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Introduction
The control chart was first introduced by Shewhart in the 1920s. 

The most commonly used attribute control charts available are P-charts, 
used when the fraction of nonconforming items are monitored in 
a specific sample of size “n” products.  The underlying assumed 
distribution in this case is the Binomial distribution. To monitor the 
number of nonconformities or defects, the Poisson distribution is 
assumed and the C-chart or U-chart is the appropriate chart. Examples 
include number of scratches in a 1 m2 table, the number of undesired 
bumps in one mile of new road, or the number of defaulted loans given 
by a bank in some specific time period.

This paper aims to investigate and propose the best topology of a 
neural network to monitor the nonconformities in the quality process, 
using a Feed-forward multi-layer perceptron (MLP) neural network. 
The factors to be studied are the in-control mean level, shift size δ, the 
number of inputs, the number of the neurons in the hidden layer, and 
the training data size. 

The paper is organized in the following fashion: Sections 2 and 3 
contain brief descriptions of the C-charts and the MLP neural networks, 
respectively. Section 4 discusses the design of the proposed neural 
networks (NN), including the experimental design, noise factors, and 
their levels. The simulation process is described in detail in Section 
5, while Section 6 is reserved to describe the method of finding the 
appropriate upper control limits (UCL) point that leads to an in-control 
ARL of 370. Finally, Sections 7 & through 9 provide examples of the 
results, conclusions, and recommendations.  

C-chart and Poisson Distribution
The Poisson distribution is one member of the family of discrete 

distributions.  It is useful in modeling the number of events that accrue 
over some specific continuous data such as area or time. If X follows 
the Poisson distribution, the probability of mass function (pmf) of X 
is as follows
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The mean of X, denoted as xµ , and the standard deviation of X, 

denoted as xσ , may be shown to be xµ = 2
xσ  =λ .

In quality control, if the number of non-conformities in a Poisson 
process is monitored, then the C-chart is an appropriate tool. The values

iC , for i=0, 1, 2….m, are plotted over time where iC is the number of 
non-conformities that occur in the thi  inspection unit.

The 3σ control limits for the C-chart are given by  
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=∑  for a historical set of “m” observations, and UCL 

and LCL denote the Upper Control Limits and the Lower Control 
Limits, respectively. 

The conventional measure of control chart performance is the 
Average Run Length (ARL) index.  Let RL denote the random variable 
that reports how many inspections are made until the first out-of-
control signal occurs. For this application, we have ~ ( )RL geometric p   
where 1 ( )ip P LCL C UCL= − ≤ ≤ . It follows that 1

RLARL
p

µ= =  for an in-
control process.

In general, the ARL measures how long, on average, it takes the 
chart to detect a process shift. A large ARL is desired for in-control 
cases, while a short ARL is desired for out-of-control cases. More detail 
concerning C-charts may be found in [1,2].
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Abstract
The uses of Neural Network (NN) models have recently been recommended as statistical quality control (SQC) 

tools. The advantages of NNs, particularly the robustness of the nonlinear modeling abilities, are appealing to quality 
control practitioners for use in process monitoring. Advances in computing power have also made the Neural Network 
Control Charts (NNCC) an alternative SQC technique.The systematic Design of Experiment (DOE) methodology is 
employed to find near optimal NN topology for NNCC for Poisson data. A (2k) full factorial design is implemented and 
supplemented as needed to investigate NN topologies. The effect of the following factors were investigated through a 
simulation study: the number of the inputs “n”, the number of nodes in the hidden layer(s), the training data size, and 
in-control mean for shift range 0-3σ . The guidelines and steps of constructing the DOE study for the NNCC is given, 
along with an example.
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Neural Networks
Neural networks are distribution-free models that have proven 

capable of well approximating almost any continuous function. Among 
the many types of neural networks are the Multi-layer perceptron 
(MLP), Learning Vector Quantization (LVQ), Radial basis function 
(RBF), Adaptive Resonance Theory (ART), and Kohonen self-
organizing network (SOM). The MLP is perhaps the neural network 
most widely known and used in Statistical Quality Control (SQC). The 
MLP consists of at least two layers: inputs which pass the data into the 
network, and an output layer which communicates the network results 
to the end-user. In addition to these layers, there is typically at least one 
hidden layer that connects the inputs and output layer. All calculations 
of the network are done within the hidden layers. A typical three-layer 
NN is shown in Figure 1.

The kth value of the output layer is given by:
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where

ˆky  is the estimated output value, and 

1g  and  2g  are the activation functions.

kjW  is the estimated weight value between the kth output and the 
jth hidden node,

jiw is the estimated weight value between the  jth hidden node and 
the ith input.

