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Introduction
Aromatherapy is a form of alternative medicine that has been 

traditionally used for pain relief, psychological comfort, and prevention 
of disease. More recently, aromatherapy was reported to have 
therapeutic effects in several diseases, including neurodegenerative, 
cardiovascular and respiratory diseases [1-3]. For example, lavender 
oil has been found to possess therapeutic properties, including anti-
oxidant, anti-inflammatory and anti-infective properties [4-6], and to 
have bidirectional effects in stress-induced changes [5]. Understanding 
the therapeutic effects of aroma essential oils requires determining the 
mechanisms of action of their major constituents. (-)-Linalool and 
linalyl acetate, the principal constituents of lavender, act together or 
individually. For example, (-)-linalool and linalyl acetate were found 
to induce anti-inflammatory activities in rats [7]. Although (-)-linalool 
showed no genotoxicity, linalyl acetate was genotoxic toward peripheral 
human lymphocytes, suggesting that the mutagenic activity of lavender 
may be due to the effects of linalyl acetate [8]. 

(-)-Linalool has been shown to have various pharmacological 
activities, including anti-inflammatory, antihyperalgesic and 
antinociceptive effects, in humans and animal models, especially in the 
central nervous system (CNS) [9]. Inhalation therapy using essential 
oils with high linalool content was effective in altering the profile of 
mood states (POMS) and parasympathetic nerve activity in pregnant 
women [10]. Functional brain imaging using functional near-infrared 

spectroscopy (fNIRS) showed that high concentrations of linalool 
increased the activation of olfaction-associated brain regions in patients 
with attention deficit hyperactivity disorder (ADHD) [11].

Sodium nitroprusside (SNP) has been found to induce caspase-
dependent apoptosis in SH-SY5Y human neuroblastoma cells [12,13], 
causing nitrosative and oxidative stress. Oxidative stress is associated 
with several neurodegenerative diseases, including Alzheimer’s and 
Parkinson’s diseases. 

Nitric oxide (NO) is an important signaling molecule involved in 
the regulation of cerebral blood flow, thrombogenesis, and modulation 
of neuronal activity, as well as in various other physiological and 
pathological processes, with both deleterious and protective properties 
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[14]. Excessive or inappropriate NO production has been found to 
cause cell injury and death, including damage to proteins and DNA 
resulting from nitrosative and oxidative stress. Oxidative stress is the 
major cause of damage associated with elevated NO [15-17]. NO is 
synthesized in several cell types, including endothelial cells, neurons, 
and glia, by three isoforms of the enzyme nitric oxide synthase (NOS)—
neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS 
(iNOS)—the latter of which has multiple functions in the brain. The 
production of NO and the expression of iNOS have been reported to 
be increased in patients with neurodegenerative diseases [18,19]. The 
link between NO and (-)-linalool suggested that the latter may protect 
SH-SY5Y cells from SNP-induced cytotoxicity. This study therefore 
determined whether (-)-linalool has neuroprotective activity against 
SNP-induced cytotoxicity in SH-SY5Y cells.

Materials and Methods
Chemicals

(-)-Linalool, linalyl acetate, and sodium nitroprusside (SNP) were 
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). (-)-Linalool 
and linalyl acetate were dissolved in dimethyl sulfoxide (DMSO); and 
SNP and L-NG-nitroarginine (L-NNA) (Enzo Life Sciences Inc., NY, 
USA) were dissolved in distilled water (DW). 

Cell culture

SH-SY5Y cells were cultured in high glucose Dulbecco’s modified 
Eagle’s medium (DMEM) (Welgene, Daegu, Korea), supplemented 
with 10% fetal bovine serum (FBS) (Biowest, Nuaillé, France) and 1% 
penicillin/streptomycin (PAA Laboratories, Pasching, Austria), at 37°C 
in a humidified incubator with 5% CO2. 

MTT assay 

Cell viability was measured using MTT assays. Briefly, SH-SY5Y 
cells were seeded in 96-well plates at a density of 1 x 104 cells per 
well and cultured overnight. The cells were incubated with various 
concentrations of (-)-linalool for 24 h, followed by incubation for 24 
h with 2.5 mM SNP. Cell viability was determined by incubation with 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide 
(MTT) (Amresco, Solon, OH, USA), at a final concentration of 0.25 
mg/ml, for 3 h at 37°C. The absorbance of each well at 540 nm was 
determined using a microplate reader (BMG Labtech, Ortenberg, 
Germany). 

Hoechst staining 

SH-SY5Y cells were cultured on coated cover slips in 12-well 
plates. The cells were fixed with 4% paraformaldehyde for 30 min. After 
washing twice with phosphate-buffered saline (PBS), the cells were 
stained with 5 µg/ml of Hoechst 33342 (Sigma-Aldrich Co.) for 5 min. 
Images of stained cells were acquired using a fluorescence microscope 
(Leica DM 2500, Wetzlar, Germany), and apoptosis was calculated 
from pixel intensity values.

