Table 1: Effect of quercetin on lipid peroxidation (LPO) in cerebellum of rats 
subjected to arsenic treatment.

Groups Catalase (µmol 
H202 decomposed/
min/mg protein)

SOD 
(International 

Units)

GPx (µmol/min/
mg protein)

Normal control 0.06 ± 0.02 1.14 ± 0.06 3.68 ± 0.6
Arsenic 0.22 ± 0.02z 0.48 ± 0.02z 2.50 ± 0.5x

Quercetin 0.08 ± 0.02 0.99 ± 0.1 3.00 ± 0.4
Arsenic + 
Quercetin

0.06 ± 0.01c 0.93 ± 0.1xc 2.55 ± 0.3y

All the values are expressed as Means ± S.D; n=6 for each group.
xp ≤ 0.05, yp ≤ 0.01, zp ≤ 0.001 by Newman- Keuls test when the values are 
compared with normal control group.
ap ≤ 0.05, bp ≤ 0.01, cp ≤ 0.001 by Newman- Keuls test when the values of Arsenic 
+ Quercetin treated group are compared with Arsenic treated group.
Table 2: Effect of quercetin on catalase (CAT), superoxide dismutase (SOD) and 
GPx activities in cerebellum of rats subjected to arsenic treatment.
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observed that chronic arsenic administration caused oxidative damage 
in the brain of arsenic treated rats which was assessed in terms of the 
activity of various antioxidant enzymes, level of LPO and by histological 
examination of stained brain tissue sections.

Lipid peroxidation is a vital marker for toxicity induced by 
various xenobiotics and is thought to be a consequence of oxidative 
stress initiated when the dynamic balance between peroxidant and 
antioxidant mechanism is impaired. Its significance lies in the fact that 
increases in the peroxidation of membrane lipids by the action of free 
radicals results in the loss of membrane integrity and function [33]. 

It has been demonstrated previously that arsenic treatment to 
animals increased the levels of LPO [34], even at low doses leading 
to apoptosis and necrosis of brain cells [35,36], suggesting cellular 
injury by action of free radicals. Therefore, increase in LPO observed 
in the present study following arsenic treatment to rats, could be a 
consequence of increased free radical production and/or consequent 
suppression in the activity of antioxidant defense enzymes and 
glutathione levels. In the present study, quercetin supplementation 
to arsenic treated rats proved to be beneficial as the levels of LPO in 
the combined group were found to be reduced when compared to 
arsenic alone treated group, thus demonstrating the protective role of 
quercetin in activating the antioxidant defense system in rat brain by 
preventing lipid peroxidation in cellular membranes. 

Antioxidant enzymes such as SOD, catalase and GPx are the 
primary antioxidant enzymes, which help in degrading the toxic 
oxidative intermediates and are considered to be the first line of cellular 
defense against oxidative damage. Catalase is a haemo protein which 
reduces hydrogen peroxide to molecular oxygen and water. SOD is an 
antioxidant metallo enzyme that reduces superoxide radicals to water 
and molecular oxygen. SOD catalyzes the dismutation of superoxide 
radicals by scavenging free superoxide anions (O2−). GPx uses GSH 
as a reducing substrate, and catalyzes the reduction of organic hydro 
peroxides [37-39]. 

Our results show that the activities of SOD and GPx in cerebellum 
region of brain decreased significantly following arsenic treatment. 
Decreased activity of SOD reflects suppression of the scavenging ability 
of SOD, which may be a result of accumulation of superoxide anion 
radical in the brain tissue post arsenic treatment. The suppressing action 
of arsenite on SOD activity was also demonstrated by Ramanathan 
et al. [40] in liver and kidney of male Wistar rats. Another report by 
Yamanaka et al. [41] suggested that free radical species are generated 
by the reaction of molecular oxygen with dimethyl arsine, a metabolite 
of dimethyl arsenic acid. They considered one of these radicals to be 
superoxide anion radical which is produced by one electron reduction 
of molecular oxygen by dimethyl arsine [42]. Similarly, catalase a 
detoxifying agent responds well to excess amount of H2O2 generated 
by the action of SOD. Catalase shares its function with GPx. Both these 
enzymes detoxify H2O2 but vary in their substrate affinities. As a matter 
of fact, H2O2 molecules are preferably metabolized by GPx because of 
its lower km for H2O2 than catalase, which is activated at comparatively 
higher conc. of H2O2. In the present study, catalase activity was found 
to be increased in brain tissue of rats following arsenic exposure, 
whereas GPx activity was suppressed suggesting that H2O2 production 
although increased following arsenic treatment, but was not high 
enough to suppress catalase activity, since only GPx activity was found 
to be suppressed and catalase was still activated.

Quercetin co-treatment along with arsenic normalized SOD and 
catalase activity in the combined treatment group. However, quercetin 
co-treatment could not normalize GPx activity probably because 

of brain showing normal sized glial cells, pyramidal cells with mild 
pyknosis and cytoplasmic vacuolization.