Commonly used activation functions include:
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 (Hyperbolic Function).                                                  (2.3.3)

The number of inputs, hidden layers, number of nodes in each 
hidden layer, and outputs, as well as choice of the activation function, is 
commonly referred to as the NN topology or architecture [3].

NN Control Chart Construction
To illustrate the construction of a NN Control Chart, suppose a 

NN has been trained using historical data, after which observations 
were taken from the process and the time ordered values (3, 8, 7, 0, 
9, 3, 4, 3, 4, 5, 11, 11, 9, 10, 6, 3, 11, 8) were obtained. In fact, the first 
10 observations were drawn from an in-control Poisson process with 
mean 0λ =4, while the last eight observations come from a Poisson 
process of mean value, λ =7, for illustration purposes. The example 
considers a NN with 5 inputs (5 most recent data values), one hidden 
layer and a single output value, ŷ . Any output exceeding an upper 
control limit (UCL) of 0.9679 is considered to signal a process shift.

The corresponding x vectors and neural network ŷ  values are 
listed in Table 1.

A typical Neural Network Poisson Quality 
Control Chart for the data in Table 1 is shown in  
Figure 2. The Neural Network Control Chart (NNCC) signals the shift 
on the second observation after the shift occurred. Note that the NN 
input began with the fifth observation in this example. For time period 
6, the moving window of span 5 includes observations 2 through 6 as 
inputs and omits observation 1. Figure 2 contains the time (x-axis) 
ordered values of the NN outputs (y-axis). A signal occurs at time 
period 8 as the NN output exceeds the upper control limits. Questions 
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Figure 1: Typical Feed-forward  Neural Network. 
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Figure 2:  Neural Network Poisson Quality Control Chart 

Time x1 x2 x3 x4 x5 ŷ
1 3 8 7 0 9 0.8477
2 8 7 0 9 3 0.7366
3 7 0 9 3 4 0.5398
4 0 9 3 4 3 0.3057
5 9 3 4 3 4 0.4668
6 3 4 3 4 5 0.3668
7 4 3 4 5 11 0.9284
8 3 4 5 11 11 0.9943
9 4 5 11 11 9 0.9985

10 5 11 11 9 10 0.9996
11 11 11 9 10 6 0.9992
12 11 9 10 6 3 0.982
13 9 10 6 3 11 0.9948
14 10 6 3 11 8 0.9942

Table 1: Example of construction of Neural Network Control Chart.

Factor Low level High Level

Shift Size (measured in ŷ ) 0 3

Number of inputs 3 5
Number of hidden nodes 3 5

Training Data Size 1,000 10,000
In-control Mean 2 4

Table 2: The experimental factors and their levels.
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regarding optimal choices for the number of the inputs, the number of 
the hidden layer nodes, required training data size, determination of 
the Upper Control Limits (UCL), and others will be answered in the 
coming sections [4].

The Design 
To define optimal topology of the NN suitable for the Poisson data 

control chart, Design of Experiment (DOE) methodology is used to 
check for the most important factors that affect the output of the NN. 
The Full Factorial ( 2k ) to investigate the effects of the factors is used. 
The response variable is the ARL, as well as the Median Run Length 
(MRL). Table 2 and Figure 3 show the experimental factors and their 
level, while Table 3 contains influential variables held constant within 
the experiment.

Not included in the project is an investigation of starting weights for 
the NN. That is, will it help the NN in terms of convergence iteration, 
time or accurate ARL if we provide initial weights an expert in the field 
considers the best weights? The comparison between the two ad hoc 
cases revealed no practical difference as shown in Figures 4 and 5. In 
both figures, the ARL values (in the Horizontal axis) are plotted against 
the type of the initial Weights (random weights, R, versus some specific 
weights, S).

Starting weights are initiated as random values in this experiment. 
Additionally, the option of having more than 10,000 observations 
(perhaps 20,000) as a training data set size was investigated. There 
was no significant difference between training data sizes of 10,000 and 
20,000 observations.

The Simulation 
The following is the procedure used to carry out the simulation 

study for the NN for Poisson control chart – the example given here is 
for in-control λ0=4 and the code is written using R 2.4.1. (Appendix C).

The simulation consists of five steps as follows:

Generate training data set

The data set contains both in-control ( ~ (4)X Poisson ) and out-
of-control data ( ~ (7)X Poisson ) so the neural network will learn to 
differentiate between the two states. The training data was generated 
in blocks. For example for the case where the number of inputs=5 and 
the number of hidden layer nodes=3, a block of data that contains 18 
observations is generated using

~ ( )ix Poisson λ        where

λ =
4 ( ) 1,2,...,9
7 ( ) 10,11,...,18

in control i
out of control i
− =

 − − =
.