Nitrite assay

Accumulation in the culture medium of extracellular nitrites 
(NO2), an indicator of NO synthase activity, was measured by the Griess 
reaction. Griess reagent includes 0.1% N-(1-naphthyl) ethylenediamine 
dihydrochloride and 1% sulfanilamide. Following incubation with 
(-)-linalool and/or SNP, Griess reagent was added to 100 µl of cell 
culture medium, and the solution was mixed and incubated for 10 
minutes at room temperature. The optical density was measured at 540 
nm in a microplate reader (BMG Labtech).

DPPH assay 

The free radical-scavenging ability of (-)-linalool was analyzed 
using the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH). In brief, 
linalool (1, 2.5, 5 µM) was mixed with DPPH solution (23.6 µg/ml in 
ethanol) and incubated for 30 min at 37°C in the dark. The absorbance 
was measured at 517 nm using a microplate reader (BMG Labtech). 
Scavenging activity was calculated as background (blank)-subtracted 
values expressed as a percentage of values obtained with vitamin C, 
used as a positive control. 

Statistical analysis

All samples were analyzed in triplicate, and each assay was repeated 
over 6 times under identical conditions. Results were expressed as 
means ± SEMs and compared using one-way analysis of variance 
(ANOVA), followed by the Tukey HSD post hoc test. All statistical 
analyses were performed using the SPSS 20.0 software package (SPSS 
Inc., Chicago, IL, USA), with results considered statistically significant 
at p < 0.05.

Results 
Effect of SNP on SH-SY5Y cell viability and NO production 

At concentrations of 1 to 3.5 mM, SNP reduced cell viability, with 
statistically significant differences observed at 2 to 3.5 mM (p<0.001, 
Figure 1a). Moreover, at these concentrations, SNP significantly 
increased NO production (p<0.001, Figure 1b).

Effects of (-)-linalool and linalyl acetate on SNP-induced 
cytotoxicity in SH-SY5Y cells 

At concentrations of 1 to 5 µM, both (-)-linalool and linalyl acetate 
alone had no cytotoxic effects on SH-SY5Y cells, as determined by 
MTT assays (Figure 2a, white bar), and did not significantly induce 
NO (Figure 2b, white bar). To test the effects of (-)-linalool on SNP-
induced cell death, cells were pre-treated with 1 to 5 µM (-)-linalool for 
24 h, followed by incubation with 2.5 mM SNP for 24 h, a concentration 
at which SH-SY5Y cells show about 60% cell viability. Interestingly, 1 
(p=0.003), 2.5 (p=0.001), and 5 (p=0.008) µM (-)-linalool significantly 
increased neuronal cell viability (Figure 2a, black bar), as well as 
significantly reducing NO production (p<0.001 each, Figure 2b, black 
bar). In contrast, 1 to 5 µM linalyl acetate had no effect on SNP-
induced cell death (Figure 2a, black bar) or on SNP-enhanced NO 
production (Figure 2b, black bar). As a positive control, the effects of 
L-NG-nitroarginine (L-NNA), a NOS inhibitor, on the viability of and 
NO production by SNP-treated SH-SY5Y cells were investigated. At a 
concentration of 0.5 mM, L-NNA significantly increased cell viability 
(p<0.001) and reduced NO production (p<0.001). The protective 
effect of (-)-linalool against SNP-induced cytotoxicity was confirmed 
by Hoechst staining. SNP effectively reduced cell viability, measured 
by the intensity of Hoechst staining, to approximately 33% of that in 
untreated controls. These effects were significantly attenuated by 5 µM 
(-)-linalool, which increased Hoechst staining in the presence of SNP 
to 73% of control values (p=0.021) (Figure 3). 

DPPH scavenging activity of (-)-linalool 

Assessments of the free radical-scavenging activity of 1, 2.5, and 5 
µM (-)-linalool, as measured by DPPH assays, showed that (-)-linalool 
increased antioxidant levels in a concentration-dependent manner 
compared with the control group (p≤0.001). As expected, the positive 
control, vitamin C (100 µM), also significantly scavenged free radicals 
(p=0.002). 
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Discussion
Lavender has been widely used as an alternative medicine. It 

was shown to have the CNS depressant properties, with sedative, 
anticonvulsive, anxiolytic, motor inhibitory and spasmolytic effects 
[20]. However, its exact mechanism of action has not been fully 
investigated. This study, which investigated the major components 
of lavender, showed that linalyl acetate did not play an essential role 
in neuroprotection against SNP-induced cytotoxicity. In contrast, 
(-)-linalool protected SH-SY5Y cells against SNP-induced cytotoxicity 
by decreasing the production of NO. (-)-Linalool has been reported to 
have dose-dependent sedative effects on the CNS of mice, indicating its 
psychopharmacological activity [7]. Excess stimulation by glutamate 
has been found to cause excitotoxicity, with (-)-linalool inhibiting 
glutamate release in vitro and in vivo [21]. Furthermore, (-)-linalool 
showed anti-inflammatory effects in LPS induced RAW 264.7 cells, 
reducing iNOS and cyclooxygenase-2 (COX-2) mRNA and protein 
levels as well as pro-inflammatory cytokine production. Moreover, 
(-)-linalool suppressed the phosphorylation of IκB-α protein in an 
LPS induced inflammation model [22]. These findings suggest that 

(-)-linalool may inhibit iNOS by suppressing NF-κB activation, thereby 
reducing NO production. Moreover, these findings indicate that 
(-)-linalool is the major neuroprotective component of lavender, being 
responsible for its antioxidant effects, with these antioxidant activities 
associated with reduced NO production in neuronal cells.