Discussion
Enhanced oxidative stress has been suggested to be an important 

mechanism in arsenic-induced neurotoxicity [32]. In this study, we 

Groups GST (µmol 
conjugate 

formed/min/mg 
protein)

GSH (µmol of 
GSH/g tissue)

GR (µmol of 
NADPH oxidized/
min/mg protein)

Normal control 3.39 ± 0.7 10.20 ± 0.6 3.41 ± 0.8
Arsenic 1.45 ± 0.3z 7.94 ± 0.7y 2.23 ± 0.8y

Quercetin 2.99 ± 0.5 10.20 ± 0.1 2.92 ± 0.5
Arsenic + Quercetin 1.82 ± 0.4z 9.60 ± 0.2a 2.65 ± 0.6x

All the values are expressed as Means ± S.D; n=6 for each group.
xp ≤ 0.05, yp ≤ 0.01, zp ≤ 0.001 by Newman- Keuls test when the values are 
compared with normal control group.
ap ≤ 0.05, bp ≤ 0.01, cp ≤ 0.001 by Newman- Keuls test when the values of Arsenic 
+ Quercetin treated group are compared with Arsenic treated group.
Table 3: Effect of quercetin on glutathione-s-transferase (GST), reduced 
glutathione (GSH) and glutathione reductase (GR) in cerebellum rats subjected 
to arsenic treatment.

Groups NOS (nM of nitrite/g tissue)
Normal control 52.6 ± 12.8

Arsenic 19.0 ± 2.9z

Quercetin 51.0 ± 10
Arsenic + Quercetin 34.9 ± 8.3yb

All the values are expressed as Means ± S.D; n=6 for each treatment group.
xp ≤ 0.05, yp ≤ 0.01, zp ≤ 0.001 by Newman- Keuls test when the values are 
compared with normal control group.
ap ≤ 0.05, bp ≤ 0.01, cp ≤ 0.001 by Newman- Keuls test when the values of Arsenic 
+ Quercetin treated group are compared with Arsenic treated group.
Table 4: Effect of quercetin on nitric oxide synthase activity in cerebellum of rats 
subjected to arsenic treatment.

Figure 1: Photomicrographs of Normal Control, Arsenic, Quercetin and 
combined Arsenic + Quercetin treated rat brain (cerebellum), H & E, 40X 
(A) Normal control rat showing normal nucleated neurons, glial cells (black 
arrows), pyramidal cells (B) Section of rat brain (cerebellum) treated with 
Arsenic alone showing enlarged glial cells (black arrows), nuclear pyknosis 
( blue arrows) and moderate cytoplasmic vacuolization (green arrows) (C) 
Section of rat brain (cerebellum)  treated with quercetin alone showing normal 
sized  glial cells (black arrows), pyramidal cells. (D) Section of rat brain 
(cerebellum) treated with arsenic + quercetin showing normal sized glial cells 
(black arrows), pyramidal cells, mild pyknosis (blue arrows) and cytoplasmic 
vacuolization (green arrows).
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decrease in iNOS enzyme activity was observed after arsenic treatment 
when compared to normal rats. It is known that the impairment of 
NO production is due to lower NOS protein levels, which results from 
decreased expression and/or increased degradation of the proteins. 
Previous studies reported a decrease in Ca-dependent NOS activity 
measured in vivo and in vitro in arsenic-exposed rats (37 ppm drinking 
water) with a decrease of nNOS protein levels and an increase in ROS 
generation and lipid peroxidation [54,55]. Quercetin supplementation 
to arsenic treated rats was able to increase the NOS enzyme activity in 
brain. Quercetin, a well-known O2

•− scavenger is also a NO scavenger 
[56], and therefore apparently less decrease as observed in the activity 
of NOS enzyme when quercetin is simultaneously administered along 
with arsenic, could be seen as a feedback mechanism to replenish the 
loss of NO induced by the scavenging action of quercetin.

Enhanced oxidative stress in the brain after arsenic exposure was 
reflected in histological observations where the tissue sections obtained 
from normal control rats showed normally nucleated neurons, glial 
cells and pyramidal cells arranged in several layers, whereas arsenic 
treated sections showed marked alterations in the histo-architecture 
of glial cells (enlarged glial cells), nuclear pyknosis and moderate 
cytoplasmic vacuolization; thereby suggesting that exposure to arsenic 
induces neuronal damage mediated by excessive generation of ROS. 
Similar results have been observed by Flora et al. [57] following arsenic 
exposure to rats. However, quercetin co-administration with arsenic 
showed an appreciable improvement in the overall histo-architecture 
of brain showing normal sized glial cells, pyramidal cells with mild 
pyknosis and cytoplasmic vacuolization.

Conclusion
The present study, therefore, concludes that quercetin as a 

prophylactic intervention could ameliorate the neurotoxicity action of 
arsenic by reducing oxidative stress.
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