The value λ =4 represents an in-control process, while λ =7 
indicates a process shift of size (1.5σ ).           

The outputs are:

  
~ (4)0
~ (7)1

i
i

i

x Poissonfor
y

x Poissonfor


= 


  .

The inputs and corresponding responses from this block of data 
will be as follows:
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Figure 3: The Design factors and their levels.
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Figure 4:  In-control ARL performance of the NNCC for both random weights 
vs.   specific weights for inputs=5, hidden nodes=3 and in-control λ0=4

Factor                                                Level

Type of the NN                                   Feed forward Multilayer Perceptron (MLP)

Type of Connection                            Fully connected 

Number of hidden layers                    One

Number of outputs                              One

Activation function                               Logistic

Optimization method                          Quasi-Newton 

Initial Weights                                      Starts at Random [-0.5,0.5]

Table 3: The noise factors and their fixed level.
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Figure 5:  ARL performance of the NNCC for both random weights vs. specific 
weights for shift δ =3, inputs=5, hidden nodes=3 and in-control λ0=4.
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In total we will have five pure in-control input states, five pure 
out-of-control input states, and four in-transition out-of-control 
states, where the status of the state is determined by the most recent 
data point in the inputs. This block is repeated to create a training data 
set of a specified size. For inputs n=3 the block will have eight data 
points, and for inputs n=4 the block will have 12 data points that are 
evenly distributed between the in- and out-of-control states in the same 
manner as described above.

Train the NN
Use the subroutine “nnet” in R2.4.1 to get the optimal weights and 

check for convergence.

Determine upper control limits (UCL) for NN outputs
Generate pure in-control data, that is, obtain the data from the 

Poisson distribution with the in-control mean ( 0λ =4). Then, apply 
the trained neural network to this data and get the output in the closed 
interval [0, 1], where all the values should be close to 0 for in-control 
data. An appropriate percentile of the in-control output will be used to 
get an upper control limits (UCL) point, which is used to determine 
the state of the process in the next step. In-control samples of 100,000 
for each Neural Network are used to get accurate UCL values, because 
most of the percentile points are of 4 significant digits. 

Determine ARL for current NN
The Average Run length (ARL) for the neural network is 

determined using only out-of-control samples.  The first set of inputs 
is from *

1 1 2 3 4 5( , , , , )x x x x x x=  where 1 4,...,x x  are randomly 
generated in-control points and 5x  is out-of-control data point. The 
trained network is applied to these inputs to obtain ˆ

i
y . 

Let UCLNN denote the UCL point for the NN signals. If ˆi NNy UCL≥  
then a process signal occurs.

If 1ˆ NNy UCL< , another random sample, *
2 2 3 4 5 6( , , , , )x x x x x x=  

where 6x  is an out-of-control data point, is generated as well as its 
corresponding output 2ŷ . The process continues until ˆi NNy UCL≥ , and 
then the process is declared as “out-of-control” and the Run-length 
Index ( km ) is recorded. Then the process is repeated “nRLout” times 
to produce “nRLout” run length. The ARL= 

1

nRLout
k

k

m
k=

∑  as well as other 
desired statistics such as Run Length standard deviations or medians 
are calculated.

Repeat the steps

Steps 1-4 will be repeated several times to produce different 

realizations of the process and accurate estimations of the ARLs for 
multiple NNs, Figure 6 displays the steps of the simulation.

Determining the Upper Control Limits (UCL) 
For proper comparisons with the other methods examined in this 

study, equal in-control ARL values for all of competing methods must 
be considered. To determine nominal 370 in-control ARL for the neural 
network, the correct value for the UCLNN point must be obtained. This 
step is required of all experiment combinations of the levels of the 
inputs and hidden nodes. An attempt to theoretically obtain the UCL 
point was pursued. Due to the mathematical complexities associated 
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Figure 6:  Steps of the simulation.

0.9980
0.9973
0.9970
0.9969
0.9968
0.9967
0.9966
0.9965
0.9964
0.9963
0.9962
0.9961
0.9960
0.9959
0.9958
0.9957
0.9956
0.9955
0.9954
0.9953
0.9952
0.9950

900800700600500400300200

Q
u

a
n

ti
le

s

A R L

370

847.2
575.958

521.22
498.327
500.992
498.608
493.6

453.744
456.12

432.48
432.52

419.19
420.476

400.433
378.97
377.073

363.937
365.97
364.13

349.343
350.32

321.586

I n-contr ol  AR L  V s  qua nti les  
 in-control mean=4,inputs=5 and hidden nodes=3

Figure 7:  Values of the In-control ARL for different percentile UCLs when 
inputs=5, hidden layer nodes =3 and in-control λ=4.