Aromatherapy requires special caution because of the potential 
toxicities of the essential oils. It is therefore important to determine the 
safe and non-toxic doses of aroma essential oils. At concentrations of 
1 to 100 µM, (-)-linalool was not cytotoxic to neuronal cells (data not 
shown). Although (-)-linalool itself had no effect on NO production 
by neuronal cells, it reduced the increase in NO induced by SNP. 
NO, nitrative stress, and oxidative stress have been found to damage 
neuronal cells. Treatment of LPS-stimulated macrophages with 
(-)-linalool reduced the production of NO, as well as cyclooxygenase-2 
(COX-2), prostaglandin E2 (PGE2) and pro-inflammatory cytokines, 
including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) 
[22-25]. PGE2 formation and COX-2 expression have been associated 

Figure 1: Effects of SNP on SH-SY56 cell viability and NO production. SH-
SY5Y cells were treated with 1, 1.5, 2, 2.5, 3, or 3.5 mM SNP for 24 h. (a) 
Cell viability was measured by the MTT assay, and (b) NO production was 
measured by the nitrite assay. Data represent the mean, and the bars 
represent the standard error of the mean (SEM). *** p < 0.001 compared with 
control (untreated SH-SY5Y cells).

Figure 2: Effects of (-)-linalool and linalyl acetate on SNP-induced cytotoxicity 
in SH-SY5Y cells. SH-SY5Y cells were incubated with 1, 2.5, or 5 µM 
(-)-linalool or linalyl acetate, or with 0.4 mM L-NNA (0.5 mM) for 24 h, followed 
by incubation without (white bar) or with (black bar) 2.5 mM SNP for 24 h. 
(a) Cell viability was measured by the MTT assay and (b) NO production 
was measured by the nitrite assay. Data represent the mean, and the bars 
represent the standard error of the mean (SEM). ### p < 0.001 compared with 
control, untreated cells; ** p < 0.01, *** p < 0.001 compared with cells treated 
with SNP alone.
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with high concentrations of (-)-linalool in LPS-stimulated macrophages 
[24]. The results presented here expand these findings, showing that 
neuronal cells subjected to oxidative stress conditions were similarly 
affected by non-toxic concentrations of (-)-linalool (Figure 4).

SNP has been reported to mimic NMDA-induced neurotoxicity 

[26] and to induce oxidative stress [27]. Similarly, the present study 
found that the protective effects of (-)-linalool were associated with 
an increase in antioxidants, as measured by DPPH assays. It was also 
previously shown that, at concentrations of 2, 4 and 8 mM, SNP did 
not increase intracellular calcium [28]. Similarly, we found that 2.5 
mM SNP did not induce an increase in intracellular calcium levels 

Figure 3: Effects of (-)-linalool on SNP-induced cytotoxicity in SH-SY5Y cells. SH-SY5Y cells were incubated with 5 µM (-)-linalool for 24 h prior to treatment with 
SNP (2.5 mM) for 24 h. Apoptosis was assessed by Hoechst 33342 staining. (a) Control, (b) SNP only, (c) SNP + linalool, and (d) quantification of Hoechst staining, 
calculated from intensity values. Data are presented as means ± SEMs (error bars). ### p < 0.001 compared with the control group; * p < 0.05 compared with the SNP-
only group.

Figure 4: DPPH scavenging activity of (-)-linalool. The free radical-scavenging activity of (-)-linalool was assessed by DPPH assay. Compared with control cells, 1, 
2.5, and 5 µM (-)-linalool increased antioxidant levels in a concentration-dependent manner. Vitamin C (100 µM) was used as a positive control. Data are presented 
as means ± SEMs (error bars). ** p < 0.01, *** p < 0.001 compared with controls.
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(data not shown). Oxidative stress has been associated with several 
neurodegenerative diseases, including Alzheimer’s and Parkinson’s 
diseases. Biomarkers such as reactive oxygen species (ROS) and 
NO, which cause oxidative damage, are considered important in the 
pathogenesis of these diseases [29-31]. Rutin, a dietary flavonoid, was 
reported to inhibit Aβ-induced neurotoxicity in SH-SY5Y cells by 
decreasing the formation of ROS, NO, glutathione disulfide (GSSG), 
and malondialdehyde (MDA), compounds closely related to the 
etiology of Alzheimer’s disease [32]. 

Conclusion
(-)-Linalool protected SH-SY5Y cells against SNP-induced 

cytotoxicity by decreasing the production of NO and by having 
antioxidant properties. Moreover, SNP-induced neuronal cell death 
associated with high production of NO may be a useful model 
for assessing the neuroprotective effects of various compounds.
(-)-Linalool may be a potential therapeutic drug for patients with 
neurodegenerative diseases. 
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