Citation: Alhammadi YS, Michael Adams B (2013) Neural Network Control Chart Architecture for Monitoring Non-Conformities in a Poisson Process. 
Ind Eng Manage 2: 115. doi:10.4172/2169-0316.1000115

Page 5 of 9

Volume 2 • Issue 4 • 1000115Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal 

Decision Support for Sustainability Management

with NN models, the solution was intractable. A brief outline of this 
work is provided in Appendix A.

An intensive search in the percentile range of [.95-.98] was 
conducted to empirically obtain the right UCL value to produce the 
nominal in-control ARL of 370. Figure 7 illustrates the searching 
method for inputs value of 5 and hidden nodes value of 3, where the 
ARL values are plotted against the percentiles (in ascending order). 
For example, the smallest in-control ARL for the 99.55th percentile was 
approximately 280.

The 99.57th percentile is used as the UCLNN for this setting so the 
in-control ARL=377.07. The following Figure 8 provides a better view 
of the graph.

Results
Once the UCLs are determined, the experiment is conducted with 

50 replicates at each of the experimental units.  MINTAB 15 software 
is used to analyze the data. Table 4 reveals significant main effects for 
these factors: Inputs (n), hidden layer nodes (h), training data size (x 
1,000), and in-control lambda (c). Further, there is a possible high-order 
interaction especially between inputs (n) and hidden layer nodes (h). 
Looking to both Table B1 and B2 in Appendix B, all of the combinations 
of the inputs and hidden nodes factors are giving in-control ARL values 
close to the nominal 370 ARL. In the high level setting of both factors 
(that is, five inputs and five hidden layer nodes) with a low training data 
size of 1,000, the in-control ARLs were in the 264-268 period. With 
in-control lambda 0λ = 2 and four nodes in both input and hidden 
layers, small values of in-control ARL around 288.6348 to 291.373 were 
obtained for all training data set sizes.

Figures 9-11 display the ARL performance of the NNCC for an in-
control λ=2 across all training data sizes (1,000; 5,500 and 10,000) with 
shifts δ (0.5-3) standard deviation units from the in-control mean for 
different inputs and hidden layer nodes, compared to the theoretical 
value of the C-chart (called Poisson in the charts) . For the detailed 
performance values, see Tables B3-B8 in Appendix B. In Figure 11, the 
horizontal axis presents shift size with shifts ranging in magnitude from 
0.5σ  to 3σ . The vertical scale provides the out-of-control ARL. For 
example, the NNCC (3; 5; 10,000) gives an ARL of approximately 45 for 
shift δ =0.5. Figure 11 reveals that ARL performance of NNCC (3; 5; 
10,000) and NNCC (3; 3; 10,000) are similar.

Notice that the NNCC is performing better than the C-chart for the 
large training data size (a minimum of 5,500), but poorly for the small 
training data set (1,000) across all inputs, hidden nodes combinations, 
and shift sizes. For a training data size of 1,000, the C-chart is 
outperforming the best NNCC for all shift sizes. For that matter, the 
best NNCC was the (3, 3) network, and the ARL for shift δ =0.5 is 
52.5235, while the C-chart ARL is 32.93. For shift size δ =3, the ARLs 
are 2.555 and 1.2 for the NNCC (3; 3; 1,000) and C-chart, respectively. 
The remaining NNCCs are not consistent regarding which one is the 
best for any specific shift; for example, NNCC(5; 5; 1,000) was the worst 
for shift δ =0.5, the best for shift δ =1, and the second best for shift δ =3 
among the other NNCCs.
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Figure 8:  Values of the In-control ARL [300-450] for different percentile upper 
control limits (UCL)s when inputs=5, hidden layer nodes =3 and in-control λ=4.
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Factorial Fit: ARL versus n, h, Shift, training, in-control lambda 
Analysis of Variance for Mean (ARL) (coded units)

Source DF Seq SS Adj SS Adj MS F P
Main Effects 5 65260593 65155247 13031049 1067.12 0.000

2-Way Interactions 10 1899501 1939431 193943 15.88 0.000
3-Way Interactions 10 1218185 1215520 121552 9.95 0.000
4-Way Interactions 5 941449 934485 186897 15.31 0.000
5-Way Interactions 1 108601 108574 108574 8.89 0.003

  Curvature 1 435 435 435 0.04 0.850
Residual Error 10655 130113274 130113274 12211

  Lack of Fit 177 63004894 63004894 355960 55.58 0.000
  Pure Error 10478 67108380 67108380 6405

Total 10687 199542039

Table 4:  The ANOVA table.
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The NNCC exhibits an interesting phenomenon: several of the 50 
trained NNCCs are outliers in the sense that NN outputs and ARLs were 
significantly different from the majority of NNs. Their values affect the 
overall performance of the NNCC for the given setting. Small training 
data sets are more susceptible to the problem. This phenomenon is 
discussed in more detail in Section 2.10.

For a training data size of 5,500, almost all of the NNCC charts 
outperform the C-chart where both NNCC (4; 4; 5,500) and NNCC 
(5; 3; 5,500) are the best for small shifts (δ <2), although NNCC (4; 4; 
5,500) has ARL 10.832 and NNCC (5; 3; 5,500) ARL was 13.6778 for 
shift δ=0.5. However, that is expected since NNCC (4; 4; 5,500) has a 
smaller in-control ARL 288.6348, compared to 338.504 for NNCC (5; 
3; 5,500). For shifts (δ) greater than or equal to 2, all methods are fairly 
comparable.

For a training data size of 10,000, all NNCC charts outperform 
the C-chart for shifts δ <=2.5 in standard deviations (SD) units, but 
perform at the same level as the C-chart once the shift exceeds 2.5σ
. Among the NNCC charts, the NNCC (5; 3; 10,000) and NNCC (5; 5; 
10,000) provide optimal ARL performance, especially in the small shift 
range.

Figures 12-14 show the performance of the NNCC for in-control 
λ=4; the ARL details can be found in Tables B9-B14 in Appendix B. 
With a small training size of 1,000, there is no NNCC better than 
the C-chart (also called Poisson 4 in the graphs). The best NNCC – 
especially when the shift size is δ<2.5 – is the NNCC (5; 3; 1,000). The 
ARL for the C-chart is 73.02, and for NNCC (5; 3; 1,000) the ARL is 
82.723 where the biggest ARL is more than the sum of both ARLs, 
which is 186.254 for NNCC (4; 4; 1,000) for shift δ =0.5. Again, we see 
the instability of the NNCC when a small size training data set is used, 
while it is effective for big shift sizes.

Once the training data set size is increased to 5,500, the ARL 
performances change. The NNCC outperforms the C-chart in almost 
all shift sizes – except for NNCC (3; 5; 5,500) when the shift δ=2.5; the 
NNCC ARL is 7.991 and the C-chart ARL is 3.4, which will be explained 
in later sections. The NNCC (5; 3; 5,500) seems to perform better than 
the rest of the NNCC, except in the case of the shift size δ=0.5 and 
1. The NNCC(5; 3; 5,500) with ARL value of 10.4980 is the second 
best following NNCC(5; 5; 5,500) with 10.1308 ARL for shift δ=1. In 
the case of shift size δ=0.5, the best NNCC is NNCC(4; 4; 5,500) with 
41.9042 ARL; NNCC(5; 3; 5,500) had 48.6948 ARL, but after removing 

an outlier value of 656.2, the ARL value dropped to 36.2967, which is 
the smallest for that shift size. 

In the training data set size of 10,000 NNCC outperforms the 
C-chart across the board. Both NNCC(5; 3; 10,000) and NNCC(5; 
5; 10,000) share the close values of the ARL that make them the top 
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Figure 11:  The ARL performance for In-control lambda=2 with training data 
size of 10,000.
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Figure 12:  The ARL performance for In-control lambda=4 with training data 
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choices, but NNCC(5; 3; 10,000) has a closer in-control ARL to the 
nominal value of 370, which 366.774 versus 356.666 in-control ARL for 
NNCC(5; 5; 10,000). It performs better across all shifts except for the 
slight difference between 35.421 and 34.919 (ARL of the NNCC(5; 3; 
1,000) and  NNCC(5; 5; 1,000), respectively) for shift δ=0.5.

From the previous analysis, the NNCC with inputs 5 and hidden 
layer nodes 3 seems a natural choice for the best candidate of the 
different NNCCs to be used in monitoring non-conformities in the 
Poisson processes. It always has the smallest ARL or is in-line with one 
that has the smallest shift for all type of shifts and training data set sizes. 

Determination of the Critical Size for Training Data 
Sets

The next question that must be answered is: what is the best training 
set size that will perform at least as well as the C-chart?

For in-control λ=2, Figure 15 displays the out-of-control ARL 
performance for NN with 5 inputs and 3 hidden layer nodes. On the 
x-axis, the shift magnitude (0.5σ -3σ ) is graphed against the ARL 
(y-axis) performance. For example, the NNCC (5; 3; 5,500) has ARL 
value of about 40 for shift δ =0.5. Figure 15 shows that the training 
data set size of 1,000 is not performing as well. It is always has a larger 
out-of-control ARL than the C-chart. It shows that the NNCC with 
inputs = 5, hidden nodes = 3, and training set data size of 5,500 will 
always outperform the C-chart in terms of the ARL values across all 
shifts δ=0.5-3 standard deviation units from the nominal mean, as seen 
in Table 5.

It is also true for the performance in the Median Run Length as 
shown in Figure 16.

For the in-control case with λ=4, the NNCC (5; 3; 1,000) also 
exhibited poor performance and instability when compared to the 
C-chart. However, the NNCC with 5 inputs, 3 hidden layer nodes, and 

training data set size 2,000 outperforms the C-chart in monitoring non-
conformities in the Poisson process in both ARL and MRL, as we can 
conclude from Figures 17 and 18 and Table 6.

After deciding that the NNCC with inputs = 5 and hidden layer 
nodes = 3 is the most suitable for use in monitoring the number of 
the non-conformities in the Poisson processes, we investigated its 
performance in terms of ARL and MRL for the in-control case of λ=6. 
The results are shown in Figures 19-20 and Table B15 in Appendix B.

3.02.52.01.51.00.5

100

80

60

40

20

0

s hift  in S D unit s

A
R

L

Poisson 2
nh 53 train 1
nh 53 train 5.5
nh 53 train 10

Variable

AR L  for  I n-contr ol  L a mbda = 2
Input layer nodes=5 and Hidden layer nodes=3

Figure 15:  The ARL performance for In-control lambda=2 with inputs=5 and 
hidden nodes=3.
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Figure 16:  The MRL performance for In-control lambda=2 with inputs=5 and 
hidden nodes=3.
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Figure 17:  The ARL performance for In-control lambda=4 with inputs=5 and 
hidden nodes=3.`
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Figure 18:  The MRL performance for In-control lambda=4 with inputs=5 and 
hidden nodes=3.

Shift δ C-chart             NNCC(5; 3; 5,500)
0.5 48.01 38.31
1 16.98 13.68

1.5 8.08 5.57
2 4.69 3.77

2.5 3.13 2.84

Table 5:  ARL performance for both C-chart and Neural Control Chart with inputs 
n=5, hidden nodes=3, and training data set size=5,500 for in-control lambda=2.
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When comparing the C-chart (Poisson 6 in the graphs) to 
the NNCCs, we see that for small shifts, that is δ ≤ 1.5, all NNCCs 
outperform the C-chart in terms of the both ARL and MRL. For the 
remaining shift values, the C-chart is performing better than all of the 
NNCCs in terms of MRL; meanwhile the NNCC continues to perform 
better than the C-chart for all types of shifts, except shift δ=3 and 
training data size=1,000.

As we can see, the training data set size is not crucial in this 
case, because even with a small training size of 1,000, the previously 
noticed phenomenon is still valid. The NNCC (5; 3; 1,000) is 
outperforming the C-chart for in-control λ= 6 in almost all shifts 
δ<3, for example, for shift δ= 0.5, the NNCC (5; 3; 1,000) has an 
ARL value of 56.14, but the C-chart ARL is 61.275. For shift δ=3 the 
C-chart is outperforming the NNCC (5; 3; 1,000) since the ARLs are 

2.2778 and 2.14958 for NNCC (5; 3; 1,000) and C-chart, respectively 
(Table 7).

Alternatively, the picture is somewhat different in the MRL 
performance. For shift δ=0.5, the NNCC (5; 3; 1,000) has 39.6 MRL and 
the C-chart has 42.125, but for shifts δ>1.5, the C-chart outperforms 
the NNCC; for example, when shift δ=2 the values of the MRL were 
3.04 and 2.9494 for NNCC (5; 3; 1,000) and C-chart, respectively. It is 
worth noting that the NNCC (5; 3; 1,000) has a closer in-control ARL 
value than the C-chart to the nominal 370, as the in-control values were 
306.1214 and 275.6 for NNCC (5; 3; 1,000) and C-chart, respectively.

Choosing the NNCC with 5 inputs and 3 hidden layer nodes and a 
training data set size of 1,000 is a justifiable choice for monitoring the 
number of the non-conformities in the Poisson processes.

Unusual Outliers
As mentioned earlier, the neural network performance suffers from 

the instability of the outputs. That is, there will be few outlier networks, 
which mean that among all the 50 networks that were trained, few 
networks were noticeably different from the rest of the networks. The 
question must be considered: do the different networks just have some 
outlier Run Length(s) that are driving the ARL to be large, or is it the 
case that the whole Run Lengths for those networks were relatively 
large?

Figure 21 is a dotplot for the 50 individual in-control ARLs where 
the ARL of each NNCC is plotted on the vertical scale. As can be seen 
in Figure 21, for NNCC (5; 3; 1,000), shift δ=1.5 and in-control λ0=2 
among the 50 networks that were trained, it seems there is at least 
one network with a significantly large ARL reported relative to the 
remaining networks. Some of the 50 networks ARLs – including three 

Shift δ C-chart NNCC(5; 3; 2,000)
0.5 73.02 53.25
1 23.46 10.25

1.5 10.15 5.51
2 5.43 3.58

2.5 3.4 2.63

Table 6:  ARL performance for both C-chart and Neural Control Chart with inputs 
n=5, hidden nodes=3, and training data set size=2,000 for in-control lambda=4.
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Figure 19:  The ARL performance for In-control lambda=6 with inputs=5 and 
hidden nodes=3.
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Figure 20:  The MRL performance for In-control lambda=6 with inputs=5 and 
hidden nodes=3.
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Figure 21: The ARL performance for In-control lambda=2 with inputs=5, 
hidden nodes=3, shift size δ =1.5, and training data size=1,000.

Shift δ C-chart NNCC(5; 3; 1,000)
0.5 61.27 56.14
1 20.23 12.22

1.5 8.85 5.69
2 4.77 3.54

2.5 3.02 2.63
3 2.15 2.28

Table 7:  ARL performance for both C-chart and Neural Network Control Chart 
with inputs n=5, hidden nodes=3 and training data set size=1,000 for in-control 
lambda=6.



Citation: Alhammadi YS, Michael Adams B (2013) Neural Network Control Chart Architecture for Monitoring Non-Conformities in a Poisson Process. 
Ind Eng Manage 2: 115. doi:10.4172/2169-0316.1000115

Page 9 of 9

Volume 2 • Issue 4 • 1000115Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal 

Decision Support for Sustainability Management

suspect outliers – were investigated through the mean of the Boxplot. 
Figure 22 gives the ARL boxplot of seven NNs. Each of the boxplots 
represents the Run Length distribution for a specific NN. Noticeably, 
the second network is in fact different than the majority of the networks 
in both median (and mean) and the spread of the data (range). This 
network has an ARL value of 42.91 and MRL value of 31; we can 
get values as extreme as 377 run length for that specific shift δ =1.5. 
Also, networks 3 and 4 differ from the rest of the networks and have 
bigger ARLs – which are 8.342 and 8.217 for network 3 and network 
4, respectively. The ARL for all 50 networks was 6.53824, and after 
removing these three outlier networks it dropped to 5.69028 with SE 
(Standard Error) = 0.066, meaning it is statistically smaller.

The phenomenon is more noticeable with, but not limited to, the 
small size of the training data sets. For example, as we can see in Figure 
23 where in-control λ=4 with inputs = 3, hidden nodes = 5, big shift 
size δ=2.5, and a moderate training data size = 5,500, we still found an 
outlier network that suffers from the instability and causes the overall 
ARL to increase dramatically. The ARL was 7.99064 when that single 
outlier network was included, but decreased to 2.69453 with SE = 
0.0116 when that network is removed from the calculations.

Thus, caution must be exercised when using the Neural Network 
Control Chart for Poisson process. Getting a variety of trained neural 
networks will help prevent this instability and getting unrealistic values 
for the neural network parameters (the weights). Conclusion

Using the Design of Experiment (DOE) methodology, we found 
that number of the inputs, hidden layer nodes, training data size and 
the value of the in-control mean are all significant factors in having 
the optimal Neural Network Control Chart for the number of non-
conformities in Poisson processes.

The NNCC with inputs “n” = 5 and hidden layer nodes “h” = 3 seems 
to perform well across all in-control lambda values and outperforms 
the C-chart especially for small and moderate shifts. The smaller the 
in-control lambda, the larger the training data needed – training = 
5,500; 2,000 and 1,000 were sufficient enough for the NNCC (5, 3) to 
outperform the C-chart for in-control λ=2, 4 and 6, respectively.

Table 8 and 9 shows the best control chart preferred for use in terms 
of the ARL and MRL for a specific combination of in-control λ and shift 
size that we seek to detect. For example, if we wish to detect a shift δ =2 
and the in-control λ is 4, then the NNCC(5; 3; 5,500) – which means the 
NNCC with 5 inputs, 3 hidden nodes and 5,500 training data size – has 
the smallest ARL (3.573) among all the NNCC and C-charts.

We observe that the NNCC (5, 3) is almost always either the 
optimal or the nearest optimal NNCC for detecting any shift for any 
given λ values. There is always a NNCC that outperforms the C-chart in 
ARL for all types of shifts and the in-control mean values. The C-chart 
outperforms the NNCC for large shifts (δ≥ 2) in terms of MRL, except 
for shift δ=2 and λ=4.
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Figure 22:  The Boxplot of some of the ARL performance for In-control 
lambda=2 with inputs=5, hidden nodes=3, shift size δ =1.5 and training data 
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Figure 23: The ARL performance for In-control lambda=4 with inputs=3, 
hidden nodes=5, shift size δ =2.5 and training data size=5,500.

Shift In-control Mean=2 In-control Mean=4 In-control Mean=6

0.5 NNCC(5,5,10000)=34.03
NNCC(5,3,10000)=34.03

NNCC(5,5,10000)=34.92
NNCC(5,3,10000)=35.41 NNCC(5,3,4000)=34.61

1 NNCC(4,4,10000)=10.52
NNCC(5,3,10000)=10.54

NNCC(5,5,5500)=10.13
NNCC(5,3,2000)=10.25 NNCC(5,3,3000)=10.00

1.5 NNCC(5,3,5500)=5.57 NNCC(5,3,5500)=5.30 NNCC(5,3,5000)=5.17
2 NNCC(5,3,5500)=3.77 NNCC(5,3,5500)=3.57 NNCC(5,3,5000)=3.44
2.5 NNCC(5,3,5500)=2.84 NNCC(5,3,10000)=2.61 NNCC(5,3,3000)=2.52
3 NNCC(5,3,10000)=2.25 NNCC(5,3,10000)=2.06 NNCC(5,3,5000)=1.97

Table 8:  The Best Control Charts in ARL.

Shift In-control Mean=2 In-control Mean=4 In-control Mean=6

0.5 NNCC(5,5,10000)=24.42
NNCC(5,3,10000)=24.41

NNCC(5,5,10000)=24.99
NNCC(5,3,10000)=25.46 NNCC(5,3,5000)=24.76

1 NNCC(5,3,10000)=7.96 NNCC(5,3,2000)=7.74 NNCC(5,3,5000)=7.56
1.5 NNCC(4,4,10000)=4.18 NNCC(4,4,10000)=4.02 NNCC(5,3,10000)=4.08

2 C-chart=2.89

N N C C ( 3 , 3 , 5 5 0 0 ) = 
NNCC(3,3 ,10000)=3  
 
N N C C ( 3 , 5 , 1 0 0 0 0 ) = 
NNCC(4,4,10000)=3

C-chart=2.95

2.5 C-chart=1.8 C-chart=1.99 C-chart=1.72
3 C-chart=1.22 C-chart=1.28 C-chart=1.11

Table 9:  The Best Control Charts in MRL.

http://books.google.co.in/books?hl=en&lr=&id=rcu71DvkjX0C&oi=fnd&pg=PA1&dq=Introduction+to+Statistical+Quality+Control&ots=xrzTxTQRPo&sig=09IHUnxDLh4Hov7-4nFPFKbUPKc
http://books.google.co.in/books?hl=en&lr=&id=rcu71DvkjX0C&oi=fnd&pg=PA1&dq=Introduction+to+Statistical+Quality+Control&ots=xrzTxTQRPo&sig=09IHUnxDLh4Hov7-4nFPFKbUPKc
http://asq.org/qic/display-item/?item=11490
http://asq.org/qic/display-item/?item=11490
http://link.springer.com/article/10.1023/A%3A1008818817588
http://link.springer.com/article/10.1023/A%3A1008818817588

	Title
	Corresponding author
	Abstract
	Keyword
	Introduction
	C-chart and Poisson Distribution 
	Neural Networks 
	NN Control Chart Construction 
	The Design  
	The Simulation  
	Generate training data set 
	Train the NN 
	Determine upper control limits (UCL) for NN outputs 
	Determine ARL for current NN 
	Repeat the steps 

	Determining the Upper Control Limits (UCL)  
	Results
	Determination of the Critical Size for Training Data Sets 
	Unusual Outliers 
	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Table 1
